Esempio n. 1
0
jl_value_t *jl_toplevel_eval_flex(jl_value_t *e, int fast, int *plineno)
{
    //jl_show(ex);
    //JL_PRINTF(JL_STDOUT, "\n");
    if (!jl_is_expr(e))
        return jl_interpret_toplevel_expr(e);

    jl_expr_t *ex = (jl_expr_t*)e;
    if (ex->head == null_sym || ex->head == error_sym) {
        // expression types simple enough not to need expansion
        return jl_interpret_toplevel_expr(e);
    }

    if (ex->head == module_sym) {
        return jl_eval_module_expr(ex, plineno);
    }

    // handle import, export toplevel-only forms
    if (ex->head == importall_sym) {
        jl_module_t *m = eval_import_path(ex->args);
        jl_sym_t *name = (jl_sym_t*)jl_cellref(ex->args, ex->args->length-1);
        assert(jl_is_symbol(name));
        m = (jl_module_t*)jl_eval_global_var(m, name);
        if (!jl_is_module(m))
            jl_errorf("invalid import statement");
        jl_module_importall(jl_current_module, m);
        return jl_nothing;
    }

    if (ex->head == import_sym) {
        jl_module_t *m = eval_import_path(ex->args);
        jl_sym_t *name = (jl_sym_t*)jl_cellref(ex->args, ex->args->length-1);
        assert(jl_is_symbol(name));
        jl_module_import(jl_current_module, m, name);
        return jl_nothing;
    }

    if (ex->head == export_sym) {
        for(size_t i=0; i < ex->args->length; i++) {
            jl_module_export(jl_current_module,
                             (jl_sym_t*)jl_cellref(ex->args, i));
        }
        return jl_nothing;
    }

    jl_value_t *thunk=NULL;
    jl_value_t *result;
    jl_lambda_info_t *thk=NULL;
    int ewc = 0;
    JL_GC_PUSH(&thunk, &thk, &ex);

    if (ex->head != body_sym && ex->head != thunk_sym) {
        // not yet expanded
        ex = (jl_expr_t*)jl_expand(e);
    }

    if (jl_is_expr(ex) && ex->head == thunk_sym) {
        thk = (jl_lambda_info_t*)jl_exprarg(ex,0);
        assert(jl_is_lambda_info(thk));
        ewc = jl_eval_with_compiler_p(jl_lam_body((jl_expr_t*)thk->ast), fast);
        if (!ewc) {
            jl_array_t *vinfos = jl_lam_vinfo((jl_expr_t*)thk->ast);
            int i;
            for(i=0; i < vinfos->length; i++) {
                if (jl_vinfo_capt((jl_array_t*)jl_cellref(vinfos,i))) {
                    // interpreter doesn't handle closure environment
                    ewc = 1;
                    break;
                }
            }
        }
    }
    else {
        if (jl_is_expr(ex) && jl_eval_with_compiler_p((jl_expr_t*)ex, fast)) {
            thk = jl_wrap_expr((jl_value_t*)ex);
            ewc = 1;
        }
        else {
            result = jl_interpret_toplevel_expr((jl_value_t*)ex);
            JL_GC_POP();
            return result;
        }
    }

    if (ewc) {
        thunk = (jl_value_t*)jl_new_closure(NULL, (jl_value_t*)jl_null, thk);
        if (!jl_in_inference) {
            jl_type_infer(thk, jl_tuple_type, thk);
        }
        result = jl_apply((jl_function_t*)thunk, NULL, 0);
    }
    else {
        result = jl_interpret_toplevel_thunk(thk);
    }
    JL_GC_POP();
    return result;
}
Esempio n. 2
0
jl_value_t *jl_toplevel_eval_flex(jl_value_t *e, int fast)
{
    //jl_show(ex);
    //jl_printf(JL_STDOUT, "\n");
    if (!jl_is_expr(e))
        return jl_interpret_toplevel_expr(e);

    jl_expr_t *ex = (jl_expr_t*)e;
    if (ex->head == null_sym || ex->head == error_sym) {
        // expression types simple enough not to need expansion
        return jl_interpret_toplevel_expr(e);
    }

    if (ex->head == module_sym) {
        return jl_eval_module_expr(ex);
    }

    // handle import, using, importall, export toplevel-only forms
    if (ex->head == importall_sym) {
        jl_module_t *m = eval_import_path(ex->args);
        if (m==NULL) return jl_nothing;
        jl_sym_t *name = (jl_sym_t*)jl_cellref(ex->args, jl_array_len(ex->args)-1);
        if (!jl_is_symbol(name))
            jl_error("syntax: malformed \"importall\" statement");
        m = (jl_module_t*)jl_eval_global_var(m, name);
        if (!jl_is_module(m))
            jl_errorf("invalid %s statement: name exists but does not refer to a module", ex->head->name);
        jl_module_importall(jl_current_module, m);
        return jl_nothing;
    }

