Esempio n. 1
0
static bool contains_untrusted_macro(unsigned trust_lvl, expr const & e) {
    if (trust_lvl > LEAN_BELIEVER_TRUST_LEVEL)
        return false;
    return static_cast<bool>(find(e, [&](expr const & e, unsigned) {
                return is_macro(e) && macro_def(e).trust_level() >= trust_lvl;
            }));
}
Esempio n. 2
0
File: gc.c Progetto: neosam/moelisp
static void gc_traverse(pobject env)
{
    pobject object;
    while (is_cons(env)) {
        gc_flag_set(env, GC_FLAG_ON);
        object = cons_car(env);
        if (object && (gc_flag_get(object) == 0)) {
            /*
            printf("%p\n", object);
            */
            gc_flag_set(object, GC_FLAG_ON);

            /* XXX: dotted list support??? */
            if (is_cons(object)) {
                gc_traverse(object);
            } else if (is_closure(object)) {
                gc_traverse(object->data.closure.env);
                gc_traverse(object->data.closure.code);
            } else if (is_macro(object)) {
                gc_traverse(object->data.macro.env);
                gc_traverse(object->data.macro.code);
            }

        }
        env = cons_cdr(env);
    }
}
expr replace_visitor::visit_macro(expr const & e) {
    lean_assert(is_macro(e));
    buffer<expr> new_args;
    for (unsigned i = 0; i < macro_num_args(e); i++)
        new_args.push_back(visit(macro_arg(e, i)));
    return update_macro(e, new_args.size(), new_args.data());
}
Esempio n. 4
0
static bool contains_untrusted_macro(unsigned trust_lvl, expr const & e) {
#if defined(LEAN_ALL_MACROS_HAVE_SMALL_TRUST_LVL)
    if (trust_lvl > LEAN_BELIEVER_TRUST_LEVEL) return false;
#endif
    return static_cast<bool>(find(e, [&](expr const & e, unsigned) {
                return is_macro(e) && macro_def(e).trust_level() >= trust_lvl;
            }));
}
Esempio n. 5
0
static pobject builtin_macro_expand(pobject env, pobject params)
{
    pobject p = cons_car(params);

    if (is_cons(p)) {
        pobject macro = eval(env, cons_car(p));
        if (is_macro(macro))
            return macro_expand(env, macro, cons_cdr(p));
    }

    return NIL;
}
Esempio n. 6
0
static void mcpp_main( void)
/*
 * Main process for mcpp -- copies tokens from the current input stream
 * (main file or included file) to the output file.
 */
{
    int     c;                      /* Current character            */
    char *  wp;                     /* Temporary pointer            */
    DEFBUF *    defp;               /* Macro definition             */
    int     line_top;       /* Is in the line top, possibly spaces  */
    LINE_COL    line_col;   /* Location of macro call in source     */

    keep_comments = option_flags.c && !no_output;
    keep_spaces = option_flags.k;       /* Will be turned off if !compiling */
    line_col.col = line_col.line = 0L;

    /*
     * This loop is started "from the top" at the beginning of each line.
     * 'wrong_line' is set TRUE in many places if it is necessary to write
     * a #line record.  (But we don't write them when expanding macros.)
     *
     * 'newlines' variable counts the number of blank lines that have been
     * skipped over.  These are then either output via #line records or
     * by outputting explicit blank lines.
     * 'newlines' will be cleared on end of an included file by get_ch().
     */
    while (1) {                             /* For the whole input  */
        newlines = 0;                       /* Count empty lines    */

        while (1) {                         /* For each line, ...   */
            out_ptr = output;               /* Top of the line buf  */
            c = get_ch();
            if (src_col)
                break;  /* There is a residual tokens on the line   */
            while (char_type[ c] & HSP) {   /* ' ' or '\t'          */
                if (c != COM_SEP)
                    *out_ptr++ = c; /* Retain line top white spaces */
                                    /* Else skip 0-length comment   */
                c = get_ch();
            }
            if (c == '#') {                 /* Is 1st non-space '#' */
                directive();                /* Do a #directive      */
            } else if (mcpp_mode == STD && option_flags.dig && c == '%') {
                    /* In POST_STD digraphs are already converted   */
                if (get_ch() == ':') {      /* '%:' i.e. '#'        */
                    directive();            /* Do a #directive      */
                } else {
                    unget_ch();
                    if (! compiling) {
                        skip_nl();
                        newlines++;
                    } else {
                        break;
                    }
                }
            } else if (c == CHAR_EOF) {     /* End of input         */
                break;
            } else if (! compiling) {       /* #ifdef false?        */
                skip_nl();                  /* Skip to newline      */
                newlines++;                 /* Count it, too.       */
            } else if (in_asm && ! no_output) { /* In #asm block    */
                put_asm();                  /* Put out as it is     */
            } else if (c == '\n') {         /* Blank line           */
                if (keep_comments)
                    mcpp_fputc( '\n', OUT); /* May flush comments   */
                else
                    newlines++;             /* Wait for a token     */
            } else {
                break;                      /* Actual token         */
            }
        }

        if (c == CHAR_EOF)                  /* Exit process at      */
            break;                          /*   end of input       */

