Int_t mp102_readNtuplesFillHistosAndFit() { // No nuisance for batch execution gROOT->SetBatch(); // Perform the operation sequentially --------------------------------------- TChain inputChain("multiCore"); inputChain.Add("mp101_multiCore_*.root"); TH1F outHisto("outHisto", "Random Numbers", 128, -4, 4); { TimerRAII t("Sequential read and fit"); inputChain.Draw("r >> outHisto"); outHisto.Fit("gaus"); } // We now go MP! ------------------------------------------------------------ // TProcPool offers an interface to directly process trees and chains without // the need for the user to go through the low level implementation of a // map-reduce. // We adapt our parallelisation to the number of input files const auto nFiles = inputChain.GetListOfFiles()->GetEntries(); // This is the function invoked during the processing of the trees. auto workItem = [](TTreeReader & reader) { TTreeReaderValue<Float_t> randomRV(reader, "r"); auto partialHisto = new TH1F("outHistoMP", "Random Numbers", 128, -4, 4); while (reader.Next()) { partialHisto->Fill(*randomRV); } return partialHisto; }; // Create the pool of processes TProcPool workers(nFiles); // Process the TChain { TimerRAII t("Parallel execution"); TH1F *sumHistogram = workers.ProcTree(inputChain, workItem, "multiCore"); sumHistogram->Fit("gaus", 0); } return 0; }
Int_t mt102_readNtuplesFillHistosAndFit() { // No nuisance for batch execution gROOT->SetBatch(); // Perform the operation sequentially --------------------------------------- TChain inputChain("multiCore"); inputChain.Add("mc101_multiCore_*.root"); TH1F outHisto("outHisto", "Random Numbers", 128, -4, 4); { TimerRAII t("Sequential read and fit"); inputChain.Draw("r >> outHisto"); outHisto.Fit("gaus"); } // We now go MT! ------------------------------------------------------------ // The first, fundamental operation to be performed in order to make ROOT // thread-aware. ROOT::EnableMT(); // We adapt our parallelisation to the number of input files const auto nFiles = inputChain.GetListOfFiles()->GetEntries(); std::forward_list<UInt_t> workerIDs(nFiles); std::iota(std::begin(workerIDs), std::end(workerIDs), 0); // We define the histograms we'll fill std::vector<TH1F> histograms; histograms.reserve(nFiles); for (auto workerID : workerIDs){ histograms.emplace_back(TH1F(Form("outHisto_%u", workerID), "Random Numbers", 128, -4, 4)); } // We define our work item auto workItem = [&histograms](UInt_t workerID) { TFile f(Form("mc101_multiCore_%u.root", workerID)); TNtuple *ntuple = nullptr; f.GetObject("multiCore", ntuple); auto &histo = histograms.at(workerID); for (UInt_t index = 0; index < ntuple->GetEntriesFast(); ++index) { ntuple->GetEntry(index); histo.Fill(ntuple->GetArgs()[0]); } }; TH1F sumHistogram("SumHisto", "Random Numbers", 128, -4, 4); // Create the collection which will hold the threads, our "pool" std::vector<std::thread> workers; // We measure time here as well { TimerRAII t("Parallel execution"); // Spawn workers // Fill the "pool" with workers for (auto workerID : workerIDs) { workers.emplace_back(workItem, workerID); } // Now join them for (auto&& worker : workers) worker.join(); // And reduce std::for_each(std::begin(histograms), std::end(histograms), [&sumHistogram](const TH1F & h) { sumHistogram.Add(&h); }); sumHistogram.Fit("gaus",0); } return 0; }