Esempio n. 1
0
/* Given a set of modulo constraints
 *
 *		c + A y = 0 mod d
 *
 * this function computes a particular solution y_0
 *
 * The input is given as a matrix B = [ c A ] and a vector d.
 *
 * The output is matrix containing the solution y_0 or
 * a zero-column matrix if the constraints admit no integer solution.
 *
 * The given set of constrains is equivalent to
 *
 *		c + A y = -D x
 *
 * with D = diag d and x a fresh set of variables.
 * Reducing both c and A modulo d does not change the
 * value of y in the solution and may lead to smaller coefficients.
 * Let M = [ D A ] and [ H 0 ] = M U, the Hermite normal form of M.
 * Then
 *		  [ x ]
 *		M [ y ] = - c
 * and so
 *		               [ x ]
 *		[ H 0 ] U^{-1} [ y ] = - c
 * Let
 *		[ A ]          [ x ]
 *		[ B ] = U^{-1} [ y ]
 * then
 *		H A + 0 B = -c
 *
 * so B may be chosen arbitrarily, e.g., B = 0, and then
 *
 *		       [ x ] = [ -c ]
 *		U^{-1} [ y ] = [  0 ]
 * or
 *		[ x ]     [ -c ]
 *		[ y ] = U [  0 ]
 * specifically,
 *
 *		y = U_{2,1} (-c)
 *
 * If any of the coordinates of this y are non-integer
 * then the constraints admit no integer solution and
 * a zero-column matrix is returned.
 */
static struct isl_mat *particular_solution(struct isl_mat *B, struct isl_vec *d)
{
	int i, j;
	struct isl_mat *M = NULL;
	struct isl_mat *C = NULL;
	struct isl_mat *U = NULL;
	struct isl_mat *H = NULL;
	struct isl_mat *cst = NULL;
	struct isl_mat *T = NULL;

	M = isl_mat_alloc(B->ctx, B->n_row, B->n_row + B->n_col - 1);
	C = isl_mat_alloc(B->ctx, 1 + B->n_row, 1);
	if (!M || !C)
		goto error;
	isl_int_set_si(C->row[0][0], 1);
	for (i = 0; i < B->n_row; ++i) {
		isl_seq_clr(M->row[i], B->n_row);
		isl_int_set(M->row[i][i], d->block.data[i]);
		isl_int_neg(C->row[1 + i][0], B->row[i][0]);
		isl_int_fdiv_r(C->row[1+i][0], C->row[1+i][0], M->row[i][i]);
		for (j = 0; j < B->n_col - 1; ++j)
			isl_int_fdiv_r(M->row[i][B->n_row + j],
					B->row[i][1 + j], M->row[i][i]);
	}
	M = isl_mat_left_hermite(M, 0, &U, NULL);
	if (!M || !U)
		goto error;
	H = isl_mat_sub_alloc(M, 0, B->n_row, 0, B->n_row);
	H = isl_mat_lin_to_aff(H);
	C = isl_mat_inverse_product(H, C);
	if (!C)
		goto error;
	for (i = 0; i < B->n_row; ++i) {
		if (!isl_int_is_divisible_by(C->row[1+i][0], C->row[0][0]))
			break;
		isl_int_divexact(C->row[1+i][0], C->row[1+i][0], C->row[0][0]);
	}
	if (i < B->n_row)
		cst = isl_mat_alloc(B->ctx, B->n_row, 0);
	else
		cst = isl_mat_sub_alloc(C, 1, B->n_row, 0, 1);
	T = isl_mat_sub_alloc(U, B->n_row, B->n_col - 1, 0, B->n_row);
	cst = isl_mat_product(T, cst);
	isl_mat_free(M);
	isl_mat_free(C);
	isl_mat_free(U);
	return cst;
error:
	isl_mat_free(M);
	isl_mat_free(C);
	isl_mat_free(U);
	return NULL;
}
Esempio n. 2
0
struct isl_basic_set *isl_basic_set_recession_cone(struct isl_basic_set *bset)
{
	int i;

	bset = isl_basic_set_cow(bset);
	if (!bset)
		return NULL;
	isl_assert(bset->ctx, bset->n_div == 0, goto error);

	for (i = 0; i < bset->n_eq; ++i)
		isl_int_set_si(bset->eq[i][0], 0);

	for (i = 0; i < bset->n_ineq; ++i)
		isl_int_set_si(bset->ineq[i][0], 0);