        /*
         * If the loop didn't terminate because of end of file, we
         * know there is a token to compile.  First, clean up after
         * absorbing newlines.  newlines has the number we skipped.
         */
        if (no_output) {
            wrong_line = FALSE;
        } else {
            if (wrong_line || newlines > 10) {
                sharp( NULL, 0);            /* Output # line number */
                if (keep_spaces && src_col) {
                    while (src_col--)       /* Adjust columns       */
                        mcpp_fputc( ' ', OUT);
                    src_col = 0;
                }
            } else {                        /* If just a few, stuff */
                while (newlines-- > 0)      /* them out ourselves   */
                    mcpp_fputc('\n', OUT);
            }
        }

        /*
         * Process each token on this line.
         */
        line_top = TRUE;
        while (c != '\n' && c != CHAR_EOF) {    /* For the whole line   */
            /*
             * has_pragma is set to TRUE so as to execute _Pragma() operator
             * when the psuedo macro _Pragma() is found.
             */
            int     has_pragma;

            if ((mcpp_debug & MACRO_CALL) && ! in_directive) {
                line_col.line = src_line;       /* Location in source   */
                line_col.col = infile->bptr - infile->buffer - 1;
            }
            if (scan_token( c, (wp = out_ptr, &wp), out_wend) == NAM
                    && (defp = is_macro( &wp)) != NULL) {   /* A macro  */
                wp = expand_macro( defp, out_ptr, out_wend, line_col
                        , & has_pragma);    /* Expand it completely */
                if (line_top) {     /* The first token is a macro   */
                    char *  tp = out_ptr;
                    while (char_type[ *tp & UCHARMAX] & HSP)
                        tp++;           /* Remove excessive spaces  */
                    memmove( out_ptr, tp, strlen( tp) + 1);
                    wp -= (tp - out_ptr);
                }
                if (has_pragma) {           /* Found _Pramga()      */
                    do_pragma_op();         /* Do _Pragma() operator*/
                    out_ptr = output;       /* Do the rest of line  */
                    wrong_line = TRUE;      /* Line-num out of sync */
                } else {
                    out_ptr = wp;
                }
                if (keep_spaces && wrong_line && infile
                        && *(infile->bptr) != '\n' && *(infile->bptr) != EOS) {
                    src_col = infile->bptr - infile->buffer;
                    /* Remember the current colums  */
                    break;                  /* Do sharp() now       */
                }
            } else {                        /* Not a macro call     */
                out_ptr = wp;               /* Advance the place    */
                if (wrong_line)             /* is_macro() swallowed */
                    break;                  /*      the newline     */
            }
            while (char_type[ c = get_ch()] & HSP) {    /* Horizontal space */
                if (c != COM_SEP)           /* Skip 0-length comment*/
                    *out_ptr++ = c;
            }
            line_top = FALSE;               /* Read over some token */
        }                                   /* Loop for line        */

        putout( output);                    /* Output the line      */
    }                                       /* Continue until EOF   */
}
Esempio n. 7
0
bool is_nested_declaration(expr const & e) {
    return is_macro(e) && macro_def(e).get_name() == get_nested_decl_name();
}
Esempio n. 8
0
/* An explicit control evaluator, taken almost directly from SICP, section
 * 5.2.  list is a flat list of expressions to evaluate.  where is a label to
 * begin at.  Return value depends on where.
 */ 
NODE *evaluator(NODE *list, enum labels where) {

    /* registers */
    NODE    *exp    = NIL,  /* the current expression */
	    *val    = NIL,  /* the value of the last expression */
	    *proc   = NIL,  /* the procedure definition */
	    *argl   = NIL,  /* evaluated argument list */
	    *unev   = NIL,  /* list of unevaluated expressions */
	    *stack  = NIL,  /* register stack */
	    *parm   = NIL,  /* the current formal */
	    *catch_tag = NIL,
	    *arg    = NIL;  /* the current actual */

/* registers that don't get reference counted, so we pretend they're ints */
FIXNUM	    vsp    = 0,		/* temp ptr into var_stack */
	    cont   = 0,		/* where to go next */
	    formals = (FIXNUM)NIL; /* list of formal parameters */

    int i, nargs;
    BOOLEAN tracing;	    /* are we tracing the current procedure? */
    FIXNUM oldtailcall;	    /* in case of reentrant use of evaluator */
    FIXNUM repcount;	    /* count for repeat */
    FIXNUM old_ift_iff;

    oldtailcall = tailcall;
    old_ift_iff = ift_iff_flag;
    save2(var,this_line);
    assign(var, var_stack);
    save2(fun,ufun);
    cont = (FIXNUM)all_done;
    numsave((FIXNUM)cont);
    newcont(where);
    goto fetch_cont;
    
begin_line:
    ref(list);
    assign(this_line, list);
    newcont(end_line);
begin_seq:
    make_tree(list);
    if (!is_tree(list)) {
	assign(val, UNBOUND);
	goto fetch_cont;
    }
    assign(unev, tree__tree(list));
    assign(val, UNBOUND);
    goto eval_sequence;

end_line:
    if (val != UNBOUND) {
	if (NOT_THROWING) err_logo(DK_WHAT, val);
	deref(val);
    }
    val = NIL;
    deref(list);
    goto fetch_cont;


