void C1_MacroAssembler::allocate_array( Register obj, // result: Pointer to array after successful allocation. Register len, // array length Register t1, // temp register Register t2, // temp register int hdr_size, // object header size in words int elt_size, // element size in bytes Register klass, // object klass Label& slow_case // Continuation point if fast allocation fails. ) { assert_different_registers(obj, len, t1, t2, klass); // Determine alignment mask. assert(!(BytesPerWord & 1), "must be a multiple of 2 for masking code to work"); // Check for negative or excessive length. compareU64_and_branch(len, (int32_t)max_array_allocation_length, bcondHigh, slow_case); // Compute array size. // Note: If 0 <= len <= max_length, len*elt_size + header + alignment is // smaller or equal to the largest integer. Also, since top is always // aligned, we can do the alignment here instead of at the end address // computation. const Register arr_size = t2; switch (elt_size) { case 1: lgr_if_needed(arr_size, len); break; case 2: z_sllg(arr_size, len, 1); break; case 4: z_sllg(arr_size, len, 2); break; case 8: z_sllg(arr_size, len, 3); break; default: ShouldNotReachHere(); } add2reg(arr_size, hdr_size * wordSize + MinObjAlignmentInBytesMask); // Add space for header & alignment. z_nill(arr_size, (~MinObjAlignmentInBytesMask) & 0xffff); // Align array size. try_allocate(obj, arr_size, 0, t1, slow_case); initialize_header(obj, klass, len, noreg, t1); // Clear rest of allocated space. Label done; Register object_fields = t1; Register Rzero = Z_R1_scratch; z_aghi(arr_size, -(hdr_size * BytesPerWord)); z_bre(done); // Jump if size of fields is zero. z_la(object_fields, hdr_size * BytesPerWord, obj); z_xgr(Rzero, Rzero); initialize_body(object_fields, arr_size, Rzero); bind(done); // Dtrace support is unimplemented. // if (CURRENT_ENV->dtrace_alloc_probes()) { // assert(obj == rax, "must be"); // call(RuntimeAddress(Runtime1::entry_for (Runtime1::dtrace_object_alloc_id))); // } verify_oop(obj); }
void C1_MacroAssembler::initialize_object( Register obj, // result: pointer to object after successful allocation Register klass, // object klass Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise int con_size_in_bytes, // object size in bytes if known at compile time Register t1, // temp register Register t2 // temp register ) { const int hdr_size_in_bytes = instanceOopDesc::header_size() * HeapWordSize; initialize_header(obj, klass, noreg, t1, t2); #ifdef ASSERT { lwz(t1, in_bytes(Klass::layout_helper_offset()), klass); if (var_size_in_bytes != noreg) { cmpw(CCR0, t1, var_size_in_bytes); } else { cmpwi(CCR0, t1, con_size_in_bytes); } asm_assert_eq("bad size in initialize_object", 0x753); } #endif // Initialize body. if (var_size_in_bytes != noreg) { // Use a loop. addi(t1, obj, hdr_size_in_bytes); // Compute address of first element. addi(t2, var_size_in_bytes, -hdr_size_in_bytes); // Compute size of body. initialize_body(t1, t2); } else if (con_size_in_bytes > hdr_size_in_bytes) { // Use a loop. initialize_body(obj, t1, t2, con_size_in_bytes, hdr_size_in_bytes); } if (CURRENT_ENV->dtrace_alloc_probes()) { Unimplemented(); // assert(obj == O0, "must be"); // call(CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::dtrace_object_alloc_id)), // relocInfo::runtime_call_type); } verify_oop(obj); }
void C1_MacroAssembler::initialize_object( Register obj, // result: Pointer to object after successful allocation. Register klass, // object klass Register var_size_in_bytes, // Object size in bytes if unknown at compile time; invalid otherwise. int con_size_in_bytes, // Object size in bytes if known at compile time. Register t1, // temp register Register t2 // temp register ) { assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "con_size_in_bytes is not multiple of alignment"); assert(var_size_in_bytes == noreg, "not implemented"); const int hdr_size_in_bytes = instanceOopDesc::header_size() * HeapWordSize; const Register Rzero = t2; z_xgr(Rzero, Rzero); initialize_header(obj, klass, noreg, Rzero, t1); // Clear rest of allocated space. const int threshold = 