void test_rth_space() { socklen_t len; set_funcname("test_rth_space", sizeof("test_rth_space\0")); /* * Test: invalid routing header type. */ len = inet6_rth_space(~IPV6_RTHDR_TYPE_0, 0); checknum(0, len, 0, "invalid routing header type\0"); /* * Test: valid number of segments. */ len = inet6_rth_space(IPV6_RTHDR_TYPE_0, 0); checknum(0, len, 1, "0 segments\0"); len = inet6_rth_space(IPV6_RTHDR_TYPE_0, 127); checknum(0, len, 1, "0 segments\0"); /* * Test: invalid number of segments. */ len = inet6_rth_space(IPV6_RTHDR_TYPE_0, -1); checknum(0, len, 0, "-1 segments\0"); len = inet6_rth_space(IPV6_RTHDR_TYPE_0, 128); checknum(0, len, 0, "128 segments\0"); }
int Inet6_rth_space(int type, int segments) { int ret; ret = inet6_rth_space(type, segments); if (ret < 0) err_quit("inet6_rth_space 错误"); return ret; }
void runSuccess() { int t = anyint(); int s = anyint(); int len = inet6_rth_space(t, s); if (len) { char* bp = my_malloc(len); inet6_rth_init(bp, len, t, s); } }
void runFailure2() { int t = anyint(); int s = anyint(); int len = inet6_rth_space(t, s); if (len) { char* bp = my_malloc(len); inet6_rth_init(bp, 0, t, s); } }
int Inet6_rth_space(int type, int segments) { int ret; ret = inet6_rth_space(type, segments); if (ret < 0) err_quit("inet6_rth_space error: %s", strerror(errno)); return ret; }
void *inet6_rth_init (void *bp, socklen_t bp_len, int type, int segments) { socklen_t needlen; needlen = inet6_rth_space (type, segments); if ((needlen == 0) || (bp_len < needlen)) return NULL; memset (bp, 0, needlen); ((uint8_t *)bp)[1] = segments * 2; /* type 0 specific */ ((uint8_t *)bp)[2] = type; return bp; }
void testValues() { f = 2; int t = anyint(); int s = anyint(); int len = inet6_rth_space(t, s); if (len) { char* bp = my_malloc(len); char* result = inet6_rth_init(bp, len, t, s); //@ assert result == \null || result == bp; } //@ assert f == 2; //@ assert vacuous: \false; }
/* * Initialize the msghdr for specifying hoplimit, outgoing interface and routing * header for the probe packets. */ void set_ancillary_data(struct msghdr *msgp, int hoplimit, union any_in_addr *gwIPlist, int gw_cnt, uint_t if_index) { size_t hoplimit_space; size_t rthdr_space; size_t pktinfo_space; size_t bufspace; struct cmsghdr *cmsgp; uchar_t *cmsg_datap; int i; msgp->msg_control = NULL; msgp->msg_controllen = 0; /* * Need to figure out size of buffer needed for ancillary data * containing routing header and packet info options. * * Portable heuristic to compute upper bound on space needed for * N ancillary data options. It assumes up to _MAX_ALIGNMENT padding * after both header and data as the worst possible upper bound on space * consumed by padding. * It also adds one extra "sizeof (struct cmsghdr)" for the last option. * This is needed because we would like to use CMSG_NXTHDR() while * composing the buffer. The CMSG_NXTHDR() macro is designed better for * parsing than composing the buffer. It