Esempio n. 1
0
/**
 * cloog_constraint_equal_type function :
 * This function returns the type of the equality in the constraint (line) of
 * (constraints) for the element (level). An equality is 'constant' iff all
 * other factors are null except the constant one. It is a 'pure item' iff
 * it is equal or opposite to a single variable or parameter.
 * Otherwise it is an 'affine expression'.
 * For instance:
 *   i = -13 is constant, i = j, j = -M are pure items,
 *   j = 2*M, i = j+1, 2*j = M are affine expressions.
 *
 * - constraints is the matrix of constraints,
 * - level is the column number in equal of the element which is 'equal to',
 */
static int cloog_constraint_equal_type(CloogConstraint *cc, int level)
{ 
	int i;
	isl_int c;
	int type = EQTYPE_NONE;
	struct isl_constraint *constraint = cloog_constraint_to_isl(cc);
    
	isl_int_init(c);
	isl_constraint_get_constant(constraint, &c);
	if (!isl_int_is_zero(c))
		type = EQTYPE_CONSTANT;
	isl_constraint_get_coefficient(constraint, isl_dim_set, level - 1, &c);
	if (!isl_int_is_one(c) && !isl_int_is_negone(c))
		type = EQTYPE_EXAFFINE;
	for (i = 0; i < isl_constraint_dim(constraint, isl_dim_param); ++i) {
		isl_constraint_get_coefficient(constraint, isl_dim_param, i, &c);
		if (isl_int_is_zero(c))
			continue;
		if ((!isl_int_is_one(c) && !isl_int_is_negone(c)) ||
		    type != EQTYPE_NONE) {
			type = EQTYPE_EXAFFINE;
			break;
		}
		type = EQTYPE_PUREITEM;
	}
	for (i = 0; i < isl_constraint_dim(constraint, isl_dim_set); ++i) {
		if (i == level - 1)
			continue;
		isl_constraint_get_coefficient(constraint, isl_dim_set, i, &c);
		if (isl_int_is_zero(c))
			continue;
		if ((!isl_int_is_one(c) && !isl_int_is_negone(c)) ||
		    type != EQTYPE_NONE) {
			type = EQTYPE_EXAFFINE;
			break;
		}
		type = EQTYPE_PUREITEM;
	}
	for (i = 0; i < isl_constraint_dim(constraint, isl_dim_div); ++i) {
		isl_constraint_get_coefficient(constraint, isl_dim_div, i, &c);
		if (isl_int_is_zero(c))
			continue;
		if ((!isl_int_is_one(c) && !isl_int_is_negone(c)) ||
		    type != EQTYPE_NONE) {
			type = EQTYPE_EXAFFINE;
			break;
		}
		type = EQTYPE_PUREITEM;
	}
	isl_int_clear(c);

	if (type == EQTYPE_NONE)
		type = EQTYPE_CONSTANT;

	return type;
}
Esempio n. 2
0
/* Make first row entries in column col of bset1 identical to
 * those of bset2, using the fact that entry bset1->eq[row][col]=a
 * is non-zero.  Initially, these elements of bset1 are all zero.
 * For each row i < row, we set
 *		A[i] = a * A[i] + B[i][col] * A[row]
 *		B[i] = a * B[i]
 * so that
 *		A[i][col] = B[i][col] = a * old(B[i][col])
 */
static void construct_column(
	struct isl_basic_set *bset1, struct isl_basic_set *bset2,
	unsigned row, unsigned col)
{
	int r;
	isl_int a;
	isl_int b;
	unsigned total;