/* ----------------- EVAL ---------------------------------- */

tail_eval_dispatch:
    tailcall = 1;
eval_dispatch:
    switch (nodetype(exp)) {
	case QUOTE:			/* quoted literal */
	    assign(val, node__quote(exp));
	    goto fetch_cont;
	case COLON:			/* variable */
	    assign(val, valnode__colon(exp));
	    while (val == UNBOUND && NOT_THROWING)
		assign(val, err_logo(NO_VALUE, node__colon(exp)));
	    goto fetch_cont;
	case CONS:			/* procedure application */
	    if (tailcall == 1 && is_macro(car(exp)) &&
				 is_list(procnode__caseobj(car(exp)))) {
		/* tail call to user-defined macro must be treated as non-tail
		 * because the expression returned by the macro
		 * remains to be evaluated in the caller's context */
		assign(unev, NIL);
		goto non_tail_eval;
	    }
	    assign(fun, car(exp));
	    if (cdr(exp) != NIL)
		goto ev_application;
	    else
		goto ev_no_args;
	default:
	    assign(val, exp);		/* self-evaluating */
	    goto fetch_cont;
    }

ev_no_args:
    /* Evaluate an application of a procedure with no arguments. */
    assign(argl, NIL);
    goto apply_dispatch;    /* apply the procedure */

ev_application:
    /* Evaluate an application of a procedure with arguments. */
    assign(unev, cdr(exp));
    assign(argl, NIL);
    mixsave(tailcall,var);
    num2save(val_status,ift_iff_flag);
    save2(didnt_get_output,didnt_output_name);
eval_arg_loop:
    if (unev == NIL) goto eval_args_done;
    assign(exp, car(unev));
    if (exp == Not_Enough_Node) {
	if (NOT_THROWING)
	    err_logo(NOT_ENOUGH, NIL);
	goto eval_args_done;
    }
    save(argl);
    save2(unev,fun);
    save2(ufun,last_ufun);
    save2(this_line,last_line);
    assign(var, var_stack);
    tailcall = -1;
    val_status = 1;
    assign(didnt_get_output,
	   cons_list(0,fun,ufun,this_line,END_OF_LIST));
    assign(didnt_output_name, NIL);
    newcont(accumulate_arg);
    goto eval_dispatch;	    /* evaluate the current argument */

accumulate_arg:
    /* Put the evaluated argument into the argl list. */
    reset_args(var);
    restore2(this_line,last_line);
    restore2(ufun,last_ufun);
    assign(last_call, fun);
    restore2(unev,fun);
    restore(argl);
    while (NOT_THROWING && val == UNBOUND) {
	assign(val, err_logo(DIDNT_OUTPUT, NIL));
    }
    push(val, argl);
    pop(unev);
    goto eval_arg_loop;

eval_args_done:
    restore2(didnt_get_output,didnt_output_name);
    num2restore(val_status,ift_iff_flag);
    mixrestore(tailcall,var);
    if (stopping_flag == THROWING) {
	assign(val, UNBOUND);
	goto fetch_cont;
    }
    assign(argl, reverse(argl));
/* --------------------- APPLY ---------------------------- */
apply_dispatch:
    /* Load in the procedure's definition and decide whether it's a compound
     * procedure or a primitive procedure.
     */
    proc = procnode__caseobj(fun);
    if (is_macro(fun)) {
	num2save(val_status,tailcall);
	val_status = 1;
	newcont(macro_return);
    }
    if (proc == UNDEFINED) {
	if (ufun != NIL) {
	    untreeify_proc(ufun);
	}
	if (NOT_THROWING)
	    assign(val, err_logo(DK_HOW, fun));
	else
	    assign(val, UNBOUND);
	goto fetch_cont;
    }
    if (is_list(proc)) goto compound_apply;
    /* primitive_apply */
    if (NOT_THROWING)
	assign(val, (*getprimfun(proc))(argl));
    else
	assign(val, UNBOUND);
#define do_case(x) case x: goto x;
fetch_cont:
    {
	enum labels x = (enum labels)cont;
	cont = (FIXNUM)car(stack);
	numpop(&stack);
	switch (x) {
	    do_list(do_case)
	    default: abort();
	}
    }

compound_apply:
#ifdef mac
    check_mac_stop();
#endif
#ifdef ibm
    check_ibm_stop();
#endif
    if (tracing = flag__caseobj(fun, PROC_TRACED)) {
	for (i = 0; i < trace_level; i++) print_space(writestream);
	trace_level++;
	ndprintf(writestream, "( %s ", fun);
    }
/* Bind the actuals to the formals */
    vsp = (FIXNUM)var_stack;	/* remember where we came in */
    for (formals = (FIXNUM)formals__procnode(proc);
    	 formals != (FIXNUM)NIL;
	 formals = (FIXNUM)cdr((NODE *)formals)) {
	    parm = car((NODE *)formals);
	    if (nodetype(parm) == INT) break;	/* default # args */
	    if (argl != NIL) {
		arg = car(argl);
		if (tracing) {
		    print_node(writestream, maybe_quote(arg));
		    print_space(writestream);
		}
	    } else
		arg = UNBOUND;
	    if (nodetype(parm) == CASEOBJ) {
		if (not_local(parm,(NODE *)vsp)) {
		    push(parm, var_stack);
		    setobject(var_stack, valnode__caseobj(parm));
		}
		tell_shadow(parm);
		setvalnode__caseobj(parm, arg);
	    } else if (nodetype(parm) == CONS) {
		/* parm is optional or rest */
		if (not_local(car(parm),(NODE *)vsp)) {
		    push(car(parm), var_stack);
		    setobject(var_stack, valnode__caseobj(car(parm)));
		}
		tell_shadow(car(parm));
		if (cdr(parm) == NIL) {		    /* parm is rest */
		    setvalnode__caseobj(car(parm), argl);
		    break;
		}
		if (arg == UNBOUND) {		    /* use default */
		    save2(fun,var);
		    save2(ufun,last_ufun);
		    save2(this_line,last_line);
		    save2(didnt_output_name,didnt_get_output);
		    num2save(ift_iff_flag,val_status);
		    assign(var, var_stack);
		    tailcall = -1;
		    val_status = 1;
		    mixsave(formals,argl);
		    numsave(vsp);
		    assign(list, cdr(parm));
		    if (NOT_THROWING)
			make_tree(list);
		    else
			assign(list, NIL);
		    if (!is_tree(list)) {
			assign(val, UNBOUND);
			goto set_args_continue;
		    }
		    assign(unev, tree__tree(list));
		    assign(val, UNBOUND);
		    newcont(set_args_continue);
		    goto eval_sequence;

