Basis_HDIV_TRI_In_FEM<Scalar,ArrayScalar>::Basis_HDIV_TRI_In_FEM( const int n , const EPointType pointType ): Phis( n ), coeffs( (n+1)*(n+2) , n*(n+2) ) { const int N = n*(n+2); this -> basisCardinality_ = N; this -> basisDegree_ = n; this -> basisCellTopology_ = shards::CellTopology(shards::getCellTopologyData<shards::Triangle<3> >() ); this -> basisType_ = BASIS_FEM_FIAT; this -> basisCoordinates_ = COORDINATES_CARTESIAN; this -> basisTagsAreSet_ = false; const int littleN = n*(n+1); // dim of (P_{n-1})^2 -- smaller space const int bigN = (n+1)*(n+2); // dim of (P_{n})^2 -- larger space const int scalarSmallestN = (n-1)*n / 2; const int scalarLittleN = littleN/2; const int scalarBigN = bigN/2; // first, need to project the basis for RT space onto the // orthogonal basis of degree n // get coefficients of PkHx Teuchos::SerialDenseMatrix<int,Scalar> V1(bigN, N); // basis for the space is // { (phi_i,0) }_{i=0}^{scalarLittleN-1} , // { (0,phi_i) }_{i=0}^{scalarLittleN-1} , // { (x,y) . phi_i}_{i=scalarLittleN}^{scalarBigN-1} // columns of V1 are expansion of this basis in terms of the basis // for P_{n}^2 // these two loops get the first two sets of basis functions for (int i=0;i<scalarLittleN;i++) { V1(i,i) = 1.0; V1(scalarBigN+i,scalarLittleN+i) = 1.0; } // now I need to integrate { (x,y) phi } against the big basis // first, get a cubature rule. CubatureDirectTriDefault<Scalar,ArrayScalar > myCub( 2 * n ); ArrayScalar cubPoints( myCub.getNumPoints() , 2 ); ArrayScalar cubWeights( myCub.getNumPoints() ); myCub.getCubature( cubPoints , cubWeights ); // tabulate the scalar orthonormal basis at cubature points ArrayScalar phisAtCubPoints( scalarBigN , myCub.getNumPoints() ); Phis.getValues( phisAtCubPoints , cubPoints , OPERATOR_VALUE ); // now do the integration for (int i=0;i<n;i++) { for (int j=0;j<scalarBigN;j++) { // int (x,y) phi_i \cdot (phi_j,0) V1(j,littleN+i) = 0.0; for (int k=0;k<myCub.getNumPoints();k++) { V1(j,littleN+i) += cubWeights(k) * cubPoints(k,0) * phisAtCubPoints(scalarSmallestN+i,k) * phisAtCubPoints(j,k); } } for (int j=0;j<scalarBigN;j++) { // int (x,y) phi_i \cdot (0,phi_j) V1(j+scalarBigN,littleN+i) = 0.0; for (int k=0;k<myCub.getNumPoints();k++) { V1(j+scalarBigN,littleN+i) += cubWeights(k) * cubPoints(k,1) * phisAtCubPoints(scalarSmallestN+i,k) * phisAtCubPoints(j,k); } } } //std::cout << V1 << "\n"; // next, apply the RT nodes (rows) to the basis for (P_n)^2 (columns) Teuchos::SerialDenseMatrix<int,Scalar> V2(N , bigN); // first 3 * degree nodes are normals at each edge // get the points on the line ArrayScalar linePts( n , 1 ); if (pointType == POINTTYPE_WARPBLEND) { CubatureDirectLineGauss<Scalar> edgeRule( n ); ArrayScalar edgeCubWts( n ); edgeRule.getCubature( linePts , edgeCubWts ); } else if (pointType == POINTTYPE_EQUISPACED ) { shards::CellTopology linetop(shards::getCellTopologyData<shards::Line<2> >() ); PointTools::getLattice<Scalar,ArrayScalar >( linePts , linetop , n+1 , 1 , POINTTYPE_EQUISPACED ); } // holds the image of the line points ArrayScalar edgePts( n , 2 ); ArrayScalar phisAtEdgePoints( scalarBigN , n ); // these are scaled by the appropriate edge lengths. const Scalar nx[] = {0.0,1.0,-1.0}; const Scalar ny[] = {-1.0,1.0,0.0}; for (int i=0;i<3;i++) { // loop over edges CellTools<Scalar>::mapToReferenceSubcell( edgePts , linePts , 1 , i , this->basisCellTopology_ ); Phis.getValues( phisAtEdgePoints , edgePts , OPERATOR_VALUE ); // loop over points (rows of V2) for (int j=0;j<n;j++) { // loop over orthonormal basis functions (columns of V2) for (int k=0;k<scalarBigN;k++) { V2(n*i+j,k) = nx[i] * phisAtEdgePoints(k,j); V2(n*i+j,k+scalarBigN) = ny[i] * phisAtEdgePoints(k,j); } } } // next