	isl_int_init(a);
	isl_int_init(b);
	total = 1 + isl_basic_set_n_dim(bset1);
	for (r = 0; r < row; ++r) {
		if (isl_int_is_zero(bset2->eq[r][col]))
			continue;
		isl_int_gcd(b, bset2->eq[r][col], bset1->eq[row][col]);
		isl_int_divexact(a, bset1->eq[row][col], b);
		isl_int_divexact(b, bset2->eq[r][col], b);
		isl_seq_combine(bset1->eq[r], a, bset1->eq[r],
					      b, bset1->eq[row], total);
		isl_seq_scale(bset2->eq[r], bset2->eq[r], a, total);
	}
	isl_int_clear(a);
	isl_int_clear(b);
	delete_row(bset1, row);
}
Esempio n. 3
0
/// @brief Create an isl constraint from a row of OpenScop integers.
///
/// @param row An array of isl/OpenScop integers.
/// @param Space An isl space object, describing how to spilt the dimensions.
///
/// @return An isl constraint representing this integer array.
isl_constraint *constraintFromMatrixRowFull(isl_int *row,
                                            __isl_take isl_space *Space) {
  isl_constraint *c;

  unsigned NbOut = isl_space_dim(Space, isl_dim_out);
  unsigned NbIn = isl_space_dim(Space, isl_dim_in);
  unsigned NbParam = isl_space_dim(Space, isl_dim_param);

  isl_local_space *LSpace = isl_local_space_from_space(Space);

  if (isl_int_is_zero(row[0]))
    c = isl_equality_alloc(LSpace);
  else
    c = isl_inequality_alloc(LSpace);

  unsigned current_column = 1;

  for (unsigned j = 0; j < NbOut; ++j)
    isl_constraint_set_coefficient(c, isl_dim_out, j, row[current_column++]);

  for (unsigned j = 0; j < NbIn; ++j)
    isl_constraint_set_coefficient(c, isl_dim_in, j, row[current_column++]);

  for (unsigned j = 0; j < NbParam; ++j)
    isl_constraint_set_coefficient(c, isl_dim_param, j, row[current_column++]);

  isl_constraint_set_constant(c, row[current_column]);

  return c;
}
Esempio n. 4
0
/**
 * Return true if constraint c involves variable v (zero-based).
 */
int cloog_constraint_involves(CloogConstraint *constraint, int v)
{
	isl_int c;
	int res;

	isl_int_init(c);
	cloog_constraint_coefficient_get(constraint, v, &c);
	res = !isl_int_is_zero(c);
	isl_int_clear(c);
	return res;
}
Esempio n. 5
0
/* The implementation is based on Section 5.2 of Michael Karr,
 * "Affine Relationships Among Variables of a Program",
 * except that the echelon form we use starts from the last column
 * and that we are dealing with integer coefficients.
 */
static struct isl_basic_set *affine_hull(
	struct isl_basic_set *bset1, struct isl_basic_set *bset2)
{
	unsigned total;
	int col;
	int row;

	if (!bset1 || !bset2)
		goto error;

	total = 1 + isl_basic_set_n_dim(bset1);

	row = 0;
	for (col = total-1; col >= 0; --col) {
		int is_zero1 = row >= bset1->n_eq ||
			isl_int_is_zero(bset1->eq[row][col]);
		int is_zero2 = row >= bset2->n_eq ||
			isl_int_is_zero(bset2->eq[row][col]);
		if (!is_zero1 && !is_zero2) {
			set_common_multiple(bset1, bset2, row, col);
			++row;
		} else if (!is_zero1 && is_zero2) {
			construct_column(bset1, bset2, row, col);
		} else if (is_zero1 && !is_zero2) {
			construct_column(bset2, bset1, row, col);
		} else {
			if (transform_column(bset1, bset2, row, col))
				--row;
		}
	}
	isl_assert(bset1->ctx, row == bset1->n_eq, goto error);
	isl_basic_set_free(bset2);
	bset1 = isl_basic_set_normalize_constraints(bset1);
	return bset1;
error:
	isl_basic_set_free(bset1);
	isl_basic_set_free(bset2);
	return NULL;
}
Esempio n. 6
0
static int increment_range(struct isl_scan_callback *cb, isl_int min, isl_int max)
{
	struct isl_counter *cnt = (struct isl_counter *)cb;