	ISL_F_CLR(bset, ISL_BASIC_SET_NO_IMPLICIT);
	return isl_basic_set_implicit_equalities(bset);
error:
	isl_basic_set_free(bset);
	return NULL;
}
Esempio n. 3
0
/* Check if dimension "dim" belongs to a residue class
 *		i_dim \equiv r mod m
 * with m != 1 and if so return m in *modulo and r in *residue.
 * As a special case, when i_dim has a fixed value v, then
 * *modulo is set to 0 and *residue to v.
 *
 * If i_dim does not belong to such a residue class, then *modulo
 * is set to 1 and *residue is set to 0.
 */
isl_stat isl_set_dim_residue_class_val(__isl_keep isl_set *set,
	int pos, __isl_give isl_val **modulo, __isl_give isl_val **residue)
{
	*modulo = NULL;
	*residue = NULL;
	if (!set)
		return isl_stat_error;
	*modulo = isl_val_alloc(isl_set_get_ctx(set));
	*residue = isl_val_alloc(isl_set_get_ctx(set));
	if (!*modulo || !*residue)
		goto error;
	if (isl_set_dim_residue_class(set, pos,
					&(*modulo)->n, &(*residue)->n) < 0)
		goto error;
	isl_int_set_si((*modulo)->d, 1);
	isl_int_set_si((*residue)->d, 1);
	return isl_stat_ok;
error:
	isl_val_free(*modulo);
	isl_val_free(*residue);
	return isl_stat_error;
}
Esempio n. 4
0
/* Construct a zero sample of the same dimension as bset.
 * As a special case, if bset is zero-dimensional, this
 * function creates a zero-dimensional sample point.
 */
static struct isl_vec *zero_sample(struct isl_basic_set *bset)
{
	unsigned dim;
	struct isl_vec *sample;

	dim = isl_basic_set_total_dim(bset);
	sample = isl_vec_alloc(bset->ctx, 1 + dim);
	if (sample) {
		isl_int_set_si(sample->el[0], 1);
		isl_seq_clr(sample->el + 1, dim);
	}
	isl_basic_set_free(bset);
	return sample;
}
Esempio n. 5
0
/* Find an integer point in the set represented by "tab"
 * that lies outside of the equality "eq" e(x) = 0.
 * If "up" is true, look for a point satisfying e(x) - 1 >= 0.
 * Otherwise, look for a point satisfying -e(x) - 1 >= 0 (i.e., e(x) <= -1).
 * The point, if found, is returned.
 * If no point can be found, a zero-length vector is returned.
 *
 * Before solving an ILP problem, we first check if simply
 * adding the normal of the constraint to one of the known
 * integer points in the basic set represented by "tab"
 * yields another point inside the basic set.
 *
 * The caller of this function ensures that the tableau is bounded or
 * that tab->basis and tab->n_unbounded have been set appropriately.
 */
static struct isl_vec *outside_point(struct isl_tab *tab, isl_int *eq, int up)
{
	struct isl_ctx *ctx;
	struct isl_vec *sample = NULL;
	struct isl_tab_undo *snap;
	unsigned dim;

	if (!tab)
		return NULL;
	ctx = tab->mat->ctx;

	dim = tab->n_var;
	sample = isl_vec_alloc(ctx, 1 + dim);
	if (!sample)
		return NULL;
	isl_int_set_si(sample->el[0], 1);
	isl_seq_combine(sample->el + 1,
		ctx->one, tab->bmap->sample->el + 1,
		up ? ctx->one : ctx->negone, eq + 1, dim);
	if (isl_basic_map_contains(tab->bmap, sample))
		return sample;
	isl_vec_free(sample);
	sample = NULL;

	snap = isl_tab_snap(tab);

	if (!up)
		isl_seq_neg(eq, eq, 1 + dim);
	isl_int_sub_ui(eq[0], eq[0], 1);

	if (isl_tab_extend_cons(tab, 1) < 0)
		goto error;
	if (isl_tab_add_ineq(tab, eq) < 0)
		goto error;

	sample = isl_tab_sample(tab);

	isl_int_add_ui(eq[0], eq[0], 1);
	if (!up)
		isl_seq_neg(eq, eq, 1 + dim);

	if (sample && isl_tab_rollback(tab, snap) < 0)
		goto error;

	return sample;
error:
	isl_vec_free(sample);
	return NULL;
}
Esempio n. 6
0
static int scan_0D(struct isl_basic_set *bset,
	struct isl_scan_callback *callback)
{
	struct isl_vec *sample;

	sample = isl_vec_alloc(bset->ctx, 1);
	isl_basic_set_free(bset);

	if (!sample)
		return -1;

	isl_int_set_si(sample->el[0], 1);

	return callback->add(callback, sample);
}
Esempio n. 7
0
__isl_give isl_point *isl_point_zero(__isl_take isl_dim *dim)
{
	isl_vec *vec;

	if (!dim)
		return NULL;
	vec = isl_vec_alloc(dim->ctx, 1 + isl_dim_total(dim));
	if (!vec)
		goto error;
	isl_int_set_si(vec->el[0], 1);
	isl_seq_clr(vec->el + 1, vec->size - 1);
	return isl_point_alloc(dim, vec);
error:
	isl_dim_free(dim);
	return NULL;
}
static struct isl_vec *isl_vec_lin_to_aff(struct isl_vec *vec)
{
	struct isl_vec *aff;

