////////////////////////////////////////////////////////////////////////////////
// Simulation::run                                                            //
//                                                                            //
// starts all simulations, iterates over all parameter combinations           //
////////////////////////////////////////////////////////////////////////////////
void Simulation::run() {
	int n_it = 0;

	do {
		n_it++;

		if(sim_par.get_partResults()) {
			cout << "\n\nIteration " << n_it << "\n    " << sim_par << "\n" << endl;
			out << "\n\nIteration " << n_it << "\n    " << sim_par << "\n" << endl;
		}

		if (log(log_type::setup))
			log << "\n\nIteration " << n_it << "\n\t" << sim_par << "\n"
			<< endl;

		/*
#ifdef _SAVE_RATE_ADAPT
    rate_adapt_file_ch << "\n\nIteration " << n_it << "\n\t" << sim_par << "\n"
                       << "Time      ,term 1,term 2,path loss ,"
                       << "fading(R) ,fading(I)\n";
    rate_adapt_file_ch.setf(ios::left);
    rate_adapt_file_rt << "\n\nIteration " << n_it << "\n\t" << sim_par << "\n"
                       << "Time      ,sender,target,data rate\n";
    rate_adapt_file_rt.setf(ios::left);
#endif
		 */
		main_sch.init();

		randgent.seed(sim_par.get_Seed());

		Standard::set_standard(sim_par.get_standard(),sim_par.get_bandwidth(),sim_par.get_shortGI());
		if(sim_par.get_TxMode() > Standard::get_maxMCS())
			throw (my_exception("MCS not supported by standard."));

		channel_struct ch_par(sim_par.get_LossExponent(),
				sim_par.get_RefLoss(),
				sim_par.get_DopplerSpread(),
				sim_par.get_NumberSinus());

		ch = new Channel(&main_sch, &randgent, ch_par, &log);

		init_terminals();

		start_sim();

		wrap_up();

		delete ch;
		for (vector<Terminal*>::iterator it = term_vector.begin();
				it != term_vector.end(); ++it) delete *it;
		term_vector.clear();

	} while (sim_par.new_iteration());

	final_results();
}
Esempio n. 2
0
/* Check if MAGIC is valid and print the Multiboot information structure
   pointed by ADDR. */
void
entry (unsigned long magic, unsigned long addr)
{
	multiboot_info_t *mbi;

	/* Clear the screen. */
	clear();

	paging_init();

	/* Am I booted by a Multiboot-compliant boot loader? */
	if (magic != MULTIBOOT_BOOTLOADER_MAGIC)
	{
		printf ("Invalid magic number: 0x%#x\n", (unsigned) magic);
		return;
	}

	/* Set MBI to the address of the Multiboot information structure. */
	mbi = (multiboot_info_t *) addr;

	/* Print out the flags. */
	printf ("flags = 0x%#x\n", (unsigned) mbi->flags);

	/* Are mem_* valid? */
	if (CHECK_FLAG (mbi->flags, 0))
		printf ("mem_lower = %uKB, mem_upper = %uKB\n",
				(unsigned) mbi->mem_lower, (unsigned) mbi->mem_upper);

	/* Is boot_device valid? */
	if (CHECK_FLAG (mbi->flags, 1))
		printf ("boot_device = 0x%#x\n", (unsigned) mbi->boot_device);

	/* Is the command line passed? */
	if (CHECK_FLAG (mbi->flags, 2))
		printf ("cmdline = %s\n", (char *) mbi->cmdline);

	if (CHECK_FLAG (mbi->flags, 3)) {
		int mod_count = 0;
		int i;
		module_t* mod = (module_t*)mbi->mods_addr;
		while(mod_count < mbi->mods_count) {
			printf("Module %d loaded at address: 0x%#x\n", mod_count, (unsigned int)mod->mod_start);
			printf("Module %d ends at address: 0x%#x\n", mod_count, (unsigned int)mod->mod_end);
			printf("First few bytes of module:\n");
			for(i = 0; i<16; i++) {
				printf("0x%x ", *((char*)(mod->mod_start+i)));
			}
			printf("\n");
			mod_count++;
		}
	}
	/* Bits 4 and 5 are mutually exclusive! */
	if (CHECK_FLAG (mbi->flags, 4) && CHECK_FLAG (mbi->flags, 5))
	{
		printf ("Both bits 4 and 5 are set.\n");
		return;
	}