requires the pointer it returns * to leave space in buffer for addressing a cmsghdr and we want to make * sure it works for us while we skip beyond the last ancillary data * option. * * bufspace[i] = sizeof(struct cmsghdr) + <pad after header> + * <option[i] content length> + <pad after data>; * * total_bufspace = bufspace[0] + bufspace[1] + ... * ... + bufspace[N-1] + sizeof (struct cmsghdr); */ rthdr_space = 0; pktinfo_space = 0; /* We'll always set the hoplimit of the outgoing packets */ hoplimit_space = sizeof (int); bufspace = sizeof (struct cmsghdr) + _MAX_ALIGNMENT + hoplimit_space + _MAX_ALIGNMENT; if (gw_cnt > 0) { rthdr_space = inet6_rth_space(IPV6_RTHDR_TYPE_0, gw_cnt); bufspace += sizeof (struct cmsghdr) + _MAX_ALIGNMENT + rthdr_space + _MAX_ALIGNMENT; } if (if_index != 0) { pktinfo_space = sizeof (struct in6_pktinfo); bufspace += sizeof (struct cmsghdr) + _MAX_ALIGNMENT + pktinfo_space + _MAX_ALIGNMENT; } /* * We need to temporarily set the msgp->msg_controllen to bufspace * (we will later trim it to actual length used). This is needed because * CMSG_NXTHDR() uses it to check we have not exceeded the bounds. */ bufspace += sizeof (struct cmsghdr); msgp->msg_controllen = bufspace; msgp->msg_control = (struct cmsghdr *)malloc(bufspace); if (msgp->msg_control == NULL) { Fprintf(stderr, "%s: malloc %s\n", prog, strerror(errno)); exit(EXIT_FAILURE); } cmsgp = CMSG_FIRSTHDR(msgp); /* * Fill ancillary data. First hoplimit, then rthdr and pktinfo if * needed. */ /* set hoplimit ancillary data */ cmsgp->cmsg_level = IPPROTO_IPV6; cmsgp->cmsg_type = IPV6_HOPLIMIT; cmsg_datap = CMSG_DATA(cmsgp); /* LINTED E_BAD_PTR_CAST_ALIGN */ *(int *)cmsg_datap = hoplimit; cmsgp->cmsg_len = cmsg_datap + hoplimit_space - (uchar_t *)cmsgp; cmsgp = CMSG_NXTHDR(msgp, cmsgp); /* set rthdr ancillary data if needed */ if (gw_cnt > 0) { struct ip6_rthdr0 *rthdr0p; cmsgp->cmsg_level = IPPROTO_IPV6; cmsgp->cmsg_type = IPV6_RTHDR; cmsg_datap = CMSG_DATA(cmsgp); /* * Initialize rthdr structure */ /* LINTED E_BAD_PTR_CAST_ALIGN */ rthdr0p = (struct ip6_rthdr0 *)cmsg_datap; if (inet6_rth_init(rthdr0p, rthdr_space, IPV6_RTHDR_TYPE_0, gw_cnt) == NULL) { Fprintf(stderr, "%s: inet6_rth_init failed\n", prog); exit(EXIT_FAILURE); } /* * Stuff in gateway addresses */ for (i = 0; i < gw_cnt; i++) { if (inet6_rth_add(rthdr0p, &gwIPlist[i].addr6) == -1) { Fprintf(stderr, "%s: inet6_rth_add\n", prog); exit(EXIT_FAILURE); } } cmsgp->cmsg_len = cmsg_datap + rthdr_space - (uchar_t *)cmsgp; cmsgp = CMSG_NXTHDR(msgp, cmsgp); } /* set pktinfo ancillary data if needed */ if (if_index != 0) { struct in6_pktinfo *pktinfop; cmsgp->cmsg_level = IPPROTO_IPV6; cmsgp->cmsg_type = IPV6_PKTINFO; cmsg_datap = CMSG_DATA(cmsgp); /* LINTED E_BAD_PTR_CAST_ALIGN */ pktinfop = (struct in6_pktinfo *)cmsg_datap; /* * We don't know if pktinfop->ipi6_addr is aligned properly, * therefore let's use bcopy, instead of assignment. */ (void) bcopy(&in6addr_any, &pktinfop->ipi6_addr, sizeof (struct in6_addr)); /* * We can assume pktinfop->ipi6_ifindex is 32 bit aligned. */ pktinfop->ipi6_ifindex = if_index; cmsgp->cmsg_len = cmsg_datap + pktinfo_space - (uchar_t *)cmsgp; cmsgp = CMSG_NXTHDR(msgp, cmsgp); } msgp->msg_controllen = (char *)cmsgp - (char *)msgp->msg_control; }
