static void intel_miptree_copy_slice_sw(struct intel_context *intel, struct intel_mipmap_tree *dst_mt, struct intel_mipmap_tree *src_mt, int level, int slice, int width, int height) { void *src, *dst; int src_stride, dst_stride; int cpp = dst_mt->cpp; intel_miptree_map(intel, src_mt, level, slice, 0, 0, width, height, GL_MAP_READ_BIT, &src, &src_stride); intel_miptree_map(intel, dst_mt, level, slice, 0, 0, width, height, GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT, &dst, &dst_stride); DBG("sw blit %s mt %p %p/%d -> %s mt %p %p/%d (%dx%d)\n", _mesa_get_format_name(src_mt->format), src_mt, src, src_stride, _mesa_get_format_name(dst_mt->format), dst_mt, dst, dst_stride, width, height); int row_size = cpp * width; if (src_stride == row_size && dst_stride == row_size) { memcpy(dst, src, row_size * height); } else { for (int i = 0; i < height; i++) { memcpy(dst, src, row_size); dst += dst_stride; src += src_stride; } } intel_miptree_unmap(intel, dst_mt, level, slice); intel_miptree_unmap(intel, src_mt, level, slice); }
/** * Map texture memory/buffer into user space. * Note: the region of interest parameters are ignored here. * \param mode bitmask of GL_MAP_READ_BIT, GL_MAP_WRITE_BIT * \param mapOut returns start of mapping of region of interest * \param rowStrideOut returns row stride in bytes */ static void intel_map_texture_image(struct gl_context *ctx, struct gl_texture_image *tex_image, GLuint slice, GLuint x, GLuint y, GLuint w, GLuint h, GLbitfield mode, GLubyte **map, GLint *stride) { struct brw_context *brw = brw_context(ctx); struct intel_texture_image *intel_image = intel_texture_image(tex_image); struct intel_mipmap_tree *mt = intel_image->mt; /* Our texture data is always stored in a miptree. */ assert(mt); /* Check that our caller wasn't confused about how to map a 1D texture. */ assert(tex_image->TexObject->Target != GL_TEXTURE_1D_ARRAY || h == 1); /* intel_miptree_map operates on a unified "slice" number that references the * cube face, since it's all just slices to the miptree code. */ if (tex_image->TexObject->Target == GL_TEXTURE_CUBE_MAP) slice = tex_image->Face; intel_miptree_map(brw, mt, tex_image->Level + tex_image->TexObject->MinLevel, slice + tex_image->TexObject->MinLayer, x, y, w, h, mode, (void **)map, stride); }
/** * Map texture memory/buffer into user space. * Note: the region of interest parameters are ignored here. * \param mode bitmask of GL_MAP_READ_BIT, GL_MAP_WRITE_BIT * \param mapOut returns start of mapping of region of interest * \param rowStrideOut returns row stride in bytes */ static void intel_map_texture_image(struct gl_context *ctx, struct gl_texture_image *tex_image, GLuint slice, GLuint x, GLuint y, GLuint w, GLuint h, GLbitfield mode, GLubyte **map, GLint *stride) { struct intel_context *intel = intel_context(ctx); struct intel_texture_image *intel_image = intel_texture_image(tex_image); struct intel_mipmap_tree *mt = intel_image->mt; /* Our texture data is always stored in a miptree. */ assert(mt); /* intel_miptree_map operates on a unified "slice" number that references the * cube face, since it's all just slices to the miptree code. */ if (tex_image->TexObject->Target == GL_TEXTURE_CUBE_MAP) slice = tex_image->Face; intel_miptree_map(intel, mt, tex_image->Level, slice, x, y, w, h, mode, (void **)map, stride); }