4 * BytesPerWord; if (con_size_in_bytes <= threshold) { // Use explicit null stores. // code size = 6*n bytes (n = number of fields to clear) for (int i = hdr_size_in_bytes; i < con_size_in_bytes; i += BytesPerWord) z_stg(Rzero, Address(obj, i)); } else { // Code size generated by initialize_body() is 16. Register object_fields = Z_R0_scratch; Register len_in_bytes = Z_R1_scratch; z_la(object_fields, hdr_size_in_bytes, obj); load_const_optimized(len_in_bytes, con_size_in_bytes - hdr_size_in_bytes); initialize_body(object_fields, len_in_bytes, Rzero); } // Dtrace support is unimplemented. // if (CURRENT_ENV->dtrace_alloc_probes()) { // assert(obj == rax, "must be"); // call(RuntimeAddress(Runtime1::entry_for (Runtime1::dtrace_object_alloc_id))); // } verify_oop(obj); }
void C1_MacroAssembler::initialize_object(Register obj, Register klass, Register var_size_in_bytes, int con_size_in_bytes, Register t1, Register t2, bool is_tlab_allocated) { assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "con_size_in_bytes is not multiple of alignment"); const int hdr_size_in_bytes = instanceOopDesc::header_size() * HeapWordSize; initialize_header(obj, klass, noreg, t1, t2); if (!(UseTLAB && ZeroTLAB && is_tlab_allocated)) { // clear rest of allocated space const Register t1_zero = t1; const Register index = t2; const int threshold = 6 * BytesPerWord; // approximate break even point for code size (see comments below) if (var_size_in_bytes != noreg) { mov(index, var_size_in_bytes); initialize_body(obj, index, hdr_size_in_bytes, t1_zero); } else if (con_size_in_bytes <= threshold) { // use explicit null stores // code size = 2 + 3*n bytes (n = number of fields to clear) xorptr(t1_zero, t1_zero); // use t1_zero reg to clear memory (shorter code) for (int i = hdr_size_in_bytes; i < con_size_in_bytes; i += BytesPerWord) movptr(Address(obj, i), t1_zero); } else if (con_size_in_bytes > hdr_size_in_bytes) { // use loop to null out the fields // code size = 16 bytes for even n (n = number of fields to clear) // initialize last object field first if odd number of fields xorptr(t1_zero, t1_zero); // use t1_zero reg to clear memory (shorter code) movptr(index, (con_size_in_bytes - hdr_size_in_bytes) >> 3); // initialize last object field if constant size is odd if (((con_size_in_bytes - hdr_size_in_bytes) & 4) != 0) movptr(Address(obj, con_size_in_bytes - (1*BytesPerWord)), t1_zero); // initialize remaining object fields: rdx is a multiple of 2 { Label loop; bind(loop); movptr(Address(obj, index, Address::times_8, hdr_size_in_bytes - (1*BytesPerWord)), t1_zero); NOT_LP64(movptr(Address(obj, index, Address::times_8, hdr_size_in_bytes - (2*BytesPerWord)), t1_zero);) decrement(index); jcc(Assembler::notZero, loop); } }
void C1_MacroAssembler::allocate_array( Register obj, // result: pointer to array after successful allocation Register len, // array length Register t1, // temp register Register t2, // temp register Register t3, // temp register int hdr_size, // object header size in words int elt_size, // element size in bytes Register klass, // object klass Label& slow_case // continuation point if fast allocation fails ) { assert_different_registers(obj, len, t1, t2, t3, klass); assert(klass == G5, "must be G5"); assert(t1 == G1, "must be G1"); // determine alignment mask assert(!(BytesPerWord & 1), "must be a multiple of 2 for masking code to work"); // check for negative or excessive length // note: the maximum length allowed is chosen so that arrays of any // element size with this length are always smaller or equal // to the largest integer (i.e., array size computation will // not overflow) set(max_array_allocation_length, t1); cmp(len, t1); br(Assembler::greaterUnsigned, false, Assembler::pn, slow_case); // compute array size // note: if 0 <= len <= max_length, len*elt_size + header + alignment is // smaller or equal to the largest integer; also, since top is always // aligned, we can do the alignment here instead of at the end address // computation const Register arr_size = t1; switch (elt_size) { case 1: delayed()->mov(len, arr_size); break; case 2: delayed()->sll(len, 1, arr_size); break; case 4: delayed()->sll(len, 2, arr_size); break; case 8: delayed()->sll(len, 3, arr_size); break; default: ShouldNotReachHere(); } add(arr_size, hdr_size * wordSize + MinObjAlignmentInBytesMask, arr_size); // add space for header & alignment and3(arr_size, ~MinObjAlignmentInBytesMask, arr_size); // align array size // allocate space & initialize header if (UseTLAB) { tlab_allocate(obj, arr_size, 0, t2, slow_case); } else { eden_allocate(obj, arr_size, 0, t2, t3, slow_case); } initialize_header(obj, klass, len, t2, t3); // initialize body const Register base = t2; const Register index = t3; add(obj, hdr_size * wordSize, base); // compute address of first element sub(arr_size, hdr_size * wordSize, index); // compute index = number of words to clear initialize_body(base, index); if (CURRENT_ENV->dtrace_alloc_probes()) { assert(obj == O0, "must be"); call(CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::dtrace_object_alloc_id)), relocInfo::runtime_call_type); delayed()->nop(); } verify_oop(obj); }
void C1_MacroAssembler::initialize_object( Register obj, // result: pointer to object after successful allocation Register klass, // object klass Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise int con_size_in_bytes, // object size in bytes if known at compile time Register t1, // temp register Register t2 // temp register ) { const int hdr_size_in_bytes = instanceOopDesc::header_size() * HeapWordSize; initialize_header(obj, klass, noreg, t1, t2); #ifdef ASSERT { Label ok; ld(klass, in_bytes(Klass::layout_helper_offset()), t1); if (var_size_in_bytes != noreg) { cmp_and_brx_short(t1, var_size_in_bytes, Assembler::equal, Assembler::pt, ok); } else { cmp_and_brx_short(t1, con_size_in_bytes, Assembler::equal, Assembler::pt, ok); } stop("bad size in initialize_object"); should_not_reach_here(); bind(ok); } #endif // initialize body const int threshold = 5 * HeapWordSize; // approximate break even point for code size if (var_size_in_bytes != noreg) { // use a loop add(obj, hdr_size_in_bytes, t1); // compute address of first element sub(var_size_in_bytes, hdr_size_in_bytes, t2); // compute size of body initialize_body(t1, t2); #ifndef _LP64 } else if (con_size_in_bytes < threshold * 2) { // on v9 we can do double word stores to fill twice as much space. assert(hdr_size_in_bytes % 8 == 0, "double word aligned"); assert(con_size_in_bytes % 8 == 0, "double word aligned"); for (int i = hdr_size_in_bytes; i < con_size_in_bytes; i += 2 * HeapWordSize) stx(G0, obj, i); #endif } else if (con_size_in_bytes <= threshold) { // use explicit NULL stores for (int i = hdr_size_in_bytes; i < con_size_in_bytes; i += HeapWordSize) st_ptr(G0, obj, i); } else if (con_size_in_bytes > hdr_size_in_bytes) { // use a loop const Register base = t1; const Register index = t2; add(obj, hdr_size_in_bytes, base); // compute address of first element // compute index = number of words to clear set(con_size_in_bytes - hdr_size_in_bytes, index); initialize_body(base, index); } if (CURRENT_ENV->dtrace_alloc_probes()) { assert(obj == O0, "must be"); call(CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::dtrace_object_alloc_id)), relocInfo::runtime_call_type); delayed()->nop(); } verify_oop(obj); }
OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) { OopMapSet* oop_maps = NULL; // for better readability const bool must_gc_arguments = true; const bool dont_gc_arguments = false; // stub code & info for the different stubs switch (id) { case forward_exception_id: { oop_maps = generate_handle_exception(id, sasm); } break; case new_instance_id: case fast_new_instance_id: case fast_new_instance_init_check_id: { Register G5_klass = G5; // Incoming Register O0_obj = O0; // Outgoing if (id == new_instance_id) { __ set_info("new_instance", dont_gc_arguments); } else if (id == fast_new_instance_id) { __ set_info("fast new_instance", dont_gc_arguments); } else { assert(id == fast_new_instance_init_check_id, "bad StubID"); __ set_info("fast new_instance init check", dont_gc_arguments); } if ((id == fast_new_instance_id || id == fast_new_instance_init_check_id) && UseTLAB && FastTLABRefill) { Label slow_path; Register G1_obj_size = G1; Register G3_t1 = G3; Register G4_t2 = G4; assert_different_registers(G5_klass, G1_obj_size, G3_t1, G4_t2); // Push a frame since we may do dtrace notification for the // allocation which requires calling out and we don't want // to stomp the real return address. __ save_frame(0); if (id == fast_new_instance_init_check_id) { // make sure the klass is initialized __ ldub(G5_klass, in_bytes(InstanceKlass::init_state_offset()), G3_t1); __ cmp_and_br_short(G3_t1, InstanceKlass::fully_initialized, Assembler::notEqual, Assembler::pn, slow_path); } #ifdef ASSERT // assert object can be fast path allocated { Label ok, not_ok; __ ld(G5_klass, in_bytes(Klass::layout_helper_offset()), G1_obj_size); // make sure it's an instance (LH > 0) __ cmp_and_br_short(G1_obj_size, 0, Assembler::lessEqual, Assembler::pn, not_ok); __ btst(Klass::_lh_instance_slow_path_bit, G1_obj_size); __ br(Assembler::zero, false, Assembler::pn, ok); __ delayed()->nop(); __ bind(not_ok); __ stop("assert(can be fast path allocated)"); __ should_not_reach_here(); __ bind(ok); } #endif // ASSERT // if we got here then the TLAB allocation failed, so try // refilling the TLAB or allocating directly from eden. Label retry_tlab, try_eden; __ tlab_refill(retry_tlab, try_eden, slow_path); // preserves G5_klass __ bind(retry_tlab); // get the instance size __ ld(G5_klass, in_bytes(Klass::layout_helper_offset()), G1_obj_size); __ tlab_allocate(O0_obj, G1_obj_size, 0, G3_t1, slow_path); __ initialize_object(O0_obj, G5_klass, G1_obj_size, 0, G3_t1, G4_t2); __ verify_oop(O0_obj); __ mov(O0, I0); __ ret(); __ delayed()->restore(); __ bind(try_eden); // get the instance size __ ld(G5_klass, in_bytes(Klass::layout_helper_offset()), G1_obj_size); __ eden_allocate(O0_obj, G1_obj_size, 0, G3_t1, G4_t2, slow_path); __ incr_allocated_bytes(G1_obj_size, G3_t1, G4_t2); __ initialize_object(O0_obj, G5_klass, G1_obj_size, 0, G3_t1, G4_t2); __ verify_oop(O0_obj); __ mov(O0, I0); __ ret(); __ delayed()->restore(); __ bind(slow_path); // pop this frame so generate_stub_call can push it's own __ restore(); } oop_maps = generate_stub_call(sasm, I0, CAST_FROM_FN_PTR(address, new_instance), G5_klass); // I0->O0: new instance } break; case counter_overflow_id: // G4 contains bci, G5 contains method oop_maps = generate_stub_call(sasm, noreg, CAST_FROM_FN_PTR(address, counter_overflow), G4, G5); break; case new_type_array_id: case new_object_array_id: { Register G5_klass = G5; // Incoming Register G4_length = G4; // Incoming Register O0_obj = O0; // Outgoing Address klass_lh(G5_klass, Klass::layout_helper_offset()); assert(Klass::_lh_header_size_shift % BitsPerByte == 0, "bytewise"); assert(Klass::_lh_header_size_mask == 0xFF, "bytewise"); // Use this offset to pick out an individual byte of the layout_helper: const int klass_lh_header_size_offset = ((BytesPerInt - 1) // 3 - 2 selects byte {0,1,0,0} - Klass::_lh_header_size_shift / BitsPerByte); if (id == new_type_array_id) { __ set_info("new_type_array", dont_gc_arguments); } else { __ set_info("new_object_array", dont_gc_arguments); } #ifdef ASSERT // assert object type is really an array of the proper kind { Label ok; Register G3_t1 = G3; __ ld(klass_lh, G3_t1); __ sra(G3_t1, Klass::_lh_array_tag_shift, G3_t1); int tag = ((id == new_type_array_id) ? Klass::_lh_array_tag_type_value : Klass::_lh_array_tag_obj_value); __ cmp_and_brx_short(G3_t1, tag, Assembler::equal, Assembler::pt, ok); __ stop("assert(is an array klass)"); __ should_not_reach_here(); __ bind(ok); } #endif // ASSERT if (UseTLAB && FastTLABRefill) { Label slow_path; Register G1_arr_size = G1; Register G3_t1 = G3; Register O1_t2 = O1; assert_different_registers(G5_klass, G4_length, G1_arr_size, G3_t1, O1_t2); // check that array length is small enough for fast path __ set(C1_MacroAssembler::max_array_allocation_length, G3_t1); __ cmp_and_br_short(G4_length, G3_t1, Assembler::greaterUnsigned, Assembler::pn, slow_path); // if we got here then the TLAB allocation failed, so try // refilling the TLAB or allocating