	/* Is the section header table of ELF valid? */
	if (CHECK_FLAG (mbi->flags, 5))
	{
		elf_section_header_table_t *elf_sec = &(mbi->elf_sec);

		printf ("elf_sec: num = %u, size = 0x%#x,"
				" addr = 0x%#x, shndx = 0x%#x\n",
				(unsigned) elf_sec->num, (unsigned) elf_sec->size,
				(unsigned) elf_sec->addr, (unsigned) elf_sec->shndx);
	}

	/* Are mmap_* valid? */
	if (CHECK_FLAG (mbi->flags, 6))
	{
		memory_map_t *mmap;

		printf ("mmap_addr = 0x%#x, mmap_length = 0x%x\n",
				(unsigned) mbi->mmap_addr, (unsigned) mbi->mmap_length);
		for (mmap = (memory_map_t *) mbi->mmap_addr;
				(unsigned long) mmap < mbi->mmap_addr + mbi->mmap_length;
				mmap = (memory_map_t *) ((unsigned long) mmap
					+ mmap->size + sizeof (mmap->size)))
			printf (" size = 0x%x,     base_addr = 0x%#x%#x\n"
					"     type = 0x%x,  length    = 0x%#x%#x\n",
					(unsigned) mmap->size,
					(unsigned) mmap->base_addr_high,
					(unsigned) mmap->base_addr_low,
					(unsigned) mmap->type,
					(unsigned) mmap->length_high,
					(unsigned) mmap->length_low);
	}

	/* Construct an LDT entry in the GDT */
	{
		seg_desc_t the_ldt_desc;
		the_ldt_desc.granularity    = 0;
		the_ldt_desc.opsize         = 1;
		the_ldt_desc.reserved       = 0;
		the_ldt_desc.avail          = 0;
		the_ldt_desc.present        = 1;
		the_ldt_desc.dpl            = 0x0;
		the_ldt_desc.sys            = 0;
		the_ldt_desc.type           = 0x2;

		SET_LDT_PARAMS(the_ldt_desc, &ldt, ldt_size);
		ldt_desc_ptr = the_ldt_desc;
		lldt(KERNEL_LDT);
	}

	/* Construct a TSS entry in the GDT */
	{
		seg_desc_t the_tss_desc;
		the_tss_desc.granularity    = 0;
		the_tss_desc.opsize         = 0;
		the_tss_desc.reserved       = 0;
		the_tss_desc.avail          = 0;
		the_tss_desc.seg_lim_19_16  = TSS_SIZE & 0x000F0000;
		the_tss_desc.present        = 1;
		the_tss_desc.dpl            = 0x0;
		the_tss_desc.sys            = 0;
		the_tss_desc.type           = 0x9;
		the_tss_desc.seg_lim_15_00  = TSS_SIZE & 0x0000FFFF;

		SET_TSS_PARAMS(the_tss_desc, &tss, tss_size);

		tss_desc_ptr = the_tss_desc;

		tss.ldt_segment_selector = KERNEL_LDT;
		tss.ss0 = KERNEL_DS;
		tss.esp0 = 0x800000;
		ltr(KERNEL_TSS);
	}


	idt_desc_t interrupt;

	interrupt.seg_selector = KERNEL_CS;
	interrupt.dpl = 0;
	interrupt.size = 1;
	interrupt.reserved0 = 0;
	interrupt.reserved1 = 1;
	interrupt.reserved2 = 1;
	interrupt.reserved3 = 0;
	interrupt.reserved4 = 0;
	interrupt.present = 1;

	idt_desc_t divide_error_desc = interrupt;
	SET_IDT_ENTRY(divide_error_desc, divide_error);
	idt[0] = divide_error_desc;

