/* Given a pair of points, return scale, angle, dx, dy to resample the 2nd * image with. */ int im__coeff( int xr1, int yr1, int xs1, int ys1, int xr2, int yr2, int xs2, int ys2, double *a, double *b, double *dx, double *dy ) { DOUBLEMASK *in, *out; if( !(in = im_create_dmask( "in", 4, 4 )) ) { im_errormsg( "im__coeff: unable to allocate matrix" ); return( -1 ); } in->coeff[0] = (double)xs1; in->coeff[1] = (double)-ys1; in->coeff[2] = 1.0; in->coeff[3] = 0.0; in->coeff[4] = (double)ys1; in->coeff[5] = (double)xs1; in->coeff[6] = 0.0; in->coeff[7] = 1.0; in->coeff[8] = (double)xs2; in->coeff[9] = (double)-ys2; in->coeff[10] = 1.0; in->coeff[11] = 0.0; in->coeff[12] = (double)ys2; in->coeff[13] = (double)xs2; in->coeff[14] = 0.0; in->coeff[15] = 1.0; if( !(out = im_matinv( in, "out" )) ) { im_free_dmask( in ); im_errormsg( "im__coeff: unable to invert matrix" ); return( -1 ); } *a = out->coeff[0]*xr1 + out->coeff[1]*yr1 + out->coeff[2]*xr2 + out->coeff[3]*yr2; *b = out->coeff[4]*xr1 + out->coeff[5]*yr1 + out->coeff[6]*xr2 + out->coeff[7]*yr2; *dx= out->coeff[8]*xr1 + out->coeff[9]*yr1 + out->coeff[10]*xr2 + out->coeff[11]*yr2; *dy= out->coeff[12]*xr1 + out->coeff[13]*yr1 + out->coeff[14]*xr2 + out->coeff[15]*yr2; im_free_dmask( in ); im_free_dmask( out ); return( 0 ); }
INTMASK * im_log_imask( const char *filename, double sigma, double min_ampl ) { DOUBLEMASK *dm; INTMASK *im; if( !(dm = im_log_dmask( filename, sigma, min_ampl )) ) return( NULL ); if( !(im = im_scale_dmask( dm, dm->filename )) ) { im_free_dmask( dm ); return( NULL ); } im_free_dmask( dm ); return( im ) ; }
/** * im_read_imask: * @filename: read matrix from this file * * Reads an integer matrix from a file. * * This function works exactly as im_read_dmask(), but the loaded matrix is * checked for 'int-ness'. All coefficients must be integers, and scale and * offset must be integers. * * See also: im_read_dmask(). * * Returns: the loaded mask on success, or NULL on error. */ INTMASK * im_read_imask( const char *filename ) { DOUBLEMASK *dmask; INTMASK *imask; int i; if( !(dmask = im_read_dmask( filename )) ) return( NULL ); if( ceil( dmask->scale ) != dmask->scale || ceil( dmask->offset ) != dmask->offset ) { im_error( "im_read_imask", "%s", _( "scale and offset should be int" ) ); im_free_dmask( dmask ); return( NULL ); } for( i = 0; i < dmask->xsize * dmask->ysize; i++ ) if( ceil( dmask->coeff[i] ) != dmask->coeff[i] ) { im_error( "im_read_imask", _( "ceofficient at " "position (%d, %d) is not int" ), i % dmask->xsize, i / dmask->xsize ); im_free_dmask( dmask ); return( NULL ); } if( !(imask = im_create_imask( filename, dmask->xsize, dmask->ysize )) ) { im_free_dmask( dmask ); return( NULL ); } imask->scale = dmask->scale; imask->offset = dmask->offset; for( i = 0; i < dmask->xsize * dmask->ysize; i++ ) imask->coeff[i] = dmask->coeff[i]; im_free_dmask( dmask ); return( imask ); }
/* Calculate the inverse transformation. */ int im__transform_calc_inverse( Transformation *trn ) { DOUBLEMASK *msk, *msk2; if( !(msk = im_create_dmaskv( "boink", 2, 2, trn->a, trn->b, trn->c, trn->d )) ) return( -1 ); if( !(msk2 = im_matinv( msk, "boink2" )) ) { (void) im_free_dmask( msk ); return( -1 ); } trn->ia = msk2->coeff[0]; trn->ib = msk2->coeff[1]; trn->ic = msk2->coeff[2]; trn->id = msk2->coeff[3]; (void) im_free_dmask( msk ); (void) im_free_dmask( msk2 ); return( 0 ); }
/** * im_create_dmask: * @filename: set mask filename to this * @xsize: mask width * @ysize: mask height * * Create an empty dmask. You need to loop over @coeff to set the values. * * See also: im_create_dmaskv(), im_vips2mask(). * * Returns: The newly-allocated mask. */ DOUBLEMASK * im_create_dmask( const char *filename, int xsize, int ysize ) { DOUBLEMASK *out; int size = xsize * ysize; /* Check args. */ if( xsize <= 0 || ysize <= 0 || filename == NULL ) { im_error( "im_create_dmask", "%s", _( "bad arguments" ) ); return( NULL ); } /* Allocate and initialise structure. */ if( !(out = IM_NEW( NULL, DOUBLEMASK )) ) return( NULL ); out->coeff = NULL; out->filename = NULL; out->scale = 1.0; out->offset = 0.0; out->xsize = 0; out->ysize = 0; if( !(out->coeff = IM_ARRAY( NULL, size, double )) ) { im_free_dmask( out ); return( NULL ); } (void) memset( (char *) out->coeff, 0, size * sizeof( double ) ); if( !(out->filename = im_strdup( NULL, filename )) ) { im_free_dmask( out ); return( NULL ); } out->xsize = xsize; out->ysize = ysize; return( out ); }