    if (ex->head == using_sym) {
        jl_module_t *m = eval_import_path(ex->args);
        if (m==NULL) return jl_nothing;
        jl_sym_t *name = (jl_sym_t*)jl_cellref(ex->args, jl_array_len(ex->args)-1);
        if (!jl_is_symbol(name))
            jl_error("syntax: malformed \"using\" statement");
        jl_module_t *u = (jl_module_t*)jl_eval_global_var(m, name);
        if (jl_is_module(u)) {
            jl_module_using(jl_current_module, u);
        }
        else {
            jl_module_use(jl_current_module, m, name);
        }
        return jl_nothing;
    }

    if (ex->head == import_sym) {
        jl_module_t *m = eval_import_path(ex->args);
        if (m==NULL) return jl_nothing;
        jl_sym_t *name = (jl_sym_t*)jl_cellref(ex->args, jl_array_len(ex->args)-1);
        if (!jl_is_symbol(name))
            jl_error("syntax: malformed \"import\" statement");
        jl_module_import(jl_current_module, m, name);
        return jl_nothing;
    }

    if (ex->head == export_sym) {
        for(size_t i=0; i < jl_array_len(ex->args); i++) {
            jl_sym_t *name = (jl_sym_t*)jl_cellref(ex->args, i);
            if (!jl_is_symbol(name))
                jl_error("syntax: malformed \"export\" statement");
            jl_module_export(jl_current_module, name);
        }
        return jl_nothing;
    }

    if (ex->head == toplevel_sym) {
        int i=0; jl_value_t *res=jl_nothing;
        for(i=0; i < jl_array_len(ex->args); i++) {
            res = jl_toplevel_eval_flex(jl_cellref(ex->args, i), fast);
        }
        return res;
    }

    jl_value_t *thunk=NULL;
    jl_value_t *result;
    jl_lambda_info_t *thk=NULL;
    int ewc = 0;
    JL_GC_PUSH3(&thunk, &thk, &ex);

    if (ex->head != body_sym && ex->head != thunk_sym && ex->head != return_sym &&
        ex->head != method_sym) {
        // not yet expanded
        ex = (jl_expr_t*)jl_expand(e);
    }
    jl_sym_t *head = jl_is_expr(ex) ? ex->head : NULL;

    if (head == toplevel_sym) {
        int i=0; jl_value_t *res=jl_nothing;
        for(i=0; i < jl_array_len(ex->args); i++) {
            res = jl_toplevel_eval_flex(jl_cellref(ex->args, i), fast);
        }
        JL_GC_POP();
        return res;
    }

    if (head == thunk_sym) {
        thk = (jl_lambda_info_t*)jl_exprarg(ex,0);
        assert(jl_is_lambda_info(thk));
        assert(jl_is_expr(thk->ast));
        ewc = jl_eval_with_compiler_p((jl_expr_t*)thk->ast, jl_lam_body((jl_expr_t*)thk->ast), fast, jl_current_module);
        if (!ewc) {
            if (jl_lam_vars_captured((jl_expr_t*)thk->ast)) {
                // interpreter doesn't handle closure environment
                ewc = 1;
            }
        }
    }
    else {
        if (head && jl_eval_with_compiler_p(NULL, (jl_expr_t*)ex, fast, jl_current_module)) {
            thk = jl_wrap_expr((jl_value_t*)ex);
            ewc = 1;
        }
        else {
            if (head == body_sym) {
                result = jl_toplevel_eval_body(ex->args);
            }
            else if (jl_is_toplevel_only_expr((jl_value_t*)ex)) {
                result = jl_toplevel_eval((jl_value_t*)ex);
            }
            else {
                result = jl_interpret_toplevel_expr((jl_value_t*)ex);
            }
            JL_GC_POP();
            return result;
        }
    }

    if (ewc) {
        thunk = (jl_value_t*)jl_new_closure(NULL, (jl_value_t*)jl_emptysvec, thk);
        if (!jl_in_inference) {
            jl_type_infer(thk, (jl_tupletype_t*)jl_typeof(jl_emptytuple), thk);
        }
        result = jl_apply((jl_function_t*)thunk, NULL, 0);
    }
    else {
        result = jl_interpret_toplevel_thunk(thk);
    }
    JL_GC_POP();
    return result;
}
Esempio n. 3
0
jl_value_t *jl_toplevel_eval_flex(jl_value_t *e, int fast,
                                  volatile size_t *plineno)
{
    //jl_show(ex);
    //ios_printf(ios_stdout, "\n");
    if (!jl_is_expr(e))
        return jl_interpret_toplevel_expr(e);