	idt_desc_t reserved_desc = interrupt;
	SET_IDT_ENTRY(reserved_desc, reserved);
	idt[1] = reserved_desc;

	idt_desc_t nmi_interrupt_desc = interrupt;
	SET_IDT_ENTRY(nmi_interrupt_desc, nmi_interrupt);
	idt[2] = nmi_interrupt_desc;

	idt_desc_t breakpoint_desc = interrupt;
	SET_IDT_ENTRY(breakpoint_desc, breakpoint);
	idt[3] = breakpoint_desc;

	idt_desc_t overflow_desc = interrupt;
	SET_IDT_ENTRY(overflow_desc, overflow);
	idt[4] = overflow_desc;

	idt_desc_t bound_range_exceeded_desc = interrupt;
	SET_IDT_ENTRY(bound_range_exceeded_desc, bound_range_exceeded);
	idt[5] = bound_range_exceeded_desc;

	idt_desc_t invalid_opcode_desc = interrupt;
	SET_IDT_ENTRY(invalid_opcode_desc, invalid_opcode);
	idt[6] = invalid_opcode_desc;

	idt_desc_t device_not_available_desc = interrupt;
	SET_IDT_ENTRY(device_not_available_desc, device_not_available);
	idt[7] = device_not_available_desc;

	idt_desc_t double_fault_desc = interrupt;
	SET_IDT_ENTRY(double_fault_desc, double_fault);
	idt[8] = double_fault_desc;

	idt_desc_t coprocessor_segment_overrun_desc = interrupt;
	SET_IDT_ENTRY(coprocessor_segment_overrun_desc, coprocessor_segment_overrun);
	idt[9] = divide_error_desc;

	idt_desc_t invalid_tss_desc = interrupt;
	SET_IDT_ENTRY(invalid_tss_desc, invalid_tss);
	idt[10] = invalid_tss_desc;

	idt_desc_t segment_not_present_desc = interrupt;
	segment_not_present_desc.present = 0;
	SET_IDT_ENTRY(segment_not_present_desc, segment_not_present);
	idt[11] = segment_not_present_desc;

	idt_desc_t stack_segment_fault_desc = interrupt;
	SET_IDT_ENTRY(stack_segment_fault_desc, stack_segment_fault);
	idt[12] = stack_segment_fault_desc;

	idt_desc_t general_protection_desc = interrupt;
	SET_IDT_ENTRY(general_protection_desc, general_protection);
	idt[13] = general_protection_desc;

	idt_desc_t page_fault_desc = interrupt;
	SET_IDT_ENTRY(page_fault_desc, page_fault);
	idt[14] = page_fault_desc;

	idt_desc_t math_fault_desc = interrupt;
	SET_IDT_ENTRY(math_fault_desc, math_fault);
	idt[16] = math_fault_desc;

	idt_desc_t alignment_check_desc = interrupt;
	SET_IDT_ENTRY(alignment_check_desc, alignment_check);
	idt[17] = alignment_check_desc;

	idt_desc_t machine_check_desc = interrupt;
	SET_IDT_ENTRY(machine_check_desc, machine_check);
	idt[18] = machine_check_desc;

	idt_desc_t simd_desc = interrupt;
	SET_IDT_ENTRY(simd_desc, simd_floating_exception);
	idt[19] = simd_desc;

	idt_desc_t keyboard_desc = interrupt;
	SET_IDT_ENTRY(keyboard_desc, &keyboard_wrapper);
	idt[KEYBOARD_IDT] = keyboard_desc;

	idt_desc_t rtc_desc = interrupt;
	SET_IDT_ENTRY(rtc_desc, &rtc_wrapper);
	idt[RTC_IDT] = rtc_desc;

	idt_desc_t syscall = interrupt;
	syscall.dpl = 3;
	SET_IDT_ENTRY(syscall, &syscall_wrapper);
	idt[SYSCALL_IDT] = syscall;

	// load idt
	lidt(idt_desc_ptr);

	/* Init the PIC */
	i8259_init();