	isl_int_add(cnt->count, cnt->count, max);
	isl_int_sub(cnt->count, cnt->count, min);
	isl_int_add_ui(cnt->count, cnt->count, 1);

	if (isl_int_is_zero(cnt->max) || isl_int_lt(cnt->count, cnt->max))
		return 0;
	isl_int_set(cnt->count, cnt->max);
	return -1;
}
Esempio n. 7
0
static int increment_counter(struct isl_scan_callback *cb,
	__isl_take isl_vec *sample)
{
	struct isl_counter *cnt = (struct isl_counter *)cb;

	isl_int_add_ui(cnt->count, cnt->count, 1);

	isl_vec_free(sample);

	if (isl_int_is_zero(cnt->max) || isl_int_lt(cnt->count, cnt->max))
		return 0;
	return -1;
}
Esempio n. 8
0
/* Check if dimension dim belongs to a residue class
 *		i_dim \equiv r mod m
 * with m != 1 and if so return m in *modulo and r in *residue.
 * As a special case, when i_dim has a fixed value v, then
 * *modulo is set to 0 and *residue to v.
 *
 * If i_dim does not belong to such a residue class, then *modulo
 * is set to 1 and *residue is set to 0.
 */
int isl_set_dim_residue_class(struct isl_set *set,
	int pos, isl_int *modulo, isl_int *residue)
{
	isl_int m;
	isl_int r;
	int i;

	if (!set || !modulo || !residue)
		return -1;

	if (set->n == 0) {
		isl_int_set_si(*modulo, 0);
		isl_int_set_si(*residue, 0);
		return 0;
	}

	if (isl_basic_set_dim_residue_class(set->p[0], pos, modulo, residue)<0)
		return -1;

	if (set->n == 1)
		return 0;

	if (isl_int_is_one(*modulo))
		return 0;

	isl_int_init(m);
	isl_int_init(r);

	for (i = 1; i < set->n; ++i) {
		if (isl_basic_set_dim_residue_class(set->p[i], pos, &m, &r) < 0)
			goto error;
		isl_int_gcd(*modulo, *modulo, m);
		isl_int_sub(m, *residue, r);
		isl_int_gcd(*modulo, *modulo, m);
		if (!isl_int_is_zero(*modulo))
			isl_int_fdiv_r(*residue, *residue, *modulo);
		if (isl_int_is_one(*modulo))
			break;
	}

	isl_int_clear(m);
	isl_int_clear(r);

	return 0;
error:
	isl_int_clear(m);
	isl_int_clear(r);
	return -1;
}
Esempio n. 9
0
/* Check if dimension dim belongs to a residue class
 *		i_dim \equiv r mod m
 * with m != 1 and if so return m in *modulo and r in *residue.
 * As a special case, when i_dim has a fixed value v, then
 * *modulo is set to 0 and *residue to v.
 *
 * If i_dim does not belong to such a residue class, then *modulo
 * is set to 1 and *residue is set to 0.
 */
int isl_basic_set_dim_residue_class(struct isl_basic_set *bset,
	int pos, isl_int *modulo, isl_int *residue)
{
	struct isl_ctx *ctx;
	struct isl_mat *H = NULL, *U = NULL, *C, *H1, *U1;
	unsigned total;
	unsigned nparam;

	if (!bset || !modulo || !residue)
		return -1;

	if (isl_basic_set_plain_dim_is_fixed(bset, pos, residue)) {
		isl_int_set_si(*modulo, 0);
		return 0;
	}

	ctx = isl_basic_set_get_ctx(bset);
	total = isl_basic_set_total_dim(bset);
	nparam = isl_basic_set_n_param(bset);
	H = isl_mat_sub_alloc6(ctx, bset->eq, 0, bset->n_eq, 1, total);
	H = isl_mat_left_hermite(H, 0, &U, NULL);
	if (!H)
		return -1;

	isl_seq_gcd(U->row[nparam + pos]+bset->n_eq,
			total-bset->n_eq, modulo);
	if (isl_int_is_zero(*modulo))
		isl_int_set_si(*modulo, 1);
	if (isl_int_is_one(*modulo)) {
		isl_int_set_si(*residue, 0);
		isl_mat_free(H);
		isl_mat_free(U);
		return 0;
	}