    jl_expr_t *ex = (jl_expr_t*)e;
    if (ex->head == null_sym || ex->head == error_sym) {
        // expression types simple enough not to need expansion
        return jl_interpret_toplevel_expr(e);
    }

    if (ex->head == module_sym) {
        return jl_eval_module_expr(ex, plineno);
    }

    jl_value_t *thunk=NULL;
    jl_value_t *result;
    jl_lambda_info_t *thk=NULL;
    int ewc = 0;
    JL_GC_PUSH(&thunk, &thk, &ex);

    if (ex->head == body_sym || ex->head == thunk_sym) {
        // already expanded
    }
    else {
        ex = (jl_expr_t*)jl_expand(e);
    }

    if (jl_is_expr(ex) && ex->head == thunk_sym) {
        thk = (jl_lambda_info_t*)jl_exprarg(ex,0);
        assert(jl_is_lambda_info(thk));
        ewc = eval_with_compiler_p(jl_lam_body((jl_expr_t*)thk->ast), fast);
        if (!ewc) {
            jl_array_t *vinfos = jl_lam_vinfo((jl_expr_t*)thk->ast);
            int i;
            for(i=0; i < vinfos->length; i++) {
                if (jl_vinfo_capt((jl_array_t*)jl_cellref(vinfos,i))) {
                    // interpreter doesn't handle closure environment
                    ewc = 1;
                    break;
                }
            }
        }
    }
    else {
        if (jl_is_expr(ex) && eval_with_compiler_p((jl_expr_t*)ex, fast)) {
            thk = jl_wrap_expr((jl_value_t*)ex);
            ewc = 1;
        }
        else {
            result = jl_interpret_toplevel_expr((jl_value_t*)ex);
            JL_GC_POP();
            return result;
        }
    }

    if (ewc) {
        thunk = jl_new_closure_internal(thk, (jl_value_t*)jl_null);
        if (fast && !jl_in_inference) {
            jl_type_infer(thk, jl_tuple_type, thk);
        }
        result = jl_apply((jl_function_t*)thunk, NULL, 0);
    }
    else {
        result = jl_interpret_toplevel_thunk(thk);
    }
    JL_GC_POP();
    return result;
}
Esempio n. 4
0
File: gf.c Progetto: cshen/julia
static jl_function_t *cache_method(jl_methtable_t *mt, jl_tuple_t *type,
                                   jl_function_t *method, jl_tuple_t *decl,
                                   jl_tuple_t *sparams)
{
    size_t i;
    int need_dummy_entries = 0;
    jl_value_t *temp=NULL;
    jl_function_t *newmeth=NULL;
    JL_GC_PUSH(&type, &temp, &newmeth);