	/* Initialize devices, memory, filesystem, enable device interrupts on the
	 * PIC, any other initialization stuff... */

	// initialize rtc
	rtc_init();

	// enable irq1 for keyboard
	enable_irq(KEYBOARD_IRQ);	

	// initialize rtc, terminal, and file operation tables
	fops_init();


	/* Enable interrupts */
	/* Do not enable the following until after you have set up your
	 * IDT correctly otherwise QEMU will triple fault and simple close
	 * without showing you any output */
	printf("Enabling Interrupts\n");
	sti();

	// int freq = 32;
	// rtc_write(2, (uint8_t *) (&freq), 4);

	// while(1) {
	// 	printf("h");
	// 	rtc_read(2, (uint8_t *) (&freq), 4);
	// }
	
	clear();
	set_new_position(0, 0);

	module_t* mod = (module_t*)mbi->mods_addr;
	setup_fs(mod->mod_start);
	// char * fname = "frame0.txt";
	// uint8_t buf[187];
	// fs_read_name((uint8_t*) fname, buf, 187);

	// int i;

	// for (i = 0; i < 187; i++) {
	// 	printf("%c ", buf[i]);
	// }	

	/*uint32_t a = open_keyboard();
	uint32_t b = close_keyboard();
	printf("Keyboard Open Value: %d\n", a);
	printf("Keyboard Close Value: %d\n", b);

	
	char testbuf1[12] = {'h','e','l','l','o',' ', 'w','o','r','l','d','\n'};
	printf("write_keyboard() output: ");
	uint32_t c = write_keyboard(testbuf1, 128);
	printf("Keyboard Write Value: %d\n", c);*/
	

	// char keybuf[128];
	// read_keyboard(keybuf, 128);
	// sti();

	// int x = 3 / 0;
	// int * x = 0x12345000;
	// int y;
	// y = *x;

	/* Execute the first program (`shell') ... */
	init_terminals();
	system_execute("shell");
		
	/* Spin (nicely, so we don't chew up cycles) */
	asm volatile(".1: hlt; jmp .1;");
}
Esempio n. 3
0
/* Check if MAGIC is valid and print the Multiboot information structure
   pointed by ADDR. */
void
entry (unsigned long magic, unsigned long addr)
{
	multiboot_info_t *mbi;

	/* Clear the screen. */
	clear();

	/* Am I booted by a Multiboot-compliant boot loader? */
	if (magic != MULTIBOOT_BOOTLOADER_MAGIC)
	{
		printf ("Invalid magic number: 0x%#x\n", (unsigned) magic);
		return;
	}

	/* Set MBI to the address of the Multiboot information structure. */
	mbi = (multiboot_info_t *) addr;

	/* Print out the flags. */
	printf ("flags = 0x%#x\n", (unsigned) mbi->flags);

	/* Are mem_* valid? */
	if (CHECK_FLAG (mbi->flags, 0))
		printf ("mem_lower = %uKB, mem_upper = %uKB\n",
				(unsigned) mbi->mem_lower, (unsigned) mbi->mem_upper);

	/* Is boot_device valid? */
	if (CHECK_FLAG (mbi->flags, 1))
		printf ("boot_device = 0x%#x\n", (unsigned) mbi->boot_device);

	/* Is the command line passed? */
	if (CHECK_FLAG (mbi->flags, 2))
		printf ("cmdline = %s\n", (char *) mbi->cmdline);

	if (CHECK_FLAG (mbi->flags, 3)) {
		int mod_count = 0;
		int i;
		module_t* mod = (module_t*)mbi->mods_addr;
		while(mod_count < mbi->mods_count) {
			printf("Module %d loaded at address: 0x%#x\n", mod_count, (unsigned int)mod->mod_start);
			printf("Module %d ends at address: 0x%#x\n", mod_count, (unsigned int)mod->mod_end);
			printf("First few bytes of module:\n");
			for(i = 0; i<16; i++) {
				printf("0x%x ", *((char*)(mod->mod_start+i)));
			}
			printf("\n");
			mod_count++;
			mod++;
		}
	}
	/* Bits 4 and 5 are mutually exclusive! */
	if (CHECK_FLAG (mbi->flags, 4) && CHECK_FLAG (mbi->flags, 5))
	{
		printf ("Both bits 4 and 5 are set.\n");
		return;
	}