set_args_continue:
		    numrestore(vsp);
		    mixrestore(formals,argl);
		    parm = car((NODE *)formals);
		    reset_args(var);
		    num2restore(ift_iff_flag,val_status);
		    restore2(didnt_output_name,didnt_get_output);
		    restore2(this_line,last_line);
		    restore2(ufun,last_ufun);
		    restore2(fun,var);
		    arg = val;
		}
		setvalnode__caseobj(car(parm), arg);
	    }
	    if (argl != NIL) pop(argl);
    }
    if (check_throwing) {
	assign(val, UNBOUND);
	goto fetch_cont;
    }
    vsp = 0;
    if (tracing = flag__caseobj(fun, PROC_TRACED)) {
	if (NOT_THROWING) print_char(writestream, ')');
	new_line(writestream);
	save(fun);
	newcont(compound_apply_continue);
    }
    assign(val, UNBOUND);
    assign(last_ufun, ufun);
    assign(ufun, fun);
    assign(last_line, this_line);
    assign(this_line, NIL);
    proc = procnode__caseobj(fun);
    assign(list, bodylist__procnode(proc));	/* get the body ... */
    make_tree_from_body(list);
    if (!is_tree(list)) {
	goto fetch_cont;
    }
    assign(unev, tree__tree(list));
    if (NOT_THROWING) stopping_flag = RUN;
    assign(output_node, UNBOUND);
    if (val_status == 1) val_status = 2;
    else if (val_status == 5) val_status = 3;
    else val_status = 0;
eval_sequence:
    /* Evaluate each expression in the sequence.  Stop as soon as
     * val != UNBOUND.
     */
    if (!RUNNING || val != UNBOUND) {
	goto fetch_cont;
    }
    if (nodetype(unev) == LINE) {
	assign(this_line, unparsed__line(unev));
	if (flag__caseobj(ufun, PROC_STEPPED)) {
	    char junk[20];

	    if (tracing) {
		int i = 1;
		while (i++ < trace_level) print_space(stdout);
	    }
	    print_node(stdout, this_line);
	    ndprintf(stdout, " >>> ");
	    input_blocking++;
#ifndef TIOCSTI
	    if (!setjmp(iblk_buf))
#endif
#ifdef __ZTC__
		ztc_getcr();
#else
		fgets(junk, 19, stdin);
#endif
	    input_blocking = 0;
	    update_coords('\n');
	}
    }
    assign(exp, car(unev));
    pop(unev);
    if (is_list(exp) && (is_tailform(procnode__caseobj(car(exp))))) {
      if (nameis(car(exp),Output) || nameis(car(exp),Op)) {
	assign(didnt_get_output,
	       cons_list(0,car(exp),ufun,this_line,END_OF_LIST));
	assign(didnt_output_name, NIL);
	if (val_status == 2 || val_status == 3) {
	    val_status = 1;
	    assign(exp, cadr(exp));
	    goto tail_eval_dispatch;
	} else if (ufun == NIL) {
	    err_logo(AT_TOPLEVEL,car(exp));
	    assign(val, UNBOUND);
	    goto fetch_cont;
	} else if (val_status < 4) {
	    val_status = 1;
	    assign(exp, cadr(exp));
	    assign(unev, NIL);
	    goto non_tail_eval;	    /* compute value then give error */
	}
      } else if (nameis(car(exp),Stop)) {
	if (ufun == NIL) {
	    err_logo(AT_TOPLEVEL,car(exp));
	    assign(val, UNBOUND);
	    goto fetch_cont;
	} else if (val_status == 0 || val_status == 3) {
	    assign(val, UNBOUND);
	    goto fetch_cont;
	} else if (val_status < 4) {
	    assign(didnt_output_name, fun);
	    assign(val, UNBOUND);
	    goto fetch_cont;
	}
      } else { /* maybeoutput */
	assign(exp, cadr(exp));
	val_status = 5;
	goto tail_eval_dispatch;
      }
    }
    if (unev == NIL) {
	if (val_status == 2 || val_status == 4) {
	    assign(didnt_output_name, fun);
	    assign(unev, UNBOUND);
	    goto non_tail_eval;
	} else {
	    goto tail_eval_dispatch;
	}
    }
    if (is_list(car(unev)) && nameis(car(car(unev)),Stop)) {
	if ((val_status == 0 || val_status == 3) && ufun != NIL) {
	    goto tail_eval_dispatch;
	} else if (val_status < 4) {
	    assign(didnt_output_name, fun);
	    goto tail_eval_dispatch;
	}
    }
non_tail_eval:
    save2(unev,fun);
    num2save(ift_iff_flag,val_status);
    save2(ufun,last_ufun);
    save2(this_line,last_line);
    save(var);
    assign(var, var_stack);
    tailcall = 0;
    newcont(eval_sequence_continue);
    goto eval_dispatch;