    for (i=0; i < type->length; i++) {
        jl_value_t *elt = jl_tupleref(type,i);
        int set_to_any = 0;
        if (nth_slot_type(decl,i) == jl_ANY_flag) {
            // don't specialize on slots marked ANY
            temp = jl_tupleref(type, i);
            jl_tupleset(type, i, (jl_value_t*)jl_any_type);
            int nintr=0;
            jl_methlist_t *curr = mt->defs;
            // if this method is the only match even with the current slot
            // set to Any, then it is safe to cache it that way.
            while (curr != NULL && curr->func!=method) {
                if (jl_type_intersection((jl_value_t*)curr->sig,
                                         (jl_value_t*)type) !=
                    (jl_value_t*)jl_bottom_type) {
                    nintr++;
                    break;
                }
                curr = curr->next;
            }
            if (nintr) {
                // TODO: even if different specializations of this slot need
                // separate cache entries, have them share code.
                jl_tupleset(type, i, temp);
            }
            else {
                set_to_any = 1;
            }
        }
        if (set_to_any) {
        }
        else if (jl_is_tuple(elt)) {
            /*
              don't cache tuple type exactly; just remember that it was
              a tuple, unless the declaration asks for something more
              specific. determined with a type intersection.
            */
            int might_need_dummy=0;
            temp = jl_tupleref(type, i);
            if (i < decl->length) {
                jl_value_t *declt = jl_tupleref(decl,i);
                // for T..., intersect with T
                if (jl_is_seq_type(declt))
                    declt = jl_tparam0(declt);
                if (declt == (jl_value_t*)jl_tuple_type ||
                    jl_subtype((jl_value_t*)jl_tuple_type, declt, 0)) {
                    // don't specialize args that matched (Any...) or Any
                    jl_tupleset(type, i, (jl_value_t*)jl_tuple_type);
                    might_need_dummy = 1;
                }
                else {
                    declt = jl_type_intersection(declt,
                                                 (jl_value_t*)jl_tuple_type);
                    if (((jl_tuple_t*)elt)->length > 3 ||
                        tuple_all_Any((jl_tuple_t*)declt)) {
                        jl_tupleset(type, i, declt);
                        might_need_dummy = 1;
                    }
                }
            }
            else {
                jl_tupleset(type, i, (jl_value_t*)jl_tuple_type);
                might_need_dummy = 1;
            }
            assert(jl_tupleref(type,i) != (jl_value_t*)jl_bottom_type);
            if (might_need_dummy) {
                jl_methlist_t *curr = mt->defs;
                // can't generalize type if there's an overlapping definition
                // with typevars
                while (curr != NULL && curr->func!=method) {
                    if (curr->tvars!=jl_null &&
                        jl_type_intersection((jl_value_t*)curr->sig,
                                             (jl_value_t*)type) !=
                        (jl_value_t*)jl_bottom_type) {
                        jl_tupleset(type, i, temp);
                        might_need_dummy = 0;
                        break;
                    }
                    curr = curr->next;
                }
            }
            if (might_need_dummy) {
                jl_methlist_t *curr = mt->defs;
                while (curr != NULL && curr->func!=method) {
                    jl_tuple_t *sig = curr->sig;
                    if (sig->length > i &&
                        jl_is_tuple(jl_tupleref(sig,i))) {
                        need_dummy_entries = 1;
                        break;
                    }
                    curr = curr->next;
                }
            }
        }
        else if (jl_is_type_type(elt) && jl_is_type_type(jl_tparam0(elt))) {
            /*
              actual argument was Type{...}, we computed its type as
              Type{Type{...}}. we must avoid unbounded nesting here, so
              cache the signature as Type{T}, unless something more
              specific like Type{Type{Int32}} was actually declared.
              this can be determined using a type intersection.
            */
            if (i < decl->length) {
                jl_value_t *declt = jl_tupleref(decl,i);
                // for T..., intersect with T
                if (jl_is_seq_type(declt))
                    declt = jl_tparam0(declt);
                jl_tupleset(type, i,
                            jl_type_intersection(declt, (jl_value_t*)jl_typetype_type));
            }
            else {
                jl_tupleset(type, i, (jl_value_t*)jl_typetype_type);
            }
            assert(jl_tupleref(type,i) != (jl_value_t*)jl_bottom_type);
        }
        else if (jl_is_type_type(elt) &&
                 very_general_type(nth_slot_type(decl,i))) {
            /*
              here's a fairly complex heuristic: if this argument slot's
              declared type is Any, and no definition overlaps with Type
              for this slot, then don't specialize for every Type that
              might be passed.
              Since every type x has its own type Type{x}, this would be
              excessive specialization for an Any slot.
            */
            int ok=1;
            jl_methlist_t *curr = mt->defs;
            while (curr != NULL) {
                jl_value_t *slottype = nth_slot_type(curr->sig, i);
                if (slottype &&
                    !very_general_type(slottype) &&
                    jl_type_intersection(slottype,
                                         (jl_value_t*)jl_type_type) !=
                    (jl_value_t*)jl_bottom_type) {
                    ok=0;
                    break;
                }
                curr = curr->next;
            }
            if (ok) {
                jl_tupleset(type, i, (jl_value_t*)jl_typetype_type);
            }
        }
    }