	/* Is the section header table of ELF valid? */
	if (CHECK_FLAG (mbi->flags, 5))
	{
		elf_section_header_table_t *elf_sec = &(mbi->elf_sec);

		printf ("elf_sec: num = %u, size = 0x%#x,"
				" addr = 0x%#x, shndx = 0x%#x\n",
				(unsigned) elf_sec->num, (unsigned) elf_sec->size,
				(unsigned) elf_sec->addr, (unsigned) elf_sec->shndx);
	}

	/* Are mmap_* valid? */
	if (CHECK_FLAG (mbi->flags, 6))
	{
		memory_map_t *mmap;

		printf ("mmap_addr = 0x%#x, mmap_length = 0x%x\n",
				(unsigned) mbi->mmap_addr, (unsigned) mbi->mmap_length);
		for (mmap = (memory_map_t *) mbi->mmap_addr;
				(unsigned long) mmap < mbi->mmap_addr + mbi->mmap_length;
				mmap = (memory_map_t *) ((unsigned long) mmap
					+ mmap->size + sizeof (mmap->size)))
			printf (" size = 0x%x,     base_addr = 0x%#x%#x\n"
					"     type = 0x%x,  length    = 0x%#x%#x\n",
					(unsigned) mmap->size,
					(unsigned) mmap->base_addr_high,
					(unsigned) mmap->base_addr_low,
					(unsigned) mmap->type,
					(unsigned) mmap->length_high,
					(unsigned) mmap->length_low);
	}

	/* Construct an LDT entry in the GDT */
	{
		seg_desc_t the_ldt_desc;
		the_ldt_desc.granularity    = 0;
		the_ldt_desc.opsize         = 1;
		the_ldt_desc.reserved       = 0;
		the_ldt_desc.avail          = 0;
		the_ldt_desc.present        = 1;
		the_ldt_desc.dpl            = 0x0;
		the_ldt_desc.sys            = 0;
		the_ldt_desc.type           = 0x2;

		SET_LDT_PARAMS(the_ldt_desc, &ldt, ldt_size);
		ldt_desc_ptr = the_ldt_desc;
		lldt(KERNEL_LDT);
	}

	/* Construct a TSS entry in the GDT */
	{
		seg_desc_t the_tss_desc;
		the_tss_desc.granularity    = 0;
		the_tss_desc.opsize         = 0;
		the_tss_desc.reserved       = 0;
		the_tss_desc.avail          = 0;
		the_tss_desc.seg_lim_19_16  = TSS_SIZE & 0x000F0000;
		the_tss_desc.present        = 1;
		the_tss_desc.dpl            = 0x0;
		the_tss_desc.sys            = 0;
		the_tss_desc.type           = 0x9;
		the_tss_desc.seg_lim_15_00  = TSS_SIZE & 0x0000FFFF;

		SET_TSS_PARAMS(the_tss_desc, &tss, tss_size);

		tss_desc_ptr = the_tss_desc;

		tss.ldt_segment_selector = KERNEL_LDT;
		tss.ss0 = KERNEL_DS;
		tss.esp0 = 0x800000;
		ltr(KERNEL_TSS);
	}

	fill_idt();
	lidt(idt_desc_ptr);	// Load IDT Pointer
	//Init the PIC
	i8259_init();
	pit_init();
	init_keyboard();
	rtc_init();
	terminal_open((uint8_t*)1);
	init_paging();


	/* initializing file systems */
	module_t * boot_fs = (module_t*)mbi->mods_addr;
	init_fs(boot_fs->mod_start);
	/* Done initializing fs */


	/* Initialize devices, memory, filesystem, enable device interrupts on the
	 * PIC, any other initialization stuff... */

	/* Enable interrupts */
	// printf("Enabling Interrupts\n");
	sti();