	if (!vec)
		return NULL;
	aff = isl_vec_alloc(vec->ctx, 1 + vec->size);
	if (!aff)
		goto error;
	isl_int_set_si(aff->el[0], 0);
	isl_seq_cpy(aff->el + 1, vec->el, vec->size);
	isl_vec_free(vec);
	return aff;
error:
	isl_vec_free(vec);
	return NULL;
}
Esempio n. 9
0
static void copy_solution(struct isl_vec *vec, int maximize, isl_int *opt,
	isl_int *opt_denom, PipQuast *sol)
{
	int i;
	PipList *list;
	isl_int tmp;

	if (opt) {
		if (opt_denom) {
			isl_seq_cpy_from_pip(opt,
				 &sol->list->vector->the_vector[0], 1);
			isl_seq_cpy_from_pip(opt_denom,
				 &sol->list->vector->the_deno[0], 1);
		} else if (maximize)
			mpz_fdiv_q(*opt, sol->list->vector->the_vector[0],
					 sol->list->vector->the_deno[0]);
		else
			mpz_cdiv_q(*opt, sol->list->vector->the_vector[0],
					 sol->list->vector->the_deno[0]);
	}

	if (!vec)
		return;

	isl_int_init(tmp);
	isl_int_set_si(vec->el[0], 1);
	for (i = 0, list = sol->list->next; list; ++i, list = list->next) {
		isl_seq_cpy_from_pip(&vec->el[1 + i],
			&list->vector->the_deno[0], 1);
		isl_int_lcm(vec->el[0], vec->el[0], vec->el[1 + i]);
	}
	for (i = 0, list = sol->list->next; list; ++i, list = list->next) {
		isl_seq_cpy_from_pip(&tmp, &list->vector->the_deno[0], 1);
		isl_int_divexact(tmp, vec->el[0], tmp);
		isl_seq_cpy_from_pip(&vec->el[1 + i],
			&list->vector->the_vector[0], 1);
		isl_int_mul(vec->el[1 + i], vec->el[1 + i], tmp);
	}
	isl_int_clear(tmp);
}
Esempio n. 10
0
/// Create the memory access matrix for scoplib
///
/// @param S The polly statement the access matrix is created for.
/// @param isRead Are we looking for read or write accesses?
/// @param ArrayMap A map translating from the memory references to the scoplib
/// indeces
///
/// @return The memory access matrix, as it is required by scoplib.
scoplib_matrix_p ScopLib::createAccessMatrix(ScopStmt *S, bool isRead) {

  unsigned NbColumns = S->getNumIterators() + S->getNumParams() + 2;
  scoplib_matrix_p m = scoplib_matrix_malloc(0, NbColumns);

  for (ScopStmt::memacc_iterator MI = S->memacc_begin(), ME = S->memacc_end();
       MI != ME; ++MI)
    if ((*MI)->isRead() == isRead) {
      // Extract the access function.
      isl_map *AccessRelation = (*MI)->getAccessRelation();
      isl_map_foreach_basic_map(AccessRelation,
                                &accessToMatrix_basic_map, m);
      isl_map_free(AccessRelation);

      // Set the index of the memory access base element.
      std::map<const Value*, int>::iterator BA =
        ArrayMap.find((*MI)->getBaseAddr());
      isl_int_set_si(m->p[m->NbRows - 1][0], (*BA).second + 1);
    }

  return m;
}
Esempio n. 11
0
/* Given a basic set, exploit the equalties in the a basic set to construct
 * a morphishm that maps the basic set to a lower-dimensional space.
 * Specifically, the morphism reduces the number of dimensions of type "type".
 *
 * This function is a slight generalization of isl_mat_variable_compression
 * in that it allows the input to be parametric and that it allows for the
 * compression of either parameters or set variables.
 *
 * We first select the equalities of interest, that is those that involve
 * variables of type "type" and no later variables.
 * Denote those equalities as
 *
 *		-C(p) + M x = 0
 *
 * where C(p) depends on the parameters if type == isl_dim_set and
 * is a constant if type == isl_dim_param.
 *
 * First compute the (left) Hermite normal form of M,
 *
 *		M [U1 U2] = M U = H = [H1 0]
 * or
 *		              M = H Q = [H1 0] [Q1]
 *                                             [Q2]
 *
 * with U, Q unimodular, Q = U^{-1} (and H lower triangular).
 * Define the transformed variables as
 *
 *		x = [U1 U2] [ x1' ] = [U1 U2] [Q1] x
 *		            [ x2' ]           [Q2]
 *
 * The equalities then become
 *
 *		-C(p) + H1 x1' = 0   or   x1' = H1^{-1} C(p) = C'(p)
 *
 * If the denominator of the constant term does not divide the
 * the common denominator of the parametric terms, then every
 * integer point is mapped to a non-integer point and then the original set has no
 * integer solutions (since the x' are a unimodular transformation
 * of the x).  In this case, an empty morphism is returned.
 * Otherwise, the transformation is given by
 *
 *		x = U1 H1^{-1} C(p) + U2 x2'
 *
 * The inverse transformation is simply
 *
 *		x2' = Q2 x
 *
 * Both matrices are extended to map the full original space to the full
 * compressed space.
 */
__isl_give isl_morph *isl_basic_set_variable_compression(
	__isl_keep isl_basic_set *bset, enum isl_dim_type type)
{
	unsigned otype;
	unsigned ntype;
	unsigned orest;
	unsigned nrest;
	int f_eq, n_eq;
	isl_space *dim;
	isl_mat *H, *U, *Q, *C = NULL, *H1, *U1, *U2;
	isl_basic_set *dom, *ran;