directly from eden. Label retry_tlab, try_eden; __ tlab_refill(retry_tlab, try_eden, slow_path); // preserves G4_length and G5_klass __ bind(retry_tlab); // get the allocation size: (length << (layout_helper & 0x1F)) + header_size __ ld(klass_lh, G3_t1); __ sll(G4_length, G3_t1, G1_arr_size); __ srl(G3_t1, Klass::_lh_header_size_shift, G3_t1); __ and3(G3_t1, Klass::_lh_header_size_mask, G3_t1); __ add(G1_arr_size, G3_t1, G1_arr_size); __ add(G1_arr_size, MinObjAlignmentInBytesMask, G1_arr_size); // align up __ and3(G1_arr_size, ~MinObjAlignmentInBytesMask, G1_arr_size); __ tlab_allocate(O0_obj, G1_arr_size, 0, G3_t1, slow_path); // preserves G1_arr_size __ initialize_header(O0_obj, G5_klass, G4_length, G3_t1, O1_t2); __ ldub(klass_lh, G3_t1, klass_lh_header_size_offset); __ sub(G1_arr_size, G3_t1, O1_t2); // body length __ add(O0_obj, G3_t1, G3_t1); // body start __ initialize_body(G3_t1, O1_t2); __ verify_oop(O0_obj); __ retl(); __ delayed()->nop(); __ bind(try_eden); // get the allocation size: (length << (layout_helper & 0x1F)) + header_size __ ld(klass_lh, G3_t1); __ sll(G4_length, G3_t1, G1_arr_size); __ srl(G3_t1, Klass::_lh_header_size_shift, G3_t1); __ and3(G3_t1, Klass::_lh_header_size_mask, G3_t1); __ add(G1_arr_size, G3_t1, G1_arr_size); __ add(G1_arr_size, MinObjAlignmentInBytesMask, G1_arr_size); __ and3(G1_arr_size, ~MinObjAlignmentInBytesMask, G1_arr_size); __ eden_allocate(O0_obj, G1_arr_size, 0, G3_t1, O1_t2, slow_path); // preserves G1_arr_size __ incr_allocated_bytes(G1_arr_size, G3_t1, O1_t2); __ initialize_header(O0_obj, G5_klass, G4_length, G3_t1, O1_t2); __ ldub(klass_lh, G3_t1, klass_lh_header_size_offset); __ sub(G1_arr_size, G3_t1, O1_t2); // body length __ add(O0_obj, G3_t1, G3_t1); // body start __ initialize_body(G3_t1, O1_t2); __ verify_oop(O0_obj); __ retl(); __ delayed()->nop(); __ bind(slow_path); } if (id == new_type_array_id) { oop_maps = generate_stub_call(sasm, I0, CAST_FROM_FN_PTR(address, new_type_array), G5_klass, G4_length); } else { oop_maps = generate_stub_call(sasm, I0, CAST_FROM_FN_PTR(address, new_object_array), G5_klass, G4_length); } // I0 -> O0: new array } break; case new_multi_array_id: { // O0: klass // O1: rank // O2: address of 1st dimension __ set_info("new_multi_array", dont_gc_arguments); oop_maps = generate_stub_call(sasm, I0, CAST_FROM_FN_PTR(address, new_multi_array), I0, I1, I2); // I0 -> O0: new multi array } break; case register_finalizer_id: { __ set_info("register_finalizer", dont_gc_arguments); // load the klass and check the has finalizer flag Label register_finalizer; Register t = O1; __ load_klass(O0, t); __ ld(t, in_bytes(Klass::access_flags_offset()), t); __ set(JVM_ACC_HAS_FINALIZER, G3); __ andcc(G3, t, G0); __ br(Assembler::notZero, false, Assembler::pt, register_finalizer); __ delayed()->nop(); // do a leaf return __ retl(); __ delayed()->nop(); __ bind(register_finalizer); OopMap* oop_map = save_live_registers(sasm); int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, SharedRuntime::register_finalizer), I0); oop_maps = new OopMapSet(); oop_maps->add_gc_map(call_offset, oop_map); // Now restore all the live registers restore_live_registers(sasm); __ ret(); __ delayed()->restore(); } break; case throw_range_check_failed_id: { __ set_info("range_check_failed", dont_gc_arguments); // arguments will be discarded // G4: index oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_range_check_exception), true); } break; case throw_index_exception_id: { __ set_info("index_range_check_failed", dont_gc_arguments); // arguments will be discarded // G4: index oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_index_exception), true); } break; case throw_div0_exception_id: { __ set_info("throw_div0_exception", dont_gc_arguments); oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_div0_exception), false); } break; case throw_null_pointer_exception_id: { __ set_info("throw_null_pointer_exception", dont_gc_arguments); oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_null_pointer_exception), false); } break; case handle_exception_id: { __ set_info("handle_exception", dont_gc_arguments); oop_maps = generate_handle_exception(id, sasm); } break; case handle_exception_from_callee_id: { __ set_info("handle_exception_from_callee", dont_gc_arguments); oop_maps = generate_handle_exception(id, sasm); } break; case unwind_exception_id: { // O0: exception // I7: address of call to this method __ set_info("unwind_exception", dont_gc_arguments); __ mov(Oexception, Oexception->after_save()); __ add(I7, frame::pc_return_offset, Oissuing_pc->after_save()); __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), G2_thread, Oissuing_pc->after_save()); __ verify_not_null_oop(Oexception->after_save()); // Restore SP from L7 if the exception PC is a method handle call site. __ mov(O0, G5); // Save the target address. __ lduw(Address(G2_thread, JavaThread::is_method_handle_return_offset()), L0); __ tst(L0); // Condition codes are preserved over the restore. __ restore(); __ jmp(G5, 0); __ delayed()->movcc(Assembler::notZero, false, Assembler::icc, L7_mh_SP_save, SP); // Restore SP if required. } break; case throw_array_store_exception_id: { __ set_info("throw_array_store_exception", dont_gc_arguments); oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_array_store_exception), true); } break; case throw_class_cast_exception_id: { // G4: object __ set_info("throw_class_cast_exception", dont_gc_arguments); oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_class_cast_exception), true); } break; case throw_incompatible_class_change_error_id: { __ set_info("throw_incompatible_class_cast_exception", dont_gc_arguments); oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_incompatible_class_change_error), false); } break; case slow_subtype_check_id: { // Support for uint StubRoutine::partial_subtype_check( Klass sub, Klass super ); // Arguments : // // ret : G3 // sub : G3, argument, destroyed // super: G1, argument, not changed // raddr: O7, blown by call Label miss; __ save_frame(0); // Blow no registers! __ check_klass_subtype_slow_path(G3, G1, L0, L1, L2, L4, NULL, &miss); __ mov(1, G3); __ ret(); // Result in G5 is 'true' __ delayed()->restore(); // free copy or add can go here __ bind(miss); __ mov(0, G3); __ ret(); // Result in G5 is 'false' __ delayed()->restore(); // free copy or add can go here } case monitorenter_nofpu_id: case monitorenter_id: { // G4: object // G5: lock address __ set_info("monitorenter", dont_gc_arguments); int save_fpu_registers = (id == monitorenter_id); // make a frame and preserve the caller's caller-save registers OopMap* oop_map = save_live_registers(sasm, save_fpu_registers); int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorenter), G4, G5); oop_maps = new OopMapSet(); oop_maps->add_gc_map(call_offset, oop_map); restore_live_registers(sasm, save_fpu_registers); __ ret(); __ delayed()->restore(); } break; case monitorexit_nofpu_id: case monitorexit_id: { // G4: lock address // note: really a leaf routine but must setup last java sp // => use call_RT for now (speed can be improved by // doing last java sp setup manually) __ set_info("monitorexit", dont_gc_arguments); int save_fpu_registers = (id == monitorexit_id); // make a frame and preserve the caller's caller-save registers OopMap* oop_map = save_live_registers(sasm, save_fpu_registers); int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorexit), G4); oop_maps = new OopMapSet(); oop_maps->add_gc_map(call_offset, oop_map); restore_live_registers(sasm, save_fpu_registers); __ ret(); __ delayed()->restore(); } break; case deoptimize_id: { __ set_info("deoptimize", dont_gc_arguments); OopMap* oop_map = save_live_registers(sasm); int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, deoptimize)); oop_maps = new OopMapSet(); oop_maps->add_gc_map(call_offset, oop_map); restore_live_registers(sasm); DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob(); assert(deopt_blob != NULL, "deoptimization blob must have been created"); AddressLiteral dest(deopt_blob->unpack_with_reexecution()); __ jump_to(dest, O0); __ delayed()->restore(); } break; case access_field_patching_id: { __ set_info("access_field_patching", dont_gc_arguments); oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, access_field_patching)); } break; case load_klass_patching_id: { __ set_info("load_klass_patching", dont_gc_arguments); oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_klass_patching)); } break; case load_mirror_patching_id: { __ set_info("load_mirror_patching", dont_gc_arguments); oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_mirror_patching)); } break; case dtrace_object_alloc_id: { // O0: object __ set_info("dtrace_object_alloc", dont_gc_arguments); // we can't gc here so skip the oopmap but make sure that all // the live registers get saved. save_live_registers(sasm); __ save_thread(L7_thread_cache); __ call(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), relocInfo::runtime_call_type); __ delayed()->mov(I0, O0); __ restore_thread(L7_thread_cache); restore_live_registers(sasm); __ ret(); __ delayed()->restore(); } break; #if INCLUDE_ALL_GCS case g1_pre_barrier_slow_id: { // G4: previous value of memory BarrierSet* bs = Universe::heap()->barrier_set(); if (bs->kind() != BarrierSet::G1SATBCTLogging) { __ save_frame(0); __ set((int)id, O1); __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), I0); __ should_not_reach_here(); break; } __ set_info("g1_pre_barrier_slow_id", dont_gc_arguments); Register pre_val = G4; Register tmp = G1_scratch; Register tmp2 = G3_scratch; Label refill, restart; bool with_frame = false; // I don't know if we can do with-frame. int satb_q_index_byte_offset = in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_index()); int satb_q_buf_byte_offset = in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_buf()); __ bind(restart); // Load the index into the SATB buffer. PtrQueue::_index is a // size_t so ld_ptr is appropriate __ ld_ptr(G2_thread, satb_q_index_byte_offset, tmp); // index == 0? __ cmp_and_brx_short(tmp, G0, Assembler::equal, Assembler::pn, refill); __ ld_ptr(G2_thread, satb_q_buf_byte_offset, tmp2); __ sub(tmp, oopSize, tmp); __ st_ptr(pre_val, tmp2, tmp); // [_buf + index] := <address_of_card> // Use return-from-leaf __ retl(); __ delayed()->st_ptr(tmp, G2_thread, satb_q_index_byte_offset); __ bind(refill); __ save_frame(0); __ mov(pre_val, L0); __ mov(tmp, L1); __ mov(tmp2, L2); __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, SATBMarkQueueSet::handle_zero_index_for_thread), G2_thread); __ mov(L0, pre_val); __ mov(L1, tmp); __ mov(L2, tmp2); __ br(Assembler::always, /*annul*/false, Assembler::pt, restart); __ delayed()->restore(); } break; case g1_post_barrier_slow_id: { BarrierSet* bs = Universe::heap()->barrier_set(); if (bs->kind() != BarrierSet::G1SATBCTLogging) { __ save_frame(0); __ set((int)id, O1); __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), I0); __ should_not_reach_here(); break; } __ set_info("g1_post_barrier_slow_id", dont_gc_arguments); Register addr = G4; Register cardtable = G5; Register tmp = G1_scratch; Register tmp2 = G3_scratch; jbyte* byte_map_base = ((CardTableModRefBS*)bs)->byte_map_base; Label not_already_dirty, restart, refill; #ifdef _LP64 __ srlx(addr, CardTableModRefBS::card_shift, addr); #else __ srl(addr, CardTableModRefBS::card_shift, addr); #endif AddressLiteral rs(byte_map_base); __ set(rs, cardtable); // cardtable := <card table base> __ ldub(addr, cardtable, tmp); // tmp := [addr + cardtable] assert(CardTableModRefBS::dirty_card_val() == 0, "otherwise check this code"); __ cmp_and_br_short(tmp, G0, Assembler::notEqual, Assembler::pt, not_already_dirty); // We didn't take the branch, so we're already dirty: return. // Use return-from-leaf __ retl(); __ delayed()->nop(); // Not dirty. __ bind(not_already_dirty); // Get cardtable + tmp into a reg by itself __ add(addr, cardtable, tmp2); // First, dirty it. __ stb(G0, tmp2, 0); // [cardPtr] := 0 (i.e., dirty). Register tmp3 = cardtable; Register tmp4 = tmp; // these registers are now dead addr = cardtable = tmp = noreg; int dirty_card_q_index_byte_offset = in_bytes(JavaThread::dirty_card_queue_offset() + PtrQueue::byte_offset_of_index()); int dirty_card_q_buf_byte_offset = in_bytes(JavaThread::dirty_card_queue_offset() + PtrQueue::byte_offset_of_buf()); __ bind(restart); // Get the index into the update buffer. PtrQueue::_index is // a size_t so ld_ptr is appropriate here. __ ld_ptr(G2_thread, dirty_card_q_index_byte_offset, tmp3); // index == 0? __ cmp_and_brx_short(tmp3, G0, Assembler::equal, Assembler::pn, refill); __ ld_ptr(G2_thread, dirty_card_q_buf_byte_offset, tmp4); __ sub(tmp3, oopSize, tmp3); __ st_ptr(tmp2, tmp4, tmp3); // [_buf + index] := <address_of_card> // Use return-from-leaf __ retl(); __ delayed()->st_ptr(tmp3, G2_thread, dirty_card_q_index_byte_offset); __ bind(refill); __ save_frame(0); __ mov(tmp2, L0); __ mov(tmp3, L1); __ mov(tmp4, L2); __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, DirtyCardQueueSet::handle_zero_index_for_thread), G2_thread); __ mov(L0, tmp2); __ mov(L1, tmp3); __ mov(L2, tmp4); __ br(Assembler::always, /*annul*/false, Assembler::pt, restart); __ delayed()->restore(); } break; #endif // INCLUDE_ALL_GCS case predicate_failed_trap_id: { __ set_info("predicate_failed_trap", dont_gc_arguments); OopMap* oop_map = save_live_registers(sasm); int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, predicate_failed_trap)); oop_maps = new OopMapSet(); oop_maps->add_gc_map(call_offset, oop_map); DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob(); assert(deopt_blob != NULL, "deoptimization blob must have been created"); restore_live_registers(sasm); AddressLiteral dest(deopt_blob->unpack_with_reexecution()); __ jump_to(dest, O0); __ delayed()->restore(); } break; default: { __ set_info("unimplemented entry", dont_gc_arguments); __ save_frame(0); __ set((int)id, O1); __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), O1); __ should_not_reach_here(); } break; } return oop_maps; }
void C1_MacroAssembler::allocate_array( Register obj, // result: pointer to array after successful allocation Register len, // array length Register t1, // temp register Register t2, // temp register Register t3, // temp register int hdr_size, // object header size in words int elt_size, // element size in bytes Register klass, // object klass Label& slow_case // continuation point if fast allocation fails ) { assert_different_registers(obj, len, t1, t2, t3, klass); // Determine alignment mask. assert(!(BytesPerWord & 1), "must be a multiple of 2 for masking code to work"); int log2_elt_size = exact_log2(elt_size); // Check for negative or excessive length. size_t max_length = max_array_allocation_length >> log2_elt_size; if (UseTLAB) { size_t max_tlab = align_size_up(ThreadLocalAllocBuffer::max_size() >> log2_elt_size, 64*K); if (max_tlab < max_length) { max_length = max_tlab; } } load_const_optimized(t1, max_length); cmpld(CCR0, len, t1); bc_far_optimized(Assembler::bcondCRbiIs1, bi0(CCR0, Assembler::greater), slow_case); // compute array size // note: If 0 <= len <= max_length, len*elt_size + header + alignment is // smaller or equal to the largest integer; also, since top is always // aligned, we can do the alignment here instead of at the end address // computation. const Register arr_size = t1; Register arr_len_in_bytes = len; if (elt_size != 1) { sldi(t1, len, log2_elt_size); arr_len_in_bytes = t1; } addi(arr_size, arr_len_in_bytes, hdr_size * wordSize + MinObjAlignmentInBytesMask); // Add space for header & alignment. clrrdi(arr_size, arr_size, LogMinObjAlignmentInBytes); // Align array size. // Allocate space & initialize header. if (UseTLAB) { tlab_allocate(obj, arr_size, 0, t2, slow_case); } else { eden_allocate(obj, arr_size, 0, t2, t3, slow_case); } initialize_header(obj, klass, len, t2, t3); // Initialize body. const Register base = t2; const Register index = t3; addi(base, obj, hdr_size * wordSize); // compute address of first element addi(index, arr_size, -(hdr_size * wordSize)); // compute index = number of bytes to clear initialize_body(base, index); if (CURRENT_ENV->dtrace_alloc_probes()) { Unimplemented(); //assert(obj == O0, "must be"); //call(CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::dtrace_object_alloc_id)), // relocInfo::runtime_call_type); } verify_oop(obj); }