eval_sequence_continue:
    reset_args(var);
    restore(var);
    restore2(this_line,last_line);
    restore2(ufun,last_ufun);
    if (dont_fix_ift) {
	num2restore(dont_fix_ift,val_status);
	dont_fix_ift = 0;
    } else
	num2restore(ift_iff_flag,val_status);
    restore2(unev,fun);
    if (stopping_flag == MACRO_RETURN) {
	if (unev == UNBOUND) assign(unev, NIL);
	assign(unev, append(val, unev));
	assign(val, UNBOUND);
	stopping_flag = RUN;
	if (unev == NIL) goto fetch_cont;
    } else if (val_status < 4) {
	if (STOPPING || RUNNING) assign(output_node, UNBOUND);
	if (stopping_flag == OUTPUT || STOPPING) {
	    stopping_flag = RUN;
	    assign(val, output_node);
	    if (val != UNBOUND && val_status < 2 && NOT_THROWING) {
		assign(didnt_output_name,Output);
		err_logo(DIDNT_OUTPUT,Output);
	    }
	    if (val == UNBOUND && val_status == 1 && NOT_THROWING) {
		assign(didnt_output_name,Stop);
		err_logo(DIDNT_OUTPUT,Output);
	    }
	    goto fetch_cont;
	}
    }
    if (val != UNBOUND) {
	err_logo((unev == NIL ? DK_WHAT_UP : DK_WHAT), val);
	assign(val, UNBOUND);
    }
    if (NOT_THROWING && (unev == NIL || unev == UNBOUND)) {
	if (val_status != 4)  err_logo(DIDNT_OUTPUT,NIL);
	goto fetch_cont;
    }
    goto eval_sequence;

compound_apply_continue:
    /* Only get here if tracing */
    restore(fun);
    --trace_level;
    if (NOT_THROWING) {
	for (i = 0; i < trace_level; i++) print_space(writestream);
	print_node(writestream, fun);
	if (val == UNBOUND)
	    ndprintf(writestream, " stops\n");
	else {
	    ref(val);
	    ndprintf(writestream, " outputs %s\n", maybe_quote(val));
	    deref(val);
	}
    }
    goto fetch_cont;

/* --------------------- MACROS ---------------------------- */

macro_return:
    num2restore(val_status,tailcall);
    while (!is_list(val) && NOT_THROWING) {
	assign(val,err_logo(ERR_MACRO,val));
    }
    if (NOT_THROWING) {
	if (is_cont(val)) {
	    newcont(cont__cont(val));
	    val->n_car = NIL;
	    assign(val, val__cont(val));
	    goto fetch_cont;
	}
macro_reval:
	if (tailcall == 0) {
	    make_tree(val);
	    stopping_flag = MACRO_RETURN;
	    if (!is_tree(val)) assign(val, NIL);
	    else assign(val, tree__tree(val));
	    goto fetch_cont;
	}
	assign(list,val);
	goto begin_seq;
    }
    assign(val, UNBOUND);
    goto fetch_cont;

runresult_continuation:
    assign(list, val);
    newcont(runresult_followup);
    val_status = 5;
    goto begin_seq;

runresult_followup:
    if (val == UNBOUND) {
	assign(val, NIL);
    } else {
	assign(val, cons(val, NIL));
    }
    goto fetch_cont;

repeat_continuation:
    assign(list, cdr(val));
    repcount = getint(car(val));
repeat_again:
    assign(val, UNBOUND);
    if (repcount == 0) goto fetch_cont;
    mixsave(repcount,list);
    num2save(val_status,tailcall);
    val_status = 4;
    newcont(repeat_followup);
    goto begin_seq;

repeat_followup:
    if (val != UNBOUND && NOT_THROWING) {
	ref(val);
	err_logo(DK_WHAT, val);
	unref(val);
    }
    num2restore(val_status,tailcall);
    mixrestore(repcount,list);
    if (val_status < 4 && tailcall != 0) {
	if (STOPPING || RUNNING) assign(output_node, UNBOUND);
	if (stopping_flag == OUTPUT || STOPPING) {
	    stopping_flag = RUN;
	    assign(val, output_node);
	    if (val != UNBOUND && val_status < 2) {
		err_logo(DK_WHAT_UP,val);
	    }
	    goto fetch_cont;
	}
    }
    if (repcount > 0)    /* negative means forever */
	--repcount;
#ifdef mac
    check_mac_stop();
#endif
#ifdef ibm
    check_ibm_stop();
#endif
    if (RUNNING) goto repeat_again;
    assign(val, UNBOUND);
    goto fetch_cont;

catch_continuation:
    assign(list, cdr(val));
    assign(catch_tag, car(val));
    if (compare_node(catch_tag,Error,TRUE) == 0) {
	push(Erract, var_stack);
	setobject(var_stack, valnode__caseobj(Erract));
	setvalnode__caseobj(Erract, UNBOUND);
    }
    save(catch_tag);
    save2(didnt_output_name,didnt_get_output);
    num2save(val_status,tailcall);
    newcont(catch_followup);
    val_status = 5;
    goto begin_seq;