	if (!bset)
		return NULL;

	if (isl_basic_set_plain_is_empty(bset))
		return isl_morph_empty(bset);

	isl_assert(bset->ctx, bset->n_div == 0, return NULL);

	otype = 1 + isl_space_offset(bset->dim, type);
	ntype = isl_basic_set_dim(bset, type);
	orest = otype + ntype;
	nrest = isl_basic_set_total_dim(bset) - (orest - 1);

	for (f_eq = 0; f_eq < bset->n_eq; ++f_eq)
		if (isl_seq_first_non_zero(bset->eq[f_eq] + orest, nrest) == -1)
			break;
	for (n_eq = 0; f_eq + n_eq < bset->n_eq; ++n_eq)
		if (isl_seq_first_non_zero(bset->eq[f_eq + n_eq] + otype, ntype) == -1)
			break;
	if (n_eq == 0)
		return isl_morph_identity(bset);

	H = isl_mat_sub_alloc6(bset->ctx, bset->eq, f_eq, n_eq, otype, ntype);
	H = isl_mat_left_hermite(H, 0, &U, &Q);
	if (!H || !U || !Q)
		goto error;
	Q = isl_mat_drop_rows(Q, 0, n_eq);
	Q = isl_mat_diagonal(isl_mat_identity(bset->ctx, otype), Q);
	Q = isl_mat_diagonal(Q, isl_mat_identity(bset->ctx, nrest));
	C = isl_mat_alloc(bset->ctx, 1 + n_eq, otype);
	if (!C)
		goto error;
	isl_int_set_si(C->row[0][0], 1);
	isl_seq_clr(C->row[0] + 1, otype - 1);
	isl_mat_sub_neg(C->ctx, C->row + 1, bset->eq + f_eq, n_eq, 0, 0, otype);
	H1 = isl_mat_sub_alloc(H, 0, H->n_row, 0, H->n_row);
	H1 = isl_mat_lin_to_aff(H1);
	C = isl_mat_inverse_product(H1, C);
	if (!C)
		goto error;
	isl_mat_free(H);

	if (!isl_int_is_one(C->row[0][0])) {
		int i;
		isl_int g;

		isl_int_init(g);
		for (i = 0; i < n_eq; ++i) {
			isl_seq_gcd(C->row[1 + i] + 1, otype - 1, &g);
			isl_int_gcd(g, g, C->row[0][0]);
			if (!isl_int_is_divisible_by(C->row[1 + i][0], g))
				break;
		}
		isl_int_clear(g);

		if (i < n_eq) {
			isl_mat_free(C);
			isl_mat_free(U);
			isl_mat_free(Q);
			return isl_morph_empty(bset);
		}

		C = isl_mat_normalize(C);
	}

	U1 = isl_mat_sub_alloc(U, 0, U->n_row, 0, n_eq);
	U1 = isl_mat_lin_to_aff(U1);
	U2 = isl_mat_sub_alloc(U, 0, U->n_row, n_eq, U->n_row - n_eq);
	U2 = isl_mat_lin_to_aff(U2);
	isl_mat_free(U);

	C = isl_mat_product(U1, C);
	C = isl_mat_aff_direct_sum(C, U2);
	C = insert_parameter_rows(C, otype - 1);
	C = isl_mat_diagonal(C, isl_mat_identity(bset->ctx, nrest));

	dim = isl_space_copy(bset->dim);
	dim = isl_space_drop_dims(dim, type, 0, ntype);
	dim = isl_space_add_dims(dim, type, ntype - n_eq);
	ran = isl_basic_set_universe(dim);
	dom = copy_equalities(bset, f_eq, n_eq);