	// uint32_t bmap_val = 10;
	// char bitmap_temp[6];
    // itoa(bmap_val , bitmap_temp, 2);
    // // printf("BMAP VALUE - %d\n", bmap_val);
	// printf("%s\n", bitmap_temp);
    // char bitmap[6];
    // uint32_t l = strlen((uint8_t*)bitmap_temp);
    // uint32_t temp_idx;
    // for (temp_idx=0; temp_idx<5; temp_idx++){
    //     if (temp_idx<(5-l))
    //         bitmap[temp_idx] = '0';
    //     else
    //         bitmap[temp_idx] = bitmap_temp[temp_idx+l-5];
    // }
    // bitmap[5] = '\0';
    // printf("%s\n", bitmap);

	// Initialization for the process
	init_terminals();
	execute_func((uint8_t *)"shell");


	// Spin (nicely, so we don't chew up cycles)
	asm volatile(".1: hlt; jmp .1;");
}
Esempio n. 4
0
/* Check if MAGIC is valid and print the Multiboot information structure
   pointed by ADDR. */
void
entry (unsigned long magic, unsigned long addr)
{
    /* Initialize the idt */
    init_idt();

    multiboot_info_t *mbi;

    /* Clear the screen. */
    clear();

    /* Am I booted by a Multiboot-compliant boot loader? */
    if (magic != MULTIBOOT_BOOTLOADER_MAGIC)
    {
        printf ("Invalid magic number: 0x%#x\n", (unsigned) magic);
        return;
    }

    /* Set MBI to the address of the Multiboot information structure. */
    mbi = (multiboot_info_t *) addr;

    /* Print out the flags. */
    printf ("flags = 0x%#x\n", (unsigned) mbi->flags);

    /* Are mem_* valid? */
    if (CHECK_FLAG (mbi->flags, 0))
        printf ("mem_lower = %uKB, mem_upper = %uKB\n",
                (unsigned) mbi->mem_lower, (unsigned) mbi->mem_upper);

    /* Is boot_device valid? */
    if (CHECK_FLAG (mbi->flags, 1))
        printf ("boot_device = 0x%#x\n", (unsigned) mbi->boot_device);

    /* Is the command line passed? */
    if (CHECK_FLAG (mbi->flags, 2))
        printf ("cmdline = %s\n", (char *) mbi->cmdline);

    if (CHECK_FLAG (mbi->flags, 3)) {
        int mod_count = 0;
        int i;
        module_t* mod = (module_t*)mbi->mods_addr;

        starting_address = mod->mod_start;

        while(mod_count < mbi->mods_count) {
            printf("Module %d loaded at address: 0x%#x\n", mod_count, (unsigned int)mod->mod_start);
            printf("Module %d ends at address: 0x%#x\n", mod_count, (unsigned int)mod->mod_end);
            printf("First few bytes of module:\n");
            for(i = 0; i<16; i++) {
                printf("0x%x ", *((char*)(mod->mod_start+i)));
            }
            printf("\n");
            mod_count++;
            mod++;
        }
    }
    /* Bits 4 and 5 are mutually exclusive! */
    if (CHECK_FLAG (mbi->flags, 4) && CHECK_FLAG (mbi->flags, 5))
    {
        printf ("Both bits 4 and 5 are set.\n");
        return;
    }

    /* Is the section header table of ELF valid? */
    if (CHECK_FLAG (mbi->flags, 5))
    {
        elf_section_header_table_t *elf_sec = &(mbi->elf_sec);

        printf ("elf_sec: num = %u, size = 0x%#x,"
                " addr = 0x%#x, shndx = 0x%#x\n",
                (unsigned) elf_sec->num, (unsigned) elf_sec->size,
                (unsigned) elf_sec->addr, (unsigned) elf_sec->shndx);
    }