int main(int argc, char *argv[]) { int ch, hold, packlen; u_char *packet; char *target; struct addrinfo hints, *ai; int gai; struct sockaddr_in6 firsthop; int socket_errno = 0; struct icmp6_filter filter; int err; #ifdef __linux__ int csum_offset, sz_opt; #endif static uint32_t scope_id = 0; #ifdef ANDROID android_check_security(); #endif limit_capabilities(); #ifdef USE_IDN setlocale(LC_ALL, ""); #endif icmp_sock = socket(AF_INET6, SOCK_DGRAM, IPPROTO_ICMPV6); if (icmp_sock < 0) { enable_capability_raw(); icmp_sock = socket(AF_INET6, SOCK_RAW, IPPROTO_ICMPV6); socket_errno = errno; disable_capability_raw(); using_ping_socket = 0; } source.sin6_family = AF_INET6; memset(&firsthop, 0, sizeof(firsthop)); firsthop.sin6_family = AF_INET6; preload = 1; while ((ch = getopt(argc, argv, COMMON_OPTSTR "F:N:")) != EOF) { switch(ch) { case 'F': flowlabel = hextoui(optarg); if (errno || (flowlabel & ~IPV6_FLOWINFO_FLOWLABEL)) { fprintf(stderr, "ping: Invalid flowinfo %s\n", optarg); exit(2); } options |= F_FLOWINFO; break; case 'Q': tclass = hextoui(optarg); if (errno || (tclass & ~0xff)) { fprintf(stderr, "ping: Invalid tclass %s\n", optarg); exit(2); } options |= F_TCLASS; break; case 'I': if (strchr(optarg, ':')) { char *p, *addr = strdup(optarg); if (!addr) { fprintf(stderr, "ping: out of memory\n"); exit(2); } p = strchr(addr, SCOPE_DELIMITER); if (p) { *p = '\0'; device = optarg + (p - addr) + 1; } if (inet_pton(AF_INET6, addr, (char*)&source.sin6_addr) <= 0) { fprintf(stderr, "ping: invalid source address %s\n", optarg); exit(2); } options |= F_STRICTSOURCE; free(addr); } else { device = optarg; } break; case 'M': if (strcmp(optarg, "do") == 0) pmtudisc = IPV6_PMTUDISC_DO; else if (strcmp(optarg, "dont") == 0) pmtudisc = IPV6_PMTUDISC_DONT; else if (strcmp(optarg, "want") == 0) pmtudisc = IPV6_PMTUDISC_WANT; else { fprintf(stderr, "ping: wrong value for -M: do, dont, want are valid ones.\n"); exit(2); } break; case 'V': printf("ping6 utility, iputils-%s\n", SNAPSHOT); exit(0); case 'N': if (using_ping_socket) { fprintf(stderr, "ping: -N requires raw socket permissions\n"); exit(2); } if (niquery_option_handler(optarg) < 0) { usage(); break; } break; COMMON_OPTIONS common_options(ch); break; default: usage(); } } argc -= optind; argv += optind; #ifdef ENABLE_PING6_RTHDR while (argc > 1) { struct in6_addr *addr; if (srcrt == NULL) { int space; fprintf(stderr, "ping6: Warning: " "Source routing is deprecated by RFC5095.