    // for varargs methods, only specialize up to max_args.
    // in general, here we want to find the biggest type that's not a
    // supertype of any other method signatures. so far we are conservative
    // and the types we find should be bigger.
    if (type->length > jl_unbox_long(mt->max_args) &&
        jl_is_seq_type(jl_tupleref(decl,decl->length-1))) {
        size_t nspec = jl_unbox_long(mt->max_args)+2;
        jl_tuple_t *limited = jl_alloc_tuple(nspec);
        for(i=0; i < nspec-1; i++) {
            jl_tupleset(limited, i, jl_tupleref(type, i));
        }
        jl_value_t *lasttype = jl_tupleref(type,i-1);
        // if all subsequent arguments are subtypes of lasttype, specialize
        // on that instead of decl. for example, if decl is
        // (Any...)
        // and type is
        // (Symbol, Symbol, Symbol)
        // then specialize as (Symbol...), but if type is
        // (Symbol, Int32, Expr)
        // then specialize as (Any...)
        size_t j = i;
        int all_are_subtypes=1;
        for(; j < type->length; j++) {
            if (!jl_subtype(jl_tupleref(type,j), lasttype, 0)) {
                all_are_subtypes = 0;
                break;
            }
        }
        type = limited;
        if (all_are_subtypes) {
            // avoid Type{Type{...}...}...
            if (jl_is_type_type(lasttype))
                lasttype = (jl_value_t*)jl_type_type;
            temp = (jl_value_t*)jl_tuple1(lasttype);
            jl_tupleset(type, i, jl_apply_type((jl_value_t*)jl_seq_type,
                                               (jl_tuple_t*)temp));
        }
        else {
            jl_value_t *lastdeclt = jl_tupleref(decl,decl->length-1);
            if (sparams->length > 0) {
                lastdeclt = (jl_value_t*)
                    jl_instantiate_type_with((jl_type_t*)lastdeclt,
                                             sparams->data,
                                             sparams->length/2);
            }
            jl_tupleset(type, i, lastdeclt);
        }
        // now there is a problem: the computed signature is more
        // general than just the given arguments, so it might conflict
        // with another definition that doesn't have cache instances yet.
        // to fix this, we insert dummy cache entries for all intersections
        // of this signature and definitions. those dummy entries will
        // supersede this one in conflicted cases, alerting us that there
        // should actually be a cache miss.
        need_dummy_entries = 1;
    }

    if (need_dummy_entries) {
        temp = ml_matches(mt->defs, (jl_value_t*)type, lambda_sym, -1);
        for(i=0; i < jl_array_len(temp); i++) {
            jl_value_t *m = jl_cellref(temp, i);
            if (jl_tupleref(m,2) != (jl_value_t*)method->linfo) {
                jl_method_cache_insert(mt, (jl_tuple_t*)jl_tupleref(m, 0),
                                       NULL);
            }
        }
    }

    // here we infer types and specialize the method
    /*
    if (sparams==jl_null)
        newmeth = method;
    else
    */
    jl_array_t *lilist=NULL;
    jl_lambda_info_t *li=NULL;
    if (method->linfo && method->linfo->specializations!=NULL) {
        // reuse code already generated for this combination of lambda and
        // arguments types. this happens for inner generic functions where
        // a new closure is generated on each call to the enclosing function.
        lilist = method->linfo->specializations;
        int k;
        for(k=0; k < lilist->length; k++) {
            li = (jl_lambda_info_t*)jl_cellref(lilist, k);
            if (jl_types_equal(li->specTypes, (jl_value_t*)type))
                break;
        }
        if (k == lilist->length) lilist=NULL;
    }
    if (lilist != NULL && !li->inInference) {
        assert(li);
        newmeth = jl_reinstantiate_method(method, li);
        (void)jl_method_cache_insert(mt, type, newmeth);
        JL_GC_POP();
        return newmeth;
    }
    else {
        newmeth = jl_instantiate_method(method, sparams);
    }
    /*
      if "method" itself can ever be compiled, for example for use as
      an unspecialized method (see below), then newmeth->fptr might point
      to some slow compiled code instead of jl_trampoline, meaning our
      type-inferred code would never get compiled. this can be fixed with
      the commented-out snippet below.
    */
    assert(!(newmeth->linfo && newmeth->linfo->ast) ||
           newmeth->fptr == &jl_trampoline);
    /*
    if (newmeth->linfo&&newmeth->linfo->ast&&newmeth->fptr!=&jl_trampoline) {
        newmeth->fptr = &jl_trampoline;
    }
    */

    (void)jl_method_cache_insert(mt, type, newmeth);

    if (newmeth->linfo != NULL && newmeth->linfo->sparams == jl_null) {
        // when there are no static parameters, one unspecialized version
        // of a function can be shared among all cached specializations.
        if (method->linfo->unspecialized == NULL) {
            method->linfo->unspecialized =
                jl_instantiate_method(method, jl_null);
        }
        newmeth->linfo->unspecialized = method->linfo->unspecialized;
    }

    if (newmeth->linfo != NULL && newmeth->linfo->ast != NULL) {
        newmeth->linfo->specTypes = (jl_value_t*)type;
        jl_array_t *spe = method->linfo->specializations;
        if (spe == NULL) {
            spe = jl_alloc_cell_1d(1);
            jl_cellset(spe, 0, newmeth->linfo);
        }
        else {
            jl_cell_1d_push(spe, (jl_value_t*)newmeth->linfo);
        }
        method->linfo->specializations = spe;
        jl_type_infer(newmeth->linfo, type, method->linfo);
    }
    JL_GC_POP();
    return newmeth;
}