	return isl_morph_alloc(dom, ran, Q, C);
error:
	isl_mat_free(C);
	isl_mat_free(H);
	isl_mat_free(U);
	isl_mat_free(Q);
	return NULL;
}
Esempio n. 12
0
/* Check if dimension dim belongs to a residue class
 *		i_dim \equiv r mod m
 * with m != 1 and if so return m in *modulo and r in *residue.
 * As a special case, when i_dim has a fixed value v, then
 * *modulo is set to 0 and *residue to v.
 *
 * If i_dim does not belong to such a residue class, then *modulo
 * is set to 1 and *residue is set to 0.
 */
int isl_basic_set_dim_residue_class(struct isl_basic_set *bset,
	int pos, isl_int *modulo, isl_int *residue)
{
	struct isl_ctx *ctx;
	struct isl_mat *H = NULL, *U = NULL, *C, *H1, *U1;
	unsigned total;
	unsigned nparam;

	if (!bset || !modulo || !residue)
		return -1;

	if (isl_basic_set_plain_dim_is_fixed(bset, pos, residue)) {
		isl_int_set_si(*modulo, 0);
		return 0;
	}

	ctx = isl_basic_set_get_ctx(bset);
	total = isl_basic_set_total_dim(bset);
	nparam = isl_basic_set_n_param(bset);
	H = isl_mat_sub_alloc6(ctx, bset->eq, 0, bset->n_eq, 1, total);
	H = isl_mat_left_hermite(H, 0, &U, NULL);
	if (!H)
		return -1;

	isl_seq_gcd(U->row[nparam + pos]+bset->n_eq,
			total-bset->n_eq, modulo);
	if (isl_int_is_zero(*modulo))
		isl_int_set_si(*modulo, 1);
	if (isl_int_is_one(*modulo)) {
		isl_int_set_si(*residue, 0);
		isl_mat_free(H);
		isl_mat_free(U);
		return 0;
	}

	C = isl_mat_alloc(ctx, 1 + bset->n_eq, 1);
	if (!C)
		goto error;
	isl_int_set_si(C->row[0][0], 1);
	isl_mat_sub_neg(ctx, C->row + 1, bset->eq, bset->n_eq, 0, 0, 1);
	H1 = isl_mat_sub_alloc(H, 0, H->n_row, 0, H->n_row);
	H1 = isl_mat_lin_to_aff(H1);
	C = isl_mat_inverse_product(H1, C);
	isl_mat_free(H);
	U1 = isl_mat_sub_alloc(U, nparam+pos, 1, 0, bset->n_eq);
	U1 = isl_mat_lin_to_aff(U1);
	isl_mat_free(U);
	C = isl_mat_product(U1, C);
	if (!C)
		return -1;
	if (!isl_int_is_divisible_by(C->row[1][0], C->row[0][0])) {
		bset = isl_basic_set_copy(bset);
		bset = isl_basic_set_set_to_empty(bset);
		isl_basic_set_free(bset);
		isl_int_set_si(*modulo, 1);
		isl_int_set_si(*residue, 0);
		return 0;
	}
	isl_int_divexact(*residue, C->row[1][0], C->row[0][0]);
	isl_int_fdiv_r(*residue, *residue, *modulo);
	isl_mat_free(C);
	return 0;
error:
	isl_mat_free(H);
	isl_mat_free(U);
	return -1;
}
Esempio n. 13
0
/* Given a set of equalities
 *
 *		M x - c = 0
 *
 * this function computes a unimodular transformation from a lower-dimensional
 * space to the original space that bijectively maps the integer points x'
 * in the lower-dimensional space to the integer points x in the original
 * space that satisfy the equalities.
 *
 * The input is given as a matrix B = [ -c M ] and the output is a
 * matrix that maps [1 x'] to [1 x].
 * If T2 is not NULL, then *T2 is set to a matrix mapping [1 x] to [1 x'].
 *
 * First compute the (left) Hermite normal form of M,
 *
 *		M [U1 U2] = M U = H = [H1 0]
 * or
 *		              M = H Q = [H1 0] [Q1]
 *                                             [Q2]
 *
 * with U, Q unimodular, Q = U^{-1} (and H lower triangular).
 * Define the transformed variables as
 *
 *		x = [U1 U2] [ x1' ] = [U1 U2] [Q1] x
 *		            [ x2' ]           [Q2]
 *
 * The equalities then become
 *
 *		H1 x1' - c = 0   or   x1' = H1^{-1} c = c'
 *
 * If any of the c' is non-integer, then the original set has no
 * integer solutions (since the x' are a unimodular transformation
 * of the x) and a zero-column matrix is returned.
 * Otherwise, the transformation is given by
 *
 *		x = U1 H1^{-1} c + U2 x2'
 *
 * The inverse transformation is simply
 *
 *		x2' = Q2 x
 */
__isl_give isl_mat *isl_mat_variable_compression(__isl_take isl_mat *B,
	__isl_give isl_mat **T2)
{
	int i;
	struct isl_mat *H = NULL, *C = NULL, *H1, *U = NULL, *U1, *U2, *TC;
	unsigned dim;