\n"); #ifdef ENABLE_PING6_RTHDR_RFC3542 space = inet6_rth_space(IPV6_RTHDR_TYPE_0, argc - 1); #else space = inet6_srcrt_space(IPV6_SRCRT_TYPE_0, argc - 1); #endif if (space == 0) { fprintf(stderr, "srcrt_space failed\n"); exit(2); } #ifdef ENABLE_PING6_RTHDR_RFC3542 if (cmsglen + CMSG_SPACE(space) > sizeof(cmsgbuf)) { fprintf(stderr, "no room for options\n"); exit(2); } #else if (space + cmsglen > sizeof(cmsgbuf)) { fprintf(stderr, "no room for options\n"); exit(2); } #endif srcrt = (struct cmsghdr*)(cmsgbuf+cmsglen); #ifdef ENABLE_PING6_RTHDR_RFC3542 memset(srcrt, 0, CMSG_SPACE(0)); srcrt->cmsg_len = CMSG_LEN(space); srcrt->cmsg_level = IPPROTO_IPV6; srcrt->cmsg_type = IPV6_RTHDR; inet6_rth_init(CMSG_DATA(srcrt), space, IPV6_RTHDR_TYPE_0, argc - 1); cmsglen += CMSG_SPACE(space); #else cmsglen += CMSG_ALIGN(space); inet6_srcrt_init(srcrt, IPV6_SRCRT_TYPE_0); #endif } target = *argv; memset(&hints, 0, sizeof(hints)); hints.ai_family = AF_INET6; #ifdef USE_IDN hints.ai_flags = AI_IDN; #endif gai = getaddrinfo(target, NULL, &hints, &ai); if (gai) { fprintf(stderr, "unknown host\n"); exit(2); } addr = &((struct sockaddr_in6 *)(ai->ai_addr))->sin6_addr; #ifdef ENABLE_PING6_RTHDR_RFC3542 inet6_rth_add(CMSG_DATA(srcrt), addr); #else inet6_srcrt_add(srcrt, addr); #endif if (IN6_IS_ADDR_UNSPECIFIED(&firsthop.sin6_addr)) { memcpy(&firsthop.sin6_addr, addr, 16); #ifdef HAVE_SIN6_SCOPEID firsthop.sin6_scope_id = ((struct sockaddr_in6 *)(ai->ai_addr))->sin6_scope_id; /* Verify scope_id is the same as previous nodes */ if (firsthop.sin6_scope_id && scope_id && firsthop.sin6_scope_id != scope_id) { fprintf(stderr, "scope discrepancy among the nodes\n"); exit(2); } else if (!scope_id) { scope_id = firsthop.sin6_scope_id; } #endif } freeaddrinfo(ai); argv++; argc--; } #endif if (niquery_is_enabled()) { niquery_init_nonce(); if (!niquery_is_subject_valid()) { ni_subject = &whereto.sin6_addr; ni_subject_len = sizeof(whereto.sin6_addr); ni_subject_type = NI_SUBJ_IPV6; } } if (argc > 1) { #ifndef ENABLE_PING6_RTHDR fprintf(stderr, "ping6: Source routing is deprecated by RFC5095.\n"); #endif usage(); } else if (argc == 1) { target = *argv; } else { if (ni_query < 0 && ni_subject_type != NI_SUBJ_NAME) usage(); target = ni_group; } memset(&hints, 0, sizeof(hints)); hints.ai_family = AF_INET6; #ifdef USE_IDN hints.ai_flags = AI_IDN; #endif gai = getaddrinfo(target, NULL, &hints, &ai); if (gai) { fprintf(stderr, "unknown host\n"); exit(2); } memcpy(&whereto, ai->ai_addr, sizeof(whereto)); whereto.sin6_port = htons(IPPROTO_ICMPV6); if (memchr(target, ':', strlen(target))) options |= F_NUMERIC; freeaddrinfo(ai); if (IN6_IS_ADDR_UNSPECIFIED(&firsthop.sin6_addr)) { memcpy(&firsthop.sin6_addr, &whereto.sin6_addr, 16); #ifdef HAVE_SIN6_SCOPEID firsthop.sin6_scope_id = whereto.sin6_scope_id; /* Verify scope_id is the same as intermediate nodes */ if (firsthop.sin6_scope_id && scope_id && firsthop.sin6_scope_id != scope_id) { fprintf(stderr, "scope discrepancy among the nodes\n"); exit(2); } else if (!scope_id) { scope_id = firsthop.sin6_scope_id; } #endif } hostname = target; if (IN6_IS_ADDR_UNSPECIFIED(&source.sin6_addr)) { socklen_t alen; int probe_fd = socket(AF_INET6, SOCK_DGRAM, 0); if (probe_fd < 0) { perror("socket"); exit(2); } if (device) { #if defined(IPV6_RECVPKTINFO) || defined(HAVE_SIN6_SCOPEID) unsigned int iface = if_name2index(device); #endif #ifdef IPV6_RECVPKTINFO struct in6_pktinfo ipi; memset(&ipi, 0, sizeof(ipi)); ipi.ipi6_ifindex = iface; #endif #ifdef HAVE_SIN6_SCOPEID if (IN6_IS_ADDR_LINKLOCAL(&firsthop.sin6_addr) || IN6_IS_ADDR_MC_LINKLOCAL(&firsthop.sin6_addr)) firsthop.sin6_scope_id = iface; #endif enable_capability_raw(); if ( #ifdef IPV6_RECVPKTINFO setsockopt(probe_fd, IPPROTO_IPV6, IPV6_PKTINFO, &ipi, sizeof(ipi)) == -1 && #endif setsockopt(probe_fd, SOL_SOCKET, SO_BINDTODEVICE, device, strlen(device)+1) == -1) { perror("setsockopt(SO_BINDTODEVICE)"); exit(2); } disable_capability_raw(); } firsthop.sin6_port = htons(1025); if (connect(probe_fd, (struct sockaddr*)&firsthop, sizeof(firsthop)) == -1) { perror("connect"); exit(2); } alen = sizeof(source); if (getsockname(probe_fd, (struct sockaddr*)&source, &alen) == -1) { perror("getsockname"); exit(2); } source.sin6_port = 0; close(probe_fd); #ifndef WITHOUT_IFADDRS if (device) { struct ifaddrs *ifa0, *ifa; if (getifaddrs(&ifa0)) { perror("getifaddrs"); exit(2); } for (ifa = ifa0; ifa; ifa = ifa->ifa_next) { if (!ifa->ifa_addr || ifa->ifa_addr->sa_family != AF_INET6) continue; if (!strncmp(ifa->ifa_name, device, sizeof(device) - 1) && IN6_ARE_ADDR_EQUAL(&((struct sockaddr_in6 *)ifa->ifa_addr)->sin6_addr, &source.sin6_addr)) break; } if (!ifa) fprintf(stderr, "ping6: Warning: source address might be selected on device other than %s.\n", device); freeifaddrs(ifa0); } #endif } #ifdef HAVE_SIN6_SCOPEID else if (device && (IN6_IS_ADDR_LINKLOCAL(&source.sin6_addr) || IN6_IS_ADDR_MC_LINKLOCAL(&source.sin6_addr))) source.sin6_scope_id = if_name2index(device); #endif if (icmp_sock < 0) { errno = socket_errno; perror("ping: icmp open socket"); exit(2); } if (device) { struct cmsghdr *cmsg; struct in6_pktinfo *ipi; cmsg = (struct cmsghdr*)(cmsgbuf+cmsglen); cmsglen += CMSG_SPACE(sizeof(*ipi)); cmsg->cmsg_len = CMSG_LEN(sizeof(*ipi)); cmsg->cmsg_level = SOL_IPV6; cmsg->cmsg_type = IPV6_PKTINFO; ipi = (struct in6_pktinfo*)CMSG_DATA(cmsg); memset(ipi, 0, sizeof(*ipi)); ipi->ipi6_ifindex = if_name2index(device); } if ((whereto.sin6_addr.s6_addr16[0]&htons(0xff00)) == htons (0xff00)) { if (uid) { if (interval < 1000) { fprintf(stderr, "ping: multicast ping with too short interval.\n"); exit(2); } if (pmtudisc >= 0 && pmtudisc != IPV6_PMTUDISC_DO) { fprintf(stderr, "ping: multicast ping does not fragment.