	C = isl_mat_alloc(ctx, 1 + bset->n_eq, 1);
	if (!C)
		goto error;
	isl_int_set_si(C->row[0][0], 1);
	isl_mat_sub_neg(ctx, C->row + 1, bset->eq, bset->n_eq, 0, 0, 1);
	H1 = isl_mat_sub_alloc(H, 0, H->n_row, 0, H->n_row);
	H1 = isl_mat_lin_to_aff(H1);
	C = isl_mat_inverse_product(H1, C);
	isl_mat_free(H);
	U1 = isl_mat_sub_alloc(U, nparam+pos, 1, 0, bset->n_eq);
	U1 = isl_mat_lin_to_aff(U1);
	isl_mat_free(U);
	C = isl_mat_product(U1, C);
	if (!C)
		return -1;
	if (!isl_int_is_divisible_by(C->row[1][0], C->row[0][0])) {
		bset = isl_basic_set_copy(bset);
		bset = isl_basic_set_set_to_empty(bset);
		isl_basic_set_free(bset);
		isl_int_set_si(*modulo, 1);
		isl_int_set_si(*residue, 0);
		return 0;
	}
	isl_int_divexact(*residue, C->row[1][0], C->row[0][0]);
	isl_int_fdiv_r(*residue, *residue, *modulo);
	isl_mat_free(C);
	return 0;
error:
	isl_mat_free(H);
	isl_mat_free(U);
	return -1;
}
Esempio n. 10
0
/* Given a set of modulo constraints
 *
 *		c + A y = 0 mod d
 *
 * this function returns an affine transformation T,
 *
 *		y = T y'
 *
 * that bijectively maps the integer vectors y' to integer
 * vectors y that satisfy the modulo constraints.
 *
 * This function is inspired by Section 2.5.3
 * of B. Meister, "Stating and Manipulating Periodicity in the Polytope
 * Model.  Applications to Program Analysis and Optimization".
 * However, the implementation only follows the algorithm of that
 * section for computing a particular solution and not for computing
 * a general homogeneous solution.  The latter is incomplete and
 * may remove some valid solutions.
 * Instead, we use an adaptation of the algorithm in Section 7 of
 * B. Meister, S. Verdoolaege, "Polynomial Approximations in the Polytope
 * Model: Bringing the Power of Quasi-Polynomials to the Masses".
 *
 * The input is given as a matrix B = [ c A ] and a vector d.
 * Each element of the vector d corresponds to a row in B.
 * The output is a lower triangular matrix.
 * If no integer vector y satisfies the given constraints then
 * a matrix with zero columns is returned.
 *
 * We first compute a particular solution y_0 to the given set of
 * modulo constraints in particular_solution.  If no such solution
 * exists, then we return a zero-columned transformation matrix.
 * Otherwise, we compute the generic solution to
 *
 *		A y = 0 mod d
 *
 * That is we want to compute G such that
 *
 *		y = G y''
 *
 * with y'' integer, describes the set of solutions.
 *
 * We first remove the common factors of each row.
 * In particular if gcd(A_i,d_i) != 1, then we divide the whole
 * row i (including d_i) by this common factor.  If afterwards gcd(A_i) != 1,
 * then we divide this row of A by the common factor, unless gcd(A_i) = 0.
 * In the later case, we simply drop the row (in both A and d).
 *
 * If there are no rows left in A, then G is the identity matrix. Otherwise,
 * for each row i, we now determine the lattice of integer vectors
 * that satisfies this row.  Let U_i be the unimodular extension of the
 * row A_i.  This unimodular extension exists because gcd(A_i) = 1.
 * The first component of
 *
 *		y' = U_i y
 *
 * needs to be a multiple of d_i.  Let y' = diag(d_i, 1, ..., 1) y''.
 * Then,
 *
 *		y = U_i^{-1} diag(d_i, 1, ..., 1) y''
 *
 * for arbitrary integer vectors y''.  That is, y belongs to the lattice
 * generated by the columns of L_i = U_i^{-1} diag(d_i, 1, ..., 1).
 * If there is only one row, then G = L_1.
 *
 * If there is more than one row left, we need to compute the intersection
 * of the lattices.  That is, we need to compute an L such that
 *
 *		L = L_i L_i'	for all i
 *
 * with L_i' some integer matrices.  Let A be constructed as follows
 *
 *		A = [ L_1^{-T} L_2^{-T} ... L_k^{-T} ]
 *
 * and computed the Hermite Normal Form of A = [ H 0 ] U
 * Then,
 *
 *		L_i^{-T} = H U_{1,i}
 *
 * or
 *
 *		H^{-T} = L_i U_{1,i}^T
 *
 * In other words G = L = H^{-T}.
 * To ensure that G is lower triangular, we compute and use its Hermite
 * normal form.
 *
 * The affine transformation matrix returned is then
 *
 *		[  1   0  ]
 *		[ y_0  G  ]
 *
 * as any y = y_0 + G y' with y' integer is a solution to the original
 * modulo constraints.
 */
struct isl_mat *isl_mat_parameter_compression(
			struct isl_mat *B, struct isl_vec *d)
{
	int i;
	struct isl_mat *cst = NULL;
	struct isl_mat *T = NULL;
	isl_int D;