	if (T2)
		*T2 = NULL;
	if (!B)
		goto error;

	dim = B->n_col - 1;
	H = isl_mat_sub_alloc(B, 0, B->n_row, 1, dim);
	H = isl_mat_left_hermite(H, 0, &U, T2);
	if (!H || !U || (T2 && !*T2))
		goto error;
	if (T2) {
		*T2 = isl_mat_drop_rows(*T2, 0, B->n_row);
		*T2 = isl_mat_lin_to_aff(*T2);
		if (!*T2)
			goto error;
	}
	C = isl_mat_alloc(B->ctx, 1+B->n_row, 1);
	if (!C)
		goto error;
	isl_int_set_si(C->row[0][0], 1);
	isl_mat_sub_neg(C->ctx, C->row+1, B->row, B->n_row, 0, 0, 1);
	H1 = isl_mat_sub_alloc(H, 0, H->n_row, 0, H->n_row);
	H1 = isl_mat_lin_to_aff(H1);
	TC = isl_mat_inverse_product(H1, C);
	if (!TC)
		goto error;
	isl_mat_free(H);
	if (!isl_int_is_one(TC->row[0][0])) {
		for (i = 0; i < B->n_row; ++i) {
			if (!isl_int_is_divisible_by(TC->row[1+i][0], TC->row[0][0])) {
				struct isl_ctx *ctx = B->ctx;
				isl_mat_free(B);
				isl_mat_free(TC);
				isl_mat_free(U);
				if (T2) {
					isl_mat_free(*T2);
					*T2 = NULL;
				}
				return isl_mat_alloc(ctx, 1 + dim, 0);
			}
			isl_seq_scale_down(TC->row[1+i], TC->row[1+i], TC->row[0][0], 1);
		}
		isl_int_set_si(TC->row[0][0], 1);
	}
	U1 = isl_mat_sub_alloc(U, 0, U->n_row, 0, B->n_row);
	U1 = isl_mat_lin_to_aff(U1);
	U2 = isl_mat_sub_alloc(U, 0, U->n_row, B->n_row, U->n_row - B->n_row);
	U2 = isl_mat_lin_to_aff(U2);
	isl_mat_free(U);
	TC = isl_mat_product(U1, TC);
	TC = isl_mat_aff_direct_sum(TC, U2);

	isl_mat_free(B);

	return TC;
error:
	isl_mat_free(B);
	isl_mat_free(H);
	isl_mat_free(U);
	if (T2) {
		isl_mat_free(*T2);
		*T2 = NULL;
	}
	return NULL;
}
Esempio n. 14
0
/**
 * Reduce the modulo guard expressed by "constraints" using equalities
 * found in outer nesting levels (stored in "equal").
 * The modulo guard may be an equality or a pair of inequalities.
 * In case of a pair of inequalities, *bound contains the bound on the
 * corresponding modulo expression.  If any reduction is performed
 * then this bound is recomputed.
 *
 * "level" may not correspond to an existentially quantified variable.
 *
 * We first check if there are any equalities we can use.  If not,
 * there is again nothing to reduce.
 * For the actual reduction, we use isl_basic_set_gist, but this
 * function will only perform the reduction we want here if the
 * the variable that imposes the modulo constraint has been projected
 * out (i.e., turned into an existentially quantified variable).
 * After the call to isl_basic_set_gist, we need to move the
 * existential variable back into the position where the calling
 * function expects it (assuming there are any constraints left).
 * We do this by adding an equality between the given dimension and
 * the existentially quantified variable.
 *
 * If there are no existentially quantified variables left, then
 * we don't need to add this equality.
 * If, on the other hand, the resulting basic set involves more
 * than one existentially quantified variable, then the caller
 * will not be able to handle the result, so we just return the
 * original input instead.
 */
CloogConstraintSet *cloog_constraint_set_reduce(CloogConstraintSet *constraints,
	int level, CloogEqualities *equal, int nb_par, cloog_int_t *bound)
{
	int j;
	isl_space *idim;
	struct isl_basic_set *eq;
	struct isl_basic_map *id;
	struct cloog_isl_dim dim;
	struct isl_constraint *c;
	unsigned constraints_dim;
	unsigned n_div;
	isl_basic_set *bset, *orig;

	bset = cloog_constraints_set_to_isl(constraints);
	orig = isl_basic_set_copy(bset);
	dim = set_cloog_dim_to_isl_dim(constraints, level - 1);
	assert(dim.type == isl_dim_set);