/** * \see dd_function_table::MapRenderbuffer */ static void intel_map_renderbuffer(struct gl_context *ctx, struct gl_renderbuffer *rb, GLuint x, GLuint y, GLuint w, GLuint h, GLbitfield mode, GLubyte **out_map, GLint *out_stride) { struct intel_context *intel = intel_context(ctx); struct swrast_renderbuffer *srb = (struct swrast_renderbuffer *)rb; struct intel_renderbuffer *irb = intel_renderbuffer(rb); void *map; int stride; if (srb->Buffer) { /* this is a malloc'd renderbuffer (accum buffer), not an irb */ GLint bpp = _mesa_get_format_bytes(rb->Format); GLint rowStride = srb->RowStride; *out_map = (GLubyte *) srb->Buffer + y * rowStride + x * bpp; *out_stride = rowStride; return; } /* We sometimes get called with this by our intel_span.c usage. */ if (!irb->mt) { *out_map = NULL; *out_stride = 0; return; } /* For a window-system renderbuffer, we need to flip the mapping we receive * upside-down. So we need to ask for a rectangle on flipped vertically, and * we then return a pointer to the bottom of it with a negative stride. */ if (rb->Name == 0) { y = rb->Height - y - h; } intel_miptree_map(intel, irb->mt, irb->mt_level, irb->mt_layer, x, y, w, h, mode, &map, &stride); if (rb->Name == 0) { map += (h - 1) * stride; stride = -stride; } DBG("%s: rb %d (%s) mt mapped: (%d, %d) (%dx%d) -> %p/%d\n", __FUNCTION__, rb->Name, _mesa_get_format_name(rb->Format), x, y, w, h, map, stride); *out_map = map; *out_stride = stride; }
static void copy_image_with_memcpy(struct brw_context *brw, struct intel_mipmap_tree *src_mt, int src_level, int src_x, int src_y, int src_z, struct intel_mipmap_tree *dst_mt, int dst_level, int dst_x, int dst_y, int dst_z, int src_width, int src_height) { bool same_slice; void *mapped, *src_mapped, *dst_mapped; ptrdiff_t src_stride, dst_stride, cpp; int map_x1, map_y1, map_x2, map_y2; GLuint src_bw, src_bh; cpp = _mesa_get_format_bytes(src_mt->format); _mesa_get_format_block_size(src_mt->format, &src_bw, &src_bh); assert(src_width % src_bw == 0); assert(src_height % src_bh == 0); assert(src_x % src_bw == 0); assert(src_y % src_bh == 0); /* If we are on the same miptree, same level, and same slice, then * intel_miptree_map won't let us map it twice. We have to do things a * bit differently. In particular, we do a single map large enough for * both portions and in read-write mode. */ same_slice = src_mt == dst_mt && src_level == dst_level && src_z == dst_z; if (same_slice) { assert(dst_x % src_bw == 0); assert(dst_y % src_bh == 0); map_x1 = MIN2(src_x, dst_x); map_y1 = MIN2(src_y, dst_y); map_x2 = MAX2(src_x, dst_x) + src_width; map_y2 = MAX2(src_y, dst_y) + src_height; intel_miptree_map(brw, src_mt, src_level, src_z, map_x1, map_y1, map_x2 - map_x1, map_y2 - map_y1, GL_MAP_READ_BIT | GL_MAP_WRITE_BIT, &mapped, &src_stride); dst_stride = src_stride; /* Set the offsets here so we don't have to think about while looping */ src_mapped = mapped + ((src_y - map_y1) / src_bh) * src_stride + ((src_x - map_x1) / src_bw) * cpp; dst_mapped = mapped + ((dst_y - map_y1) / src_bh) * dst_stride + ((dst_x - map_x1) / src_bw) * cpp; } else { intel_miptree_map(brw, src_mt, src_level, src_z, src_x, src_y, src_width, src_height, GL_MAP_READ_BIT, &src_mapped, &src_stride); intel_miptree_map(brw, dst_mt, dst_level, dst_z, dst_x, dst_y, src_width, src_height, GL_MAP_WRITE_BIT, &dst_mapped, &dst_stride); } src_width /= (int)src_bw; src_height /= (int)src_bh; for (int i = 0; i < src_height; ++i) { memcpy(dst_mapped, src_mapped, src_width * cpp); src_mapped += src_stride; dst_mapped += dst_stride; } if (same_slice) { intel_miptree_unmap(brw, src_mt, src_level, src_z); } else { intel_miptree_unmap(brw, dst_mt, dst_level, dst_z); intel_miptree_unmap(brw, src_mt, src_level, src_z); } }