map the points to each edge // remaining nodes are divided into two pieces: point value of x // components and point values of y components. These are // evaluated at the interior of a lattice of degree + 1, For then // the degree == 1 space corresponds classicaly to RT0 and so gets // no internal nodes, and degree == 2 corresponds to RT1 and needs // one internal node per vector component. const int numInternalPoints = PointTools::getLatticeSize( this->getBaseCellTopology() , n + 1 , 1 ); if (numInternalPoints > 0) { ArrayScalar internalPoints( numInternalPoints , 2 ); PointTools::getLattice<Scalar,ArrayScalar >( internalPoints , this->getBaseCellTopology() , n + 1 , 1 , pointType ); ArrayScalar phisAtInternalPoints( scalarBigN , numInternalPoints ); Phis.getValues( phisAtInternalPoints , internalPoints , OPERATOR_VALUE ); // copy values into right positions of V2 for (int i=0;i<numInternalPoints;i++) { for (int j=0;j<scalarBigN;j++) { // x component V2(3*n+i,j) = phisAtInternalPoints(j,i); // y component V2(3*n+numInternalPoints+i,scalarBigN+j) = phisAtInternalPoints(j,i); } } } // std::cout << "Nodes on big basis\n"; // std::cout << V2 << "\n"; // std::cout << "End nodes\n"; Teuchos::SerialDenseMatrix<int,Scalar> Vsdm( N , N ); // multiply V2 * V1 --> V Vsdm.multiply( Teuchos::NO_TRANS , Teuchos::NO_TRANS , 1.0 , V2 , V1 , 0.0 ); // std::cout << "Vandermonde:\n"; // std::cout << Vsdm << "\n"; // std::cout << "End Vandermonde\n"; Teuchos::SerialDenseSolver<int,Scalar> solver; solver.setMatrix( rcp( &Vsdm , false ) ); solver.invert( ); Teuchos::SerialDenseMatrix<int,Scalar> Csdm( bigN , N ); Csdm.multiply( Teuchos::NO_TRANS , Teuchos::NO_TRANS , 1.0 , V1 , Vsdm , 0.0 ); // std::cout << Csdm << "\n"; for (int i=0;i<bigN;i++) { for (int j=0;j<N;j++) { coeffs(i,j) = Csdm(i,j); } } }
Basis_HCURL_TRI_In_FEM<Scalar,ArrayScalar>::Basis_HCURL_TRI_In_FEM( const int n , const EPointType pointType ): Phis_( n ), coeffs_( (n+1)*(n+2) , n*(n+2) ) { const int N = n*(n+2); this -> basisCardinality_ = N; this -> basisDegree_ = n; this -> basisCellTopology_ = shards::CellTopology(shards::getCellTopologyData<shards::Triangle<3> >() ); this -> basisType_ = BASIS_FEM_FIAT; this -> basisCoordinates_ = COORDINATES_CARTESIAN; this -> basisTagsAreSet_ = false; const int littleN = n*(n+1); // dim of (P_{n-1})^2 -- smaller space const int bigN = (n+1)*(n+2); // dim of (P_{n})^2 -- larger space const int scalarSmallestN = (n-1)*n / 2; const int scalarLittleN = littleN/2; const int scalarBigN = bigN/2; // first, need to project the basis for Nedelec space onto the // orthogonal basis of degree n // get coefficients of PkHx Teuchos::SerialDenseMatrix<int,Scalar> V1(bigN, N); // basis for the space is // { (phi_i,0) }_{i=0}^{scalarLittleN-1} , // { (0,phi_i) }_{i=0}^{scalarLittleN-1} , // { (x,y) \times phi_i}_{i=scalarLittleN}^{scalarBigN-1} // { (x,y) \times phi = (y phi , -x \phi) // columns of V1 are expansion of this basis in terms of the basis // for P_{n}^2 // these two loops get the first two sets of basis functions for (int i=0;i<scalarLittleN;i++) { V1(i,i) = 1.0; V1(scalarBigN+i,scalarLittleN+i) = 1.0; } // now I need to integrate { (x,y) \times phi } against the big basis // first, get a cubature rule. CubatureDirectTriDefault<Scalar,ArrayScalar > myCub( 2 * n ); ArrayScalar cubPoints( myCub.getNumPoints() , 2 ); ArrayScalar cubWeights( myCub.getNumPoints() ); myCub.getCubature( cubPoints , cubWeights ); // tabulate the scalar orthonormal basis at cubature points ArrayScalar phisAtCubPoints( scalarBigN , myCub.getNumPoints() ); Phis_.getValues( phisAtCubPoints , cubPoints , OPERATOR_VALUE ); // now do the integration for (int i=0;i<n;i++) { for (int j=0;j<scalarBigN;j++) { // int (x,y) phi_i \cdot (phi_j,0) V1(j,littleN+i) = 0.0; for (int k=0;k<myCub.getNumPoints();k++) { V1(j,littleN+i) -= cubWeights(k) * cubPoints(k,1) * phisAtCubPoints(scalarSmallestN+i,k) * phisAtCubPoints(j,k); } } for (int j=0;j<scalarBigN;j++) { // int (x,y) phi_i \cdot (0,phi_j) V1(j+scalarBigN,littleN+i) = 0.0; for (int k=0;k<myCub.getNumPoints();k++) { V1(j+scalarBigN,littleN+i) += cubWeights(k) * cubPoints(k,0) * phisAtCubPoints(scalarSmallestN+i,k) * phisAtCubPoints(j,k); } } } //std::cout << V1 << "\n"; // next, apply the RT nodes (rows) to the basis for (P_n)^2 (columns) Teuchos::SerialDenseMatrix<int,Scalar> V2(N , bigN); // first 3 * degree nodes are normals at each edge // get the points on the line ArrayScalar linePts( n , 1 ); if (pointType == POINTTYPE_WARPBLEND) { CubatureDirectLineGauss<Scalar> edgeRule( 2*n - 1 ); ArrayScalar edgeCubWts( n ); edgeRule.getCubature( linePts , edgeCubWts ); } else if (pointType == POINTTYPE_EQUISPACED ) { shards::CellTopology linetop(shards::getCellTopologyData<shards::Line<2> >() ); PointTools::getLattice<Scalar,ArrayScalar >( linePts , linetop , n+1 , 1 , POINTTYPE_EQUISPACED ); } ArrayScalar edgePts( n , 2 ); ArrayScalar phisAtEdgePoints( scalarBigN , n ); ArrayScalar edgeTan(2); for (int i=0;i<3;i++) { // loop over edges CellTools<Scalar>::getReferenceEdgeTangent( edgeTan , i , this->basisCellTopology_ ); /* multiply by 2.0 to account for a Jacobian in Pavel's definition */ for (int j=0;j<2;j++) { edgeTan(j) *= 2.0; } CellTools<Scalar>::mapToReferenceSubcell( edgePts , linePts , 1 , i , this->basisCellTopology_ ); Phis_.getValues( phisAtEdgePoints , edgePts , OPERATOR_VALUE ); // loop over points (rows of V2) for (int j=0;j<n;j++) { // loop over orthonormal basis functions (columns of V2) for (int k=0;k<scalarBigN;k++) { V2(n*i+j,k) = edgeTan(0) * phisAtEdgePoints(k,j); V2(n*i+j,k+scalarBigN) = edgeTan(1) * phisAtEdgePoints(k,j); } } } // remaining nodes are x- and y- components at internal points, if n > 1 // this code is exactly the same as it is for HDIV const int numInternalPoints = PointTools::getLatticeSize( this->getBaseCellTopology() , n + 1 , 1 ); if (numInternalPoints > 0) { ArrayScalar internalPoints( numInternalPoints , 2 ); PointTools::getLattice<Scalar,ArrayScalar >( internalPoints , this->getBaseCellTopology() , n + 1 , 1 , pointType ); ArrayScalar phisAtInternalPoints( scalarBigN , numInternalPoints ); Phis_.getValues( phisAtInternalPoints , internalPoints , OPERATOR_VALUE ); // copy values into right positions of V2 for (int i=0;i<numInternalPoints;i++) { for (int j=0;j<scalarBigN;j++) { // x component V2(3*n+i,j) = phisAtInternalPoints(j,i); // y component V2(3*n+numInternalPoints+i,scalarBigN+j) = phisAtInternalPoints(j,i); } } } // std::cout << "Nodes on big basis\n"; // std::cout << V2 << "\n"; // std::cout << "End nodes\n"; Teuchos::SerialDenseMatrix<int,Scalar> Vsdm( N , N ); // multiply V2 * V1 --> V Vsdm.multiply( Teuchos::NO_TRANS , Teuchos::NO_TRANS , 1.0 , V2 , V1 , 0.0 ); // std::cout << "Vandermonde:\n"; // std::cout << Vsdm << "\n"; // std::cout << "End Vandermonde\n"; Teuchos::SerialDenseSolver<int,Scalar> solver; solver.setMatrix( rcp( &Vsdm , false ) ); solver.invert( ); Teuchos::SerialDenseMatrix<int,Scalar> Csdm( bigN , N ); Csdm.multiply( Teuchos::NO_TRANS , Teuchos::NO_TRANS , 1.0 , V1 , Vsdm , 0.0 ); // std::cout << Csdm << "\n"; for (int i=0;i<bigN;i++) { for (int j=0;j<N;j++) { coeffs_(i,j) = Csdm(i,j); } } initializeTags(); this->basisTagsAreSet_ = true; }