	eq = NULL;
	for (j = 0; j < level - 1; ++j) {
		isl_basic_set *bset_j;
		if (equal->types[j] != EQTYPE_EXAFFINE)
			continue;
		bset_j = equality_to_basic_set(equal, j);
		if (!eq)
			eq = bset_j;
		else
			eq = isl_basic_set_intersect(eq, bset_j);
	}
	if (!eq) {
		isl_basic_set_free(orig);
		return cloog_constraint_set_from_isl_basic_set(bset);
	}

	idim = isl_space_map_from_set(isl_basic_set_get_space(bset));
	id = isl_basic_map_identity(idim);
	id = isl_basic_map_remove_dims(id, isl_dim_out, dim.pos, 1);
	bset = isl_basic_set_apply(bset, isl_basic_map_copy(id));
	bset = isl_basic_set_apply(bset, isl_basic_map_reverse(id));

	constraints_dim = isl_basic_set_dim(bset, isl_dim_set);
	eq = isl_basic_set_remove_dims(eq, isl_dim_set, constraints_dim,
			isl_basic_set_dim(eq, isl_dim_set) - constraints_dim);
	bset = isl_basic_set_gist(bset, eq);
	n_div = isl_basic_set_dim(bset, isl_dim_div);
	if (n_div > 1) {
		isl_basic_set_free(bset);
		return cloog_constraint_set_from_isl_basic_set(orig);
	}
	if (n_div < 1) {
		isl_basic_set_free(orig);
		return cloog_constraint_set_from_isl_basic_set(bset);
	}

	c = isl_equality_alloc(isl_basic_set_get_local_space(bset));
	c = isl_constraint_set_coefficient_si(c, isl_dim_div, 0, 1);
	c = isl_constraint_set_coefficient_si(c, isl_dim_set, dim.pos, -1);
	bset = isl_basic_set_add_constraint(bset, c);

	isl_int_set_si(*bound, 0);
	constraints = cloog_constraint_set_from_isl_basic_set(bset);
	cloog_constraint_set_foreach_constraint(constraints,
						add_constant_term, bound);

	isl_basic_set_free(orig);
	return cloog_constraint_set_from_isl_basic_set(bset);
}
Esempio n. 15
0
/* Look for all integer points in "bset", which is assumed to be bounded,
 * and call callback->add on each of them.
 *
 * We first compute a reduced basis for the set and then scan
 * the set in the directions of this basis.
 * We basically perform a depth first search, where in each level i
 * we compute the range in the i-th basis vector direction, given
 * fixed values in the directions of the previous basis vector.
 * We then add an equality to the tableau fixing the value in the
 * direction of the current basis vector to each value in the range
 * in turn and then continue to the next level.
 *
 * The search is implemented iteratively.  "level" identifies the current
 * basis vector.  "init" is true if we want the first value at the current
 * level and false if we want the next value.
 * Solutions are added in the leaves of the search tree, i.e., after
 * we have fixed a value in each direction of the basis.
 */
int isl_basic_set_scan(struct isl_basic_set *bset,
	struct isl_scan_callback *callback)
{
	unsigned dim;
	struct isl_mat *B = NULL;
	struct isl_tab *tab = NULL;
	struct isl_vec *min;
	struct isl_vec *max;
	struct isl_tab_undo **snap;
	int level;
	int init;
	enum isl_lp_result res;

	if (!bset)
		return -1;

	dim = isl_basic_set_total_dim(bset);
	if (dim == 0)
		return scan_0D(bset, callback);

	min = isl_vec_alloc(bset->ctx, dim);
	max = isl_vec_alloc(bset->ctx, dim);
	snap = isl_alloc_array(bset->ctx, struct isl_tab_undo *, dim);

	if (!min || !max || !snap)
		goto error;

	tab = isl_tab_from_basic_set(bset, 0);
	if (!tab)
		goto error;
	if (isl_tab_extend_cons(tab, dim + 1) < 0)
		goto error;

	tab->basis = isl_mat_identity(bset->ctx, 1 + dim);
	if (1)
		tab = isl_tab_compute_reduced_basis(tab);
	if (!tab)
		goto error;
	B = isl_mat_copy(tab->basis);
	if (!B)
		goto error;

	level = 0;
	init = 1;

	while (level >= 0) {
		int empty = 0;
		if (init) {
			res = isl_tab_min(tab, B->row[1 + level],
				    bset->ctx->one, &min->el[level], NULL, 0);
			if (res == isl_lp_empty)
				empty = 1;
			if (res == isl_lp_error || res == isl_lp_unbounded)
				goto error;
			isl_seq_neg(B->row[1 + level] + 1,
				    B->row[1 + level] + 1, dim);
			res = isl_tab_min(tab, B->row[1 + level],
				    bset->ctx->one, &max->el[level], NULL, 0);
			isl_seq_neg(B->row[1 + level] + 1,
				    B->row[1 + level] + 1, dim);
			isl_int_neg(max->el[level], max->el[level]);
			if (res == isl_lp_empty)
				empty = 1;
			if (res == isl_lp_error || res == isl_lp_unbounded)
				goto error;
			snap[level] = isl_tab_snap(tab);
		} else
			isl_int_add_ui(min->el[level], min->el[level], 1);