\n"); exit(2); } } if (pmtudisc < 0) pmtudisc = IPV6_PMTUDISC_DO; } if (pmtudisc >= 0) { if (setsockopt(icmp_sock, SOL_IPV6, IPV6_MTU_DISCOVER, &pmtudisc, sizeof(pmtudisc)) == -1) { perror("ping: IPV6_MTU_DISCOVER"); exit(2); } } if ((options&F_STRICTSOURCE) && bind(icmp_sock, (struct sockaddr*)&source, sizeof(source)) == -1) { perror("ping: bind icmp socket"); exit(2); } if (datalen >= sizeof(struct timeval) && (ni_query < 0)) { /* can we time transfer */ timing = 1; } packlen = datalen + 8 + 4096 + 40 + 8; /* 4096 for rthdr */ if (!(packet = (u_char *)malloc((u_int)packlen))) { fprintf(stderr, "ping: out of memory.\n"); exit(2); } working_recverr = 1; hold = 1; if (setsockopt(icmp_sock, SOL_IPV6, IPV6_RECVERR, (char *)&hold, sizeof(hold))) { fprintf(stderr, "WARNING: your kernel is veeery old. No problems.\n"); working_recverr = 0; } /* Estimate memory eaten by single packet. It is rough estimate. * Actually, for small datalen's it depends on kernel side a lot. */ hold = datalen+8; hold += ((hold+511)/512)*(40+16+64+160); sock_setbufs(icmp_sock, hold); if (!using_ping_socket) { #ifdef __linux__ csum_offset = 2; sz_opt = sizeof(int); err = setsockopt(icmp_sock, SOL_RAW, IPV6_CHECKSUM, &csum_offset, sz_opt); if (err < 0) { /* checksum should be enabled by default and setting * this option might fail anyway. */ fprintf(stderr, "setsockopt(RAW_CHECKSUM) failed" " - try to continue."); } #endif /* * select icmp echo reply as icmp type to receive */ ICMP6_FILTER_SETBLOCKALL(&filter); if (!working_recverr) { ICMP6_FILTER_SETPASS(ICMP6_DST_UNREACH, &filter); ICMP6_FILTER_SETPASS(ICMP6_PACKET_TOO_BIG, &filter); ICMP6_FILTER_SETPASS(ICMP6_TIME_EXCEEDED, &filter); ICMP6_FILTER_SETPASS(ICMP6_PARAM_PROB, &filter); } if (niquery_is_enabled()) ICMP6_FILTER_SETPASS(ICMPV6_NI_REPLY, &filter); else ICMP6_FILTER_SETPASS(ICMP6_ECHO_REPLY, &filter); err = setsockopt(icmp_sock, IPPROTO_ICMPV6, ICMP6_FILTER, &filter, sizeof(struct icmp6_filter)); if (err < 0) { perror("setsockopt(ICMP6_FILTER)"); exit(2); } } if (options & F_NOLOOP) { int loop = 0; if (setsockopt(icmp_sock, IPPROTO_IPV6, IPV6_MULTICAST_LOOP, &loop, sizeof(loop)) == -1) { perror ("can't disable multicast loopback"); exit(2); } } if (options & F_TTL) { if (setsockopt(icmp_sock, IPPROTO_IPV6, IPV6_MULTICAST_HOPS, &ttl, sizeof(ttl)) == -1) { perror ("can't set multicast hop limit"); exit(2); } if (setsockopt(icmp_sock, IPPROTO_IPV6, IPV6_UNICAST_HOPS, &ttl, sizeof(ttl)) == -1) { perror ("can't set unicast hop limit"); exit(2); } } if (1) { int on = 1; if ( #ifdef IPV6_RECVHOPLIMIT setsockopt(icmp_sock, IPPROTO_IPV6, IPV6_RECVHOPLIMIT, &on, sizeof(on)) == -1 && setsockopt(icmp_sock, IPPROTO_IPV6, IPV6_2292HOPLIMIT, &on, sizeof(on)) == -1 #else setsockopt(icmp_sock, IPPROTO_IPV6, IPV6_HOPLIMIT, &on, sizeof(on)) == -1 #endif ){ perror ("can't receive hop limit"); exit(2); } } if (options & F_TCLASS) { #ifdef IPV6_TCLASS if (setsockopt(icmp_sock, IPPROTO_IPV6, IPV6_TCLASS, &tclass, sizeof(tclass)) == -1) { perror ("setsockopt(IPV6_TCLASS)"); exit(2); } #else fprintf(stderr, "Traffic class is not supported.