catch_followup:
    num2restore(val_status,tailcall);
    restore2(didnt_output_name,didnt_get_output);
    restore(catch_tag);
    if (val_status < 4 && tailcall != 0) {
	if (STOPPING || RUNNING) assign(output_node, UNBOUND);
	if (stopping_flag == OUTPUT || STOPPING) {
	    stopping_flag = RUN;
	    assign(val, output_node);
	    if (val != UNBOUND && val_status < 2) {
		err_logo(DK_WHAT_UP,val);
	    }
	}
    }
    if (stopping_flag == THROWING &&
	compare_node(throw_node, catch_tag, TRUE) == 0) {
	    throw_node = reref(throw_node, UNBOUND);
	    stopping_flag = RUN;
	    assign(val, output_node);
    }
    goto fetch_cont;

begin_apply:
    /* This is for lapply. */
    assign(fun, car(val));
    while (nodetype(fun) == ARRAY && NOT_THROWING)
	assign(fun, err_logo(APPLY_BAD_DATA, fun));
    assign(argl, cadr(val));
    assign(val, UNBOUND);
    while (!is_list(argl) && NOT_THROWING)
	assign(argl, err_logo(APPLY_BAD_DATA, argl));
    if (NOT_THROWING && fun != NIL) {
	if (is_list(fun)) {		    /* template */
	    if (is_list(car(fun)) && cdr(fun) != NIL) {
		/* lambda form */
		formals = (FIXNUM)car(fun);
		numsave(tailcall);
		tailcall = 0;
		llocal((NODE *)formals);    /* bind the formals locally */
		numrestore(tailcall);
		for ( ;
		     formals && argl && NOT_THROWING;
		     formals = (FIXNUM)cdr((NODE *)formals),
		     assign(argl, cdr(argl)))
			setvalnode__caseobj(car((NODE *)formals), car(argl));
		assign(val, cdr(fun));
		goto macro_reval;
	    } else {		/* question-mark form */
		save(qm_list);
		assign(qm_list, argl);
		assign(list, fun);
		make_tree(list);
		if (list == NIL || !is_tree(list)) {
		    goto qm_failed;
		}
		assign(unev, tree__tree(list));
		save2(didnt_output_name,didnt_get_output);
		num2save(val_status,tailcall);
		newcont(qm_continue);
		val_status = 5;
		goto eval_sequence;

qm_continue:
		num2restore(val_status,tailcall);
		restore2(didnt_output_name,didnt_get_output);
		if (val_status < 4 && tailcall != 0) {
		    if (STOPPING || RUNNING) assign(output_node, UNBOUND);
		    if (stopping_flag == OUTPUT || STOPPING) {
			stopping_flag = RUN;
			assign(val, output_node);
			if (val != UNBOUND && val_status < 2) {
			    err_logo(DK_WHAT_UP,val);
			}
		    }
		}
qm_failed:
		restore(qm_list);
		goto fetch_cont;
	    }
	} else {    /* name of procedure to apply */
	    int min, max, n;
	    NODE *arg;
	    assign(fun, intern(fun));
	    if (procnode__caseobj(fun) == UNDEFINED && NOT_THROWING &&
		fun != Null_Word)
		    silent_load(fun, NULL);    /* try ./<fun>.lg */
	    if (procnode__caseobj(fun) == UNDEFINED && NOT_THROWING &&
		fun != Null_Word)
		    silent_load(fun, logolib); /* try <logolib>/<fun> */
	    proc = procnode__caseobj(fun);
	    while (proc == UNDEFINED && NOT_THROWING) {
		assign(val, err_logo(DK_HOW_UNREC, fun));
	    }
	    if (NOT_THROWING) {
		if (nodetype(proc) == CONS) {
		    min = getint(minargs__procnode(proc));
		    max = getint(maxargs__procnode(proc));
		} else {
		    if (getprimdflt(proc) < 0) {	    /* special form */
			err_logo(DK_HOW_UNREC, fun);    /* can't apply */
			goto fetch_cont;
		    } else {
			min = getprimmin(proc);
			max = getprimmax(proc);
		    }
		}
		for (n = 0, arg = argl; arg != NIL; n++, arg = cdr(arg));
		if (n < min) {
		    err_logo(NOT_ENOUGH, NIL);
		} else if (n > max && max >= 0) {
		    err_logo(TOO_MUCH, NIL);
		} else {
		    goto apply_dispatch;
		}
	    }
	}
    }
    goto fetch_cont;

all_done:
    tailcall = oldtailcall;
    ift_iff_flag = old_ift_iff;
    restore2(fun,ufun);
    reset_args(var);
    restore2(var,this_line);
    deref(argl);deref(unev);deref(stack);deref(catch_tag);deref(exp);
    return(val);
}
Esempio n. 9
0
 void check_macro(expr const & m) const {
     if (!is_macro(m) || macro_num_args(m) != 2)
         throw exception("invalid typed-expr, incorrect number of arguments");
 }
Esempio n. 10
0
bool is_prenum(expr const & e) {
    return is_macro(e) && dynamic_cast<prenum_macro_definition_cell const*>(macro_def(e).raw()) != nullptr;
}
Esempio n. 11
0
bool is_choice(expr const & e) {
    return is_macro(e) && macro_def(e) == *g_choice;
}
Esempio n. 12
0
bool is_typed_expr(expr const & e) {
    return is_macro(e) && macro_def(e) == *g_typed_expr;
}
Esempio n. 13
0
static void do_pragma_op( void)
/*
 * Execute the _Pragma() operator contained in an expanded macro.
 * Note: _Pragma() operator is also implemented as a special macro.  Therefore
 *      it is always searched as a macro.
 * There might be more than one _Pragma() in a expanded macro and those may be
 *      surrounded by other token sequences.
 * Since all the macros have been expanded completely, any name identical to
 *      macro should not be re-expanded.
 * However, a macro in the string argument of _Pragma() may be expanded by
 *      do_pragma() after de_stringize(), if EXPAND_PRAGMA == TRUE.
 */
{
    FILEINFO *  file;
    DEFBUF *    defp;
    int     prev = output < out_ptr;        /* There is a previous sequence */
    int     token_type;
    char *  cp1, * cp2;
    int     c;

