Esempio n. 1
0
SkScalar SkPoint::Normalize(SkPoint* pt) {
    float x = pt->fX;
    float y = pt->fY;
    float mag2;
    if (isLengthNearlyZero(x, y, &mag2)) {
        return 0;
    }

    float mag, scale;
    if (SkScalarIsFinite(mag2)) {
        mag = sk_float_sqrt(mag2);
        scale = 1 / mag;
    } else {
        // our mag2 step overflowed to infinity, so use doubles instead.
        // much slower, but needed when x or y are very large, other wise we
        // divide by inf. and return (0,0) vector.
        double xx = x;
        double yy = y;
        double magmag = sqrt(xx * xx + yy * yy);
        mag = (float)magmag;
        // we perform the divide with the double magmag, to stay exactly the
        // same as setLength. It would be faster to perform the divide with
        // mag, but it is possible that mag has overflowed to inf. but still
        // have a non-zero value for scale (thanks to denormalized numbers).
        scale = (float)(1 / magmag);
    }
    pt->set(x * scale, y * scale);
    return mag;
}
Esempio n. 2
0
/*
 *  We have to worry about 2 tricky conditions:
 *  1. underflow of mag2 (compared against nearlyzero^2)
 *  2. overflow of mag2 (compared w/ isfinite)
 *
 *  If we underflow, we return false. If we overflow, we compute again using
 *  doubles, which is much slower (3x in a desktop test) but will not overflow.
 */
bool SkPoint::setLength(float x, float y, float length) {
    float mag2;
    if (isLengthNearlyZero(x, y, &mag2)) {
        return false;
    }

    float scale;
    if (SkScalarIsFinite(mag2)) {
        scale = length / sk_float_sqrt(mag2);
    } else {
        // our mag2 step overflowed to infinity, so use doubles instead.
        // much slower, but needed when x or y are very large, other wise we
        // divide by inf. and return (0,0) vector.
        double xx = x;
        double yy = y;
    #ifdef SK_DISCARD_DENORMALIZED_FOR_SPEED
        // The iOS ARM processor discards small denormalized numbers to go faster.
        // Casting this to a float would cause the scale to go to zero. Keeping it
        // as a double for the multiply keeps the scale non-zero.
        double dscale = length / sqrt(xx * xx + yy * yy);
        fX = x * dscale;
        fY = y * dscale;
        return true;
    #else
        scale = (float)(length / sqrt(xx * xx + yy * yy));
    #endif
    }
    fX = x * scale;
    fY = y * scale;
    return true;
}
Esempio n. 3
0
bool SkPoint::setLength(float x, float y, float length) {
    float mag2;
    if (!isLengthNearlyZero(x, y, &mag2)) {
        float scale = length / sk_float_sqrt(mag2);
        fX = x * scale;
        fY = y * scale;
        return true;
    }
    return false;
}
Esempio n. 4
0
SkScalar SkPoint::Normalize(SkPoint* pt) {
    Sk64 mag2;
    if (!isLengthNearlyZero(pt->fX, pt->fY, &mag2)) {
        SkScalar mag = mag2.getSqrt();
        SkScalar scale = SkScalarInvert(mag);
        pt->fX = SkScalarMul(pt->fX, scale);
        pt->fY = SkScalarMul(pt->fY, scale);
        return mag;
    }
    return 0;
}
Esempio n. 5
0
SkScalar SkPoint::Normalize(SkPoint* pt) {
    float mag2;
    if (!isLengthNearlyZero(pt->fX, pt->fY, &mag2)) {
        float mag = sk_float_sqrt(mag2);
        float scale = 1.0f / mag;
        pt->fX = pt->fX * scale;
        pt->fY = pt->fY * scale;
        return mag;
    }
    return 0;
}
Esempio n. 6
0
bool SkPoint::setLengthFast(float x, float y, float length) {
    float mag2;
    if (isLengthNearlyZero(x, y, &mag2)) {
        return false;
    }

    float scale;
    if (SkScalarIsFinite(mag2)) {
        scale = length * sk_float_rsqrt(mag2);  // <--- this is the difference
    } else {
        // our mag2 step overflowed to infinity, so use doubles instead.
        // much slower, but needed when x or y are very large, other wise we
        // divide by inf. and return (0,0) vector.
        double xx = x;
        double yy = y;
        scale = (float)(length / sqrt(xx * xx + yy * yy));
    }
    fX = x * scale;
    fY = y * scale;
    return true;
}
Esempio n. 7
0
bool SkPoint::CanNormalize(SkScalar dx, SkScalar dy) {
    Sk64 mag2_unused;
    return !isLengthNearlyZero(dx, dy, &mag2_unused);
}