	if (!B || !d)
		goto error;
	isl_assert(B->ctx, B->n_row == d->size, goto error);
	cst = particular_solution(B, d);
	if (!cst)
		goto error;
	if (cst->n_col == 0) {
		T = isl_mat_alloc(B->ctx, B->n_col, 0);
		isl_mat_free(cst);
		isl_mat_free(B);
		isl_vec_free(d);
		return T;
	}
	isl_int_init(D);
	/* Replace a*g*row = 0 mod g*m by row = 0 mod m */
	for (i = 0; i < B->n_row; ++i) {
		isl_seq_gcd(B->row[i] + 1, B->n_col - 1, &D);
		if (isl_int_is_one(D))
			continue;
		if (isl_int_is_zero(D)) {
			B = isl_mat_drop_rows(B, i, 1);
			d = isl_vec_cow(d);
			if (!B || !d)
				goto error2;
			isl_seq_cpy(d->block.data+i, d->block.data+i+1,
							d->size - (i+1));
			d->size--;
			i--;
			continue;
		}
		B = isl_mat_cow(B);
		if (!B)
			goto error2;
		isl_seq_scale_down(B->row[i] + 1, B->row[i] + 1, D, B->n_col-1);
		isl_int_gcd(D, D, d->block.data[i]);
		d = isl_vec_cow(d);
		if (!d)
			goto error2;
		isl_int_divexact(d->block.data[i], d->block.data[i], D);
	}
	isl_int_clear(D);
	if (B->n_row == 0)
		T = isl_mat_identity(B->ctx, B->n_col);
	else if (B->n_row == 1)
		T = parameter_compression_1(B, d);
	else
		T = parameter_compression_multi(B, d);
	T = isl_mat_left_hermite(T, 0, NULL, NULL);
	if (!T)
		goto error;
	isl_mat_sub_copy(T->ctx, T->row + 1, cst->row, cst->n_row, 0, 0, 1);
	isl_mat_free(cst);
	isl_mat_free(B);
	isl_vec_free(d);
	return T;
error2:
	isl_int_clear(D);
error:
	isl_mat_free(cst);
	isl_mat_free(B);
	isl_vec_free(d);
	return NULL;
}