    file = unget_string( out_ptr, NULL);
    while (c = get_ch(), file == infile) {
        if (char_type[ c] & HSP) {
            *out_ptr++ = c;
            continue;
        }
        if (scan_token( c, (cp1 = out_ptr, &cp1), out_wend)
                    == NAM && (defp = is_macro( &cp1)) != NULL
                && defp->nargs == DEF_PRAGMA) {     /* _Pragma() operator   */
            if (prev) {
                putout( output);    /* Putout the previous sequence */
                cp1 = stpcpy( output, "pragma ");   /* From top of buffer   */
            }
            /* is_macro() already read over possible spaces after _Pragma   */
            *cp1++ = get_ch();                              /* '('  */
            while (char_type[ c = get_ch()] & HSP)
                *cp1++ = c;
            if (((token_type = scan_token( c, (cp2 = cp1, &cp1), out_wend))
                    != STR && token_type != WSTR)) {
                /* Not a string literal */
                put_seq( output, cp1);
                return;
            }
            workp = de_stringize( cp2, work_buf);
            while (char_type[ c = get_ch()] & HSP)
                *cp1++ = c;
            if (c != ')') {         /* More than a string literal   */
                unget_ch();
                put_seq( output, cp1);
                return;
            }
            strcpy( workp, "\n");       /* Terminate with <newline> */
            unget_string( work_buf, NULL);
            do_pragma();                /* Do the #pragma "line"    */
            infile->bptr += strlen( infile->bptr);      /* Clear sequence   */
            cp1 = out_ptr = output;     /* From the top of buffer   */
            prev = FALSE;
        } else {                        /* Not pragma sequence      */
            out_ptr = cp1;
            prev = TRUE;
        }
    }
    unget_ch();
    if (prev)
        putout( output);
}
Esempio n. 14
0
bool is_structure_instance(expr const & e) {
    return is_macro(e) && macro_def(e).get_name() == *g_structure_instance_name;
}
Esempio n. 15
0
 void check_macro(expr const & m) const {
     if (!is_macro(m) || macro_num_args(m) != 1)
         throw exception(sstream() << "invalid '" << m_proj_name
                         << "' projection macro, incorrect number of arguments");
 }
Esempio n. 16
0
 static void check_num_args(environment const & env, expr const & m) {
     lean_assert(is_macro(m));
     if (macro_num_args(m) != 3)
         throw_kernel_exception(env, "invalid number of arguments for resolve macro", m);
 }
Esempio n. 17
0
bool is_options_expr(expr const & e) {
    return is_macro(e) && macro_def(e).get_name() == *g_options_name;
}
Esempio n. 18
0
bool is_string_macro(expr const & e) {
    return is_macro(e) && dynamic_cast<string_macro const *>(macro_def(e).raw()) != nullptr;
}
Esempio n. 19
0
bool is_let_value(expr const & e) {
    return is_macro(e) && dynamic_cast<let_value_definition_cell const *>(macro_def(e).raw());
}
Esempio n. 20
0
void parseline(list *instructions, list *labels) {
start:
    ;;
    dcpu16token tok = nexttoken();

    if (tok == T_COLON) {
        /* Label definition */
        if ((tok = nexttoken()) == T_IDENTIFIER) {
            dcpu16label *l = getnewlabel(labels, cur_tok.string);

            if (l->defined)
                error("Redefinition of label '%s' (%04X -> %04X) forbidden",
                        l->label, l->pc, pc);

            l->pc = pc;
            l->defined = 1;

            goto start;
        } else {
            error("Expected label, got %s", toktostr(tok));
        }
    } else if (is_instruction(tok)) {
        dcpu16instruction instr, *newinstr;

        instr.opcode = tok;
        instr.a = parseoperand(labels);

        if (!is_nonbasic_instruction(tok)) {
            if ((tok = nexttoken()) == T_COMMA) {
                instr.b = parseoperand(labels);
            } else {
                error("Expected ',', got %s", toktostr(tok));
            }
        }

        if ((tok = nexttoken()) != T_NEWLINE)
            error("Expected EOL, got %s", toktostr(tok));

        /*
         * All tokens valid, store instructions, advance PC
         */
        newinstr = malloc(sizeof(dcpu16instruction));
        memcpy(newinstr, &instr, sizeof(dcpu16instruction));

        newinstr->pc = pc;
        newinstr->line = curline;

        list_push_back(instructions, newinstr);

        pc += instruction_length(newinstr);