/* Make a DOUBLEMASK local to an image descriptor. */ static DOUBLEMASK * local_mask( IMAGE *out, DOUBLEMASK *mask ) { if( !mask ) return( NULL ); if( im_add_close_callback( out, (im_callback_fn) im_free_dmask, mask, NULL ) ) { im_free_dmask( mask ); return( NULL ); } return( mask ); }
/* Normalise an image using the rules noted above. */ static int normalise( IMAGE *in, IMAGE *out ) { if( im_check_uncoded( "im_histplot", in ) || im_check_noncomplex( "im_histplot", in ) ) return( -1 ); if( vips_bandfmt_isuint( in->BandFmt ) ) { if( im_copy( in, out ) ) return( -1 ); } else if( vips_bandfmt_isint( in->BandFmt ) ) { IMAGE *t1; double min; /* Move min up to 0. */ if( !(t1 = im_open_local( out, "im_histplot", "p" )) || im_min( in, &min ) || im_lintra( 1.0, in, -min, t1 ) ) return( -1 ); } else { /* Float image: scale min--max to 0--any. Output square * graph. */ IMAGE *t1; DOUBLEMASK *stats; double min, max; int any; if( in->Xsize == 1 ) any = in->Ysize; else any = in->Xsize; if( !(stats = im_stats( in )) ) return( -1 ); min = VIPS_MASK( stats, 0, 0 ); max = VIPS_MASK( stats, 1, 0 ); im_free_dmask( stats ); if( !(t1 = im_open_local( out, "im_histplot", "p" )) || im_lintra( any / (max - min), in, -min * any / (max - min), out ) ) return( -1 ); } return( 0 ); }
/** * im_local_dmask: * @out: image to make the mask local to * @mask: mask to local-ize * * @out takes ownership of @mask: when @out is closed, @mask will be closed * for you. If im_local_dmask() itself fails, the mask is also freed. * * See also: im_local_imask(). * * Returns: the mask, or NULL on error. */ DOUBLEMASK * im_local_dmask( VipsImage *out, DOUBLEMASK *mask ) { if( im_check_dmask( "im_local_dmask", mask ) ) return( NULL ); if( im_add_close_callback( out, (im_callback_fn) im_free_dmask, mask, NULL ) ) { im_free_dmask( mask ); return( NULL ); } return( mask ); }
/** * im_read_dmask: * @filename: read matrix from this file * * Reads a matrix from a file. * * Matrix files have a simple format that's supposed to be easy to create with * a text editor or a spreadsheet. * * The first line has four numbers for width, height, scale and * offset (scale and offset may be omitted, in which case they default to 1.0 * and 0.0). Scale must be non-zero. Width and height must be positive * integers. The numbers are separated by any mixture of spaces, commas, * tabs and quotation marks ("). The scale and offset fields may be * floating-point, and must use '.' * as a decimal separator. * * Subsequent lines each hold one line of matrix data, with numbers again * separated by any mixture of spaces, commas, * tabs and quotation marks ("). The numbers may be floating-point, and must * use '.' * as a decimal separator. * * Extra characters at the ends of lines or at the end of the file are * ignored. * * See also: im_read_imask(), im_gauss_dmask(). * * Returns: the loaded mask on success, or NULL on error. */ DOUBLEMASK * im_read_dmask( const char *filename ) { FILE *fp; double sc, off; int xs, ys; DOUBLEMASK *out; int x, y, i; char buf[MAX_LINE]; if( !(fp = im__file_open_read( filename, NULL, TRUE )) ) return( NULL ); if( read_header( fp, &xs, &ys, &sc, &off ) ) { fclose( fp ); return( NULL ); } if( !(out = im_create_dmask( filename, xs, ys )) ) { fclose( fp ); return( NULL ); } out->scale = sc; out->offset = off; for( i = 0, y = 0; y < ys; y++ ) { char *p; if( get_line( fp, buf ) ) { im_free_dmask( out ); fclose( fp ); return( NULL ); } for( p = buf, x = 0; p && x < xs; x++, i++, p = im_break_token( p, " \t,\";" ) ) out->coeff[i] = g_ascii_strtod( p, NULL ); } fclose( fp ); return( out ); }