		if (empty || isl_int_gt(min->el[level], max->el[level])) {
			level--;
			init = 0;
			if (level >= 0)
				if (isl_tab_rollback(tab, snap[level]) < 0)
					goto error;
			continue;
		}
		if (level == dim - 1 && callback->add == increment_counter) {
			if (increment_range(callback,
					    min->el[level], max->el[level]))
				goto error;
			level--;
			init = 0;
			if (level >= 0)
				if (isl_tab_rollback(tab, snap[level]) < 0)
					goto error;
			continue;
		}
		isl_int_neg(B->row[1 + level][0], min->el[level]);
		if (isl_tab_add_valid_eq(tab, B->row[1 + level]) < 0)
			goto error;
		isl_int_set_si(B->row[1 + level][0], 0);
		if (level < dim - 1) {
			++level;
			init = 1;
			continue;
		}
		if (add_solution(tab, callback) < 0)
			goto error;
		init = 0;
		if (isl_tab_rollback(tab, snap[level]) < 0)
			goto error;
	}

	isl_tab_free(tab);
	free(snap);
	isl_vec_free(min);
	isl_vec_free(max);
	isl_basic_set_free(bset);
	isl_mat_free(B);
	return 0;
error:
	isl_tab_free(tab);
	free(snap);
	isl_vec_free(min);
	isl_vec_free(max);
	isl_basic_set_free(bset);
	isl_mat_free(B);
	return -1;
}
Esempio n. 16
0
__isl_give isl_basic_set *isl_basic_set_box_from_points(
	__isl_take isl_point *pnt1, __isl_take isl_point *pnt2)
{
	isl_basic_set *bset;
	unsigned total;
	int i;
	int k;
	isl_int t;

	isl_int_init(t);

	if (!pnt1 || !pnt2)
		goto error;

	isl_assert(pnt1->dim->ctx,
			isl_dim_equal(pnt1->dim, pnt2->dim), goto error);

	if (isl_point_is_void(pnt1) && isl_point_is_void(pnt2)) {
		isl_dim *dim = isl_dim_copy(pnt1->dim);
		isl_point_free(pnt1);
		isl_point_free(pnt2);
		isl_int_clear(t);
		return isl_basic_set_empty(dim);
	}
	if (isl_point_is_void(pnt1)) {
		isl_point_free(pnt1);
		isl_int_clear(t);
		return isl_basic_set_from_point(pnt2);
	}
	if (isl_point_is_void(pnt2)) {
		isl_point_free(pnt2);
		isl_int_clear(t);
		return isl_basic_set_from_point(pnt1);
	}

	total = isl_dim_total(pnt1->dim);
	bset = isl_basic_set_alloc_dim(isl_dim_copy(pnt1->dim), 0, 0, 2 * total);

	for (i = 0; i < total; ++i) {
		isl_int_mul(t, pnt1->vec->el[1 + i], pnt2->vec->el[0]);
		isl_int_submul(t, pnt2->vec->el[1 + i], pnt1->vec->el[0]);

		k = isl_basic_set_alloc_inequality(bset);
		if (k < 0)
			goto error;
		isl_seq_clr(bset->ineq[k] + 1, total);
		if (isl_int_is_pos(t)) {
			isl_int_set_si(bset->ineq[k][1 + i], -1);
			isl_int_set(bset->ineq[k][0], pnt1->vec->el[1 + i]);
		} else {
			isl_int_set_si(bset->ineq[k][1 + i], 1);
			isl_int_neg(bset->ineq[k][0], pnt1->vec->el[1 + i]);
		}
		isl_int_fdiv_q(bset->ineq[k][0], bset->ineq[k][0], pnt1->vec->el[0]);

		k = isl_basic_set_alloc_inequality(bset);
		if (k < 0)
			goto error;
		isl_seq_clr(bset->ineq[k] + 1, total);
		if (isl_int_is_pos(t)) {
			isl_int_set_si(bset->ineq[k][1 + i], 1);
			isl_int_neg(bset->ineq[k][0], pnt2->vec->el[1 + i]);
		} else {
			isl_int_set_si(bset->ineq[k][1 + i], -1);
			isl_int_set(bset->ineq[k][0], pnt2->vec->el[1 + i]);
		}
		isl_int_fdiv_q(bset->ineq[k][0], bset->ineq[k][0], pnt2->vec->el[0]);
	}

	bset = isl_basic_set_finalize(bset);

	isl_point_free(pnt1);
	isl_point_free(pnt2);

	isl_int_clear(t);

	return bset;
error:
	isl_point_free(pnt1);
	isl_point_free(pnt2);
	isl_int_clear(t);
	return NULL;
}