    } else if (is_macro(tok)) {
        if (tok == T_ORG) {
            if ((tok = nexttoken()) == T_NUMBER) {
                if (flag_paranoid && (cur_tok.number < pc)) {
                    warning("new origin precedes old origin! "
                            "This could cause already written code to be "
                            "overriden.");
                }

                pc = cur_tok.number;
            } else {
                error("Expected numeric, got %s", toktostr(tok));
            }
        } else if (tok == T_DAT) {
            /* All of the stuff we are about to read, neatly packed
             * into words */
            list_node *p = NULL;
            list *data = list_create();

            do {
                if ((tok = nexttoken()) == T_STRING) {
                    char *ptr = cur_tok.string;

                    while (*ptr != '\0') {
                        uint16_t *dat = malloc(sizeof(uint16_t));
                        *dat = *ptr++;

                        list_push_back(data, dat);
                    }
                } else if (tok == T_NUMBER) {
                    uint16_t *dat = malloc(sizeof(uint16_t));
                    *dat = cur_tok.number;

                    list_push_back(data, dat);
                } else {
                    error("Expected string or numeric, got %s", toktostr(tok));
                }

                if ((tok = nexttoken()) == T_COMMA)
                    continue;
                else if (tok == T_NEWLINE)
                    break;
                else
                    error("Expected ',' or EOL, got %s", toktostr(tok));
            } while (1);

            /*
            ram[pc++] = cur_tok.number;
            */
            for (p = list_get_root(data); p != NULL; p = p->next) {
                ram[pc++] = *((uint16_t*)p->data);
            }

            list_dispose(&data, &free);
        }
    } else if (tok == T_NEWLINE) {
        return;
    } else {
        error("Expected label-definition or opcode, got %s", toktostr(tok));
    }
}
Esempio n. 21
0
 void check_macro(expr const & m) const {
     if (!is_macro(m) || macro_num_args(m) != 2)
         throw exception("invalid let expression");
 }
Esempio n. 22
0
bool contains_untrusted_macro(unsigned trust_lvl, expr const & e) {
    return static_cast<bool>(find(e, [&](expr const & e, unsigned) {
                return is_macro(e) && macro_def(e).trust_level() >= trust_lvl;
            }));
}
Esempio n. 23
0
sexp eval_object(sexp object, sexp environment) {
tail_loop:
  if (is_quote_form(object)) return quotation_text(object);
  if (is_variable_form(object))
    return get_variable_value(object, environment);
  if (is_define_form(object)) {
    /* sexp value = eval_object(definition_value(object), environment); */
    /* add_binding(definition_variable(object), value, environment); */
    /* return value; */
    return eval_object(define2set(object), environment);
  }
  if (is_assignment_form(object)) {
    sexp value = eval_object(assignment_value(object), environment);
    set_binding(assignment_variable(object), value, environment);
    return value;
  }
  if (is_if_form(object)) {
    sexp test_part = if_test_part(object);
    sexp then_part = if_then_part(object);
    sexp else_part = if_else_part(object);
    if (!is_false(eval_object(test_part, environment))) {
      object = then_part;
    } else {
      object = else_part;
    }
    goto tail_loop;
  }
  if (is_lambda_form(object)) {
    sexp parameters = lambda_parameters(object);
    sexp body = lambda_body(object);
    return make_lambda_procedure(parameters, body, environment);
  }
  if (is_begin_form(object)) {
    return eval_begin(object, environment);
  }
  if (is_cond_form(object)) {
    object = cond2if(object);
    goto tail_loop;
  }
  if (is_let_form(object)) {
    object = let2lambda(object);
    goto tail_loop;
  }
  if (is_and_form(object)) {
    sexp tests = and_tests(object);
    if (is_null(tests))
      return make_true();
    while (is_pair(pair_cdr(tests))) {
      sexp result = eval_object(pair_car(tests), environment);
      if (is_false(result))
        return make_false();
      tests = pair_cdr(tests);
    }
    return eval_object(pair_car(tests), environment);
  }
  if (is_or_form(object)) {
    sexp tests = or_tests(object);
    if (is_null(tests))
      return make_false();
    while (is_pair(pair_cdr(tests))) {
      sexp result = eval_object(pair_car(tests), environment);
      if (!is_false(result))
        return result;
      tests = pair_cdr(tests);
    }
    return eval_object(pair_car(tests), environment);
  }
  if (is_macro_form(object)) {
    sexp pars = macro_parameters(object);
    sexp body = macro_body(object);
    return make_macro_procedure(pars, body, environment);
  }
  if (is_application_form(object)) {
    sexp operator = application_operator(object);
    sexp operands = application_operands(object);
    operator = eval_object(operator, environment);
    if (!is_function(operator) && !is_macro(operator)) {
      fprintf(stderr, "Illegal functional object ");
      write_object(operator, make_file_out_port(stderr));
      fprintf(stderr, " from ");
      write_object(pair_car(object), make_file_out_port(stderr));
      fputc('\n', stderr);
      exit(1);
    }
    /* Expand the macro before evaluating arguments */
    if (is_macro(operator)) {
      sexp body = macro_proc_body(operator);
      sexp vars = macro_proc_pars(operator);
      sexp def_env = macro_proc_env(operator);
      sexp object = make_pair(S("begin"), body);
      sexp env = extend_environment(vars, operands, def_env);
      sexp exp = eval_object(object, env);
      return eval_object(exp, environment);
    }
    operands = eval_arguments(operands, environment);
    /* if (is_apply(operator)) { */
    /*   operator = pair_car(operands); */
    /*   operands = apply_operands_conc(pair_cdr(operands)); */
    /* } */
    if (is_eval(operator)) {
      environment = pair_cadr(operands);
      object = pair_car(operands);
      goto tail_loop;
    }
    return eval_application(operator, operands);
  } else return object;
}