\n"); #endif } if (options&F_FLOWINFO) { #ifdef IPV6_FLOWINFO_SEND int on = 1; #endif #ifdef IPV6_FLOWLABEL_MGR char freq_buf[CMSG_ALIGN(sizeof(struct in6_flowlabel_req)) + cmsglen]; struct in6_flowlabel_req *freq = (struct in6_flowlabel_req *)freq_buf; int freq_len = sizeof(*freq); #ifdef ENABLE_PING6_RTHDR if (srcrt) freq_len = CMSG_ALIGN(sizeof(*freq)) + srcrt->cmsg_len; #endif memset(freq, 0, sizeof(*freq)); freq->flr_label = htonl(flowlabel & IPV6_FLOWINFO_FLOWLABEL); freq->flr_action = IPV6_FL_A_GET; freq->flr_flags = IPV6_FL_F_CREATE; freq->flr_share = IPV6_FL_S_EXCL; memcpy(&freq->flr_dst, &whereto.sin6_addr, 16); #ifdef ENABLE_PING6_RTHDR if (srcrt) memcpy(freq_buf + CMSG_ALIGN(sizeof(*freq)), srcrt, srcrt->cmsg_len); #endif if (setsockopt(icmp_sock, IPPROTO_IPV6, IPV6_FLOWLABEL_MGR, freq, freq_len) == -1) { perror ("can't set flowlabel"); exit(2); } flowlabel = freq->flr_label; #ifdef ENABLE_PING6_RTHDR if (srcrt) { cmsglen = (char*)srcrt - (char*)cmsgbuf; srcrt = NULL; } #endif #else fprintf(stderr, "Flow labels are not supported.\n"); exit(2); #endif #ifdef IPV6_FLOWINFO_SEND whereto.sin6_flowinfo = flowlabel; if (setsockopt(icmp_sock, IPPROTO_IPV6, IPV6_FLOWINFO_SEND, &on, sizeof(on)) == -1) { perror ("can't send flowinfo"); exit(2); } #else fprintf(stderr, "Flowinfo is not supported.\n"); exit(2); #endif } printf("PING %s(%s) ", hostname, pr_addr(&whereto.sin6_addr)); if (flowlabel) printf(", flow 0x%05x, ", (unsigned)ntohl(flowlabel)); if (device || (options&F_STRICTSOURCE)) { printf("from %s %s: ", pr_addr_n(&source.sin6_addr), device ? : ""); }
/** * mh_send - send mobility header message * @addrs: bundle of addresses * @mh_vec: scatter/gather array * @iovlen: array block count * @bind_key: key for calculating binding auth. data * * Sends a mobility header message to @dst with @src source address. * Mobility header is created from the @mh_vec vector array created by * the caller and initialized with mh_create() and mh_create_opt_*() * calls. Padding is done automatically and mobility header length is * set. Binding authorization data is calculated if present. Returns * number of bytes sent on success, otherwise negative error value. **/ int mh_send(const struct in6_addr_bundle *addrs, const struct iovec *mh_vec, int iovlen, const uint8_t *bind_key, int oif) { struct ip6_mh_opt_auth_data lbad; struct sockaddr_in6 daddr; struct iovec iov[2*(IP6_MHOPT_MAX+1)]; struct msghdr msg; struct cmsghdr *cmsg; int cmsglen; struct in6_pktinfo pinfo; int ret = 0, on = 1; struct ip6_mh *mh; int iov_count; socklen_t rthlen = 0; iov_count = mh_try_pad(mh_vec, iov, iovlen); mh = (struct ip6_mh *)iov[0].iov_base; mh->ip6mh_hdrlen = (mh_length(iov, iov_count) >> 3) - 1; /* * We use MH out policy for all address. Then we should update it * to refresh its bundle in kernel to be used with correct * route, IPsec SA and neighbor cache entry for the destination. * IKE daemon does the same thing for rekeying process. */ if (xfrm_cn_policy_mh_out_touch(1) < 