    /* Are mmap_* valid? */
    if (CHECK_FLAG (mbi->flags, 6))
    {
        memory_map_t *mmap;

        printf ("mmap_addr = 0x%#x, mmap_length = 0x%x\n",
                (unsigned) mbi->mmap_addr, (unsigned) mbi->mmap_length);
        for (mmap = (memory_map_t *) mbi->mmap_addr;
                (unsigned long) mmap < mbi->mmap_addr + mbi->mmap_length;
                mmap = (memory_map_t *) ((unsigned long) mmap
                                         + mmap->size + sizeof (mmap->size)))
            printf (" size = 0x%x,     base_addr = 0x%#x%#x\n"
                    "     type = 0x%x,  length    = 0x%#x%#x\n",
                    (unsigned) mmap->size,
                    (unsigned) mmap->base_addr_high,
                    (unsigned) mmap->base_addr_low,
                    (unsigned) mmap->type,
                    (unsigned) mmap->length_high,
                    (unsigned) mmap->length_low);
    }

    /* Construct an LDT entry in the GDT */
    {
        seg_desc_t the_ldt_desc;
        the_ldt_desc.granularity    = 0;
        the_ldt_desc.opsize         = 1;
        the_ldt_desc.reserved       = 0;
        the_ldt_desc.avail          = 0;
        the_ldt_desc.present        = 1;
        the_ldt_desc.dpl            = 0x0;
        the_ldt_desc.sys            = 0;
        the_ldt_desc.type           = 0x2;

        SET_LDT_PARAMS(the_ldt_desc, &ldt, ldt_size);
        ldt_desc_ptr = the_ldt_desc;
        lldt(KERNEL_LDT);
    }

    /* Construct a TSS entry in the GDT */
    {
        seg_desc_t the_tss_desc;
        the_tss_desc.granularity    = 0;
        the_tss_desc.opsize         = 0;
        the_tss_desc.reserved       = 0;
        the_tss_desc.avail          = 0;
        the_tss_desc.seg_lim_19_16  = TSS_SIZE & 0x000F0000;
        the_tss_desc.present        = 1;
        the_tss_desc.dpl            = 0x0;
        the_tss_desc.sys            = 0;
        the_tss_desc.type           = 0x9;
        the_tss_desc.seg_lim_15_00  = TSS_SIZE & 0x0000FFFF;

        SET_TSS_PARAMS(the_tss_desc, &tss, tss_size);

        tss_desc_ptr = the_tss_desc;

        tss.ldt_segment_selector = KERNEL_LDT;
        tss.ss0 = KERNEL_DS;
        tss.esp0 = 0x800000;
        ltr(KERNEL_TSS);
    }

    /* Initialize the PIC */
    i8259_init();

    /* Initialize devices, memory, filesystem, enable device interrupts on the
     * PIC, any other initialization stuff... */
    initialize_paging();

    /* initialize the RTC to 2Hz */
    rtc_initialize();

    /* initialize keyboard */
    initialize_keyboard();
    /* initialize function pointers */
    func_init();
    /* TESTING FILE SYSTEMS */
    init_file_systems(starting_address);

    init_terminals();
    //printf("Init File Systems Done\n");
    //test_file_systems((uint8_t*)"frame0.txt");
    //printf("Done testing\n");
    /* FINISH FILE SYSTEMS TESTING */


    /* Enable interrupts */
    /* Do not enable the following until after you have set up your
     * IDT correctly otherwise QEMU will triple fault and simple close
     * without showing you any output */
    printf("Enabling Interrupts\n");
    sti();



    // testing for changing RTC freq

    /*int32_t * freq;
    int32_t temp = 1024;
    freq = &temp;
    rtc_write(freq, 4);
    int i;
    for(i = 0; i < 10; i ++) {
    	rtc_read();
    	printf("testing");
    }

    temp = 256;
    rtc_write(freq, 4);

    for (i = 0; i < 20; i++) {
    	rtc_read();
    	printf("\n");
    	printf("second_test");
    }*/






    /*while(1) {
    	asm volatile("int $0x28");
    }*/
    //int d = 6 / 0;

    /* Execute the first program (`shell') ... */
    clear();
    execute((uint8_t*)"shell");
    /* Spin (nicely, so we don't chew up cycles) */
    asm volatile(".1: hlt; jmp .1;");
}