0) { MDBG("MH out policy touch failed: BA for " "%x:%x:%x:%x:%x:%x:%x:%x\n", NIP6ADDR(addrs->dst)); } MDBG("sending MH type %d\n" "from %x:%x:%x:%x:%x:%x:%x:%x\n" "to %x:%x:%x:%x:%x:%x:%x:%x\n", mh->ip6mh_type, NIP6ADDR(addrs->src), NIP6ADDR(addrs->dst)); if (addrs->local_coa) MDBG("local CoA %x:%x:%x:%x:%x:%x:%x:%x\n", NIP6ADDR(addrs->local_coa)); if (addrs->remote_coa) MDBG("remote CoA %x:%x:%x:%x:%x:%x:%x:%x\n", NIP6ADDR(addrs->remote_coa)); if (bind_key) { assert(iov_count > 1); struct ip6_mh_opt_auth_data *bauth; struct iovec *biov; struct in6_addr *cn = NULL; MDBG("Adding bind auth data\n"); if (mh->ip6mh_type == IP6_MH_TYPE_BU) cn = addrs->dst; else cn = addrs->src; assert(addrs->bind_coa != NULL && cn != NULL); biov = &iov[iov_count - 1]; bauth = (struct ip6_mh_opt_auth_data *)biov->iov_base; if (bauth->ip6moad_type == IP6_MHOPT_BAUTH) { size_t orig_len = biov->iov_len; MDBG("Adding auth_data\n"); memcpy(&lbad, bauth, sizeof(lbad)); /* temporarily set iov_len to option header * length for auth data calculation */ biov->iov_len -= MIPV6_DIGEST_LEN; biov->iov_base = &lbad; calculate_auth_data(iov, iov_count, addrs->bind_coa, cn, bind_key, lbad.ip6moad_data); biov->iov_len = orig_len; } } memset(&daddr, 0, sizeof(struct sockaddr_in6)); daddr.sin6_family = AF_INET6; daddr.sin6_addr = *addrs->dst; daddr.sin6_port = htons(IPPROTO_MH); memset(&pinfo, 0, sizeof(pinfo)); pinfo.ipi6_addr = *addrs->src; pinfo.ipi6_ifindex = oif; cmsglen = CMSG_SPACE(sizeof(pinfo)); if (addrs->remote_coa != NULL) { rthlen = inet6_rth_space(IPV6_RTHDR_TYPE_2, 1); if (!rthlen) { MDBG("inet6_rth_space error\n"); return -1; } cmsglen += CMSG_SPACE(rthlen); } cmsg = malloc(cmsglen); if (cmsg == NULL) { MDBG("malloc failed\n"); return -ENOMEM; } memset(cmsg, 0, cmsglen); memset(&msg, 0, sizeof(msg)); msg.msg_control = cmsg; msg.msg_controllen = cmsglen; msg.msg_iov = iov; msg.msg_iovlen = iov_count; msg.msg_name = (void *)&daddr; msg.msg_namelen = sizeof(daddr); cmsg = CMSG_FIRSTHDR(&msg); cmsg->cmsg_len = CMSG_LEN(sizeof(pinfo)); cmsg->cmsg_level = IPPROTO_IPV6; cmsg->cmsg_type = IPV6_PKTINFO; memcpy(CMSG_DATA(cmsg), &pinfo, sizeof(pinfo)); if (addrs->remote_coa != NULL) { void *rthp; cmsg = CMSG_NXTHDR(&msg, cmsg); if (cmsg == NULL) { free(msg.msg_control); MDBG("internal error\n"); return -2; } cmsg->cmsg_len = CMSG_LEN(rthlen); cmsg->cmsg_level = IPPROTO_IPV6; cmsg->cmsg_type = IPV6_RTHDR; rthp = CMSG_DATA(cmsg); rthp = inet6_rth_init(rthp, rthlen, IPV6_RTHDR_TYPE_2, 1); if (rthp == NULL) { free(msg.msg_control); MDBG("inet6_rth_init error\n"); return -3; } inet6_rth_add(rthp, addrs->remote_coa); rthp = NULL; } pthread_mutex_lock(&mh_sock.send_mutex); setsockopt(mh_sock.fd, IPPROTO_IPV6, IPV6_PKTINFO, &on, sizeof(int)); ret = sendmsg(mh_sock.fd, &msg, 0); if (ret < 0) dbg("sendmsg: %s\n", strerror(errno)); pthread_mutex_unlock(&mh_sock.send_mutex); free(msg.msg_control); return ret; }