Esempio n. 1
0
void job_continue (job_t *j, int cont)
{
	/*
	  Put job first in the job list
	*/
    job_promote(j);
	job_set_flag( j, JOB_NOTIFIED, 0 );

	CHECK_BLOCK();
	
	debug( 4,
		   L"Continue job %d, gid %d (%ls), %ls, %ls",
		   j->job_id, 
		   j->pgid,
		   j->command_wcstr(), 
		   job_is_completed( j )?L"COMPLETED":L"UNCOMPLETED", 
		   is_interactive?L"INTERACTIVE":L"NON-INTERACTIVE" );
	
	if( !job_is_completed( j ) )
	{
		if( job_get_flag( j, JOB_TERMINAL ) && job_get_flag( j, JOB_FOREGROUND ) )
		{							
			/* Put the job into the foreground.  */
			int ok;
			
			signal_block();
			
			ok = terminal_give_to_job( j, cont );
			
			signal_unblock();		

			if( !ok )
				return;
			
		}
		
		/* 
		   Send the job a continue signal, if necessary.  
		*/
		if( cont )
		{
			process_t *p;

			for( p=j->first_process; p; p=p->next )
				p->stopped=0;

			if( job_get_flag( j, JOB_CONTROL ) )
			{
				if( killpg( j->pgid, SIGCONT ) )
				{
					wperror( L"killpg (SIGCONT)" );
					return;
				}
			}
			else
			{
				for( p=j->first_process; p; p=p->next )
				{
					if (kill ( p->pid, SIGCONT) < 0)
					{
						wperror (L"kill (SIGCONT)");
						return;
					}		
				}
			}
		}
	
		if( job_get_flag( j, JOB_FOREGROUND ) )
		{
			int quit = 0;
		
			/* 
			   Wait for job to report. Looks a bit ugly because it has to
			   handle the possibility that a signal is dispatched while
			   running job_is_stopped().
			*/
			while( !quit )
			{
				do
				{
					got_signal = 0;
					quit = job_is_stopped( j ) || job_is_completed( j );
				}
				while (got_signal && !quit);
                
                if (quit) {
                    // It's possible that the job will produce output and exit before we've even read from it.
                    // We'll eventually read the output, but it may be after we've executed subsequent calls
                    // This is why my prompt colors kept getting screwed up - the builtin echo calls
                    // were sometimes having their output combined with the set_color calls in the wrong order!
                    read_try(j);
                }

				if( !quit )
				{
					
//					debug( 1, L"select_try()" );	
					switch( select_try(j) )
					{
						case 1:			
						{
							read_try( j );
							break;
						}
					
						case -1:
						{
							/*
							  If there is no funky IO magic, we can use
							  waitpid instead of handling child deaths
							  through signals. This gives a rather large
							  speed boost (A factor 3 startup time
							  improvement on my 300 MHz machine) on
							  short-lived jobs.
							*/
							int status;						
							pid_t pid = waitpid(-1, &status, WUNTRACED );
							if( pid > 0 )
							{
								handle_child_status( pid, status );
							}
							else
							{
								/*
								  This probably means we got a
								  signal. A signal might mean that the
								  terminal emulator sent us a hup
								  signal to tell is to close. If so,
								  we should exit.
								*/
								if( reader_exit_forced() )
								{
									quit = 1;
								}
								
							}
							break;
						}
								
					}
				}					
			}
		}	
	}
	
	if( job_get_flag( j, JOB_FOREGROUND ) )
	{
		
		if( job_is_completed( j ))
		{
			process_t *p = j->first_process;
			while( p->next )
				p = p->next;

			if( WIFEXITED( p->status ) || WIFSIGNALED(p->status))
			{
				/* 
				   Mark process status only if we are in the foreground
				   and the last process in a pipe, and it is not a short circuted builtin
				*/
				if( p->pid )
				{
					int status = proc_format_status(p->status);
					//wprintf(L"setting status %d for %ls\n", job_get_flag( j, JOB_NEGATE )?!status:status, j->command);
					proc_set_last_status( job_get_flag( j, JOB_NEGATE )?!status:status);
				}
			}			
		}
		/* 
		   Put the shell back in the foreground.  
		*/
		if( job_get_flag( j, JOB_TERMINAL ) && job_get_flag( j, JOB_FOREGROUND ) )
		{
			int ok;
			
			signal_block();

			ok = terminal_return_from_job( j );
			
			signal_unblock();
			
			if( !ok )
				return;
			
		}
	}
	
}
Esempio n. 2
0
int job_reap( bool interactive )
{
    ASSERT_IS_MAIN_THREAD();
	job_t *jnext;	
	int found=0;
	
	static int locked = 0;
	
	locked++;	
	
	/*
	  job_read may fire an event handler, we do not want to call
	  ourselves recursively (to avoid infinite recursion).
	*/
	if( locked>1 )
		return 0;
    
    job_iterator_t jobs;
    jnext = jobs.next();
	while (jnext)
    {
        job_t *j = jnext;
        jnext = jobs.next();
		process_t *p;
		
		/*
		  If we are reaping only jobs who do not need status messages
		  sent to the console, do not consider reaping jobs that need
		  status messages
		*/
		if( (!job_get_flag( j, JOB_SKIP_NOTIFICATION ) ) && (!interactive) && (!job_get_flag( j, JOB_FOREGROUND )))
		{
			continue;
		}
	
		for( p=j->first_process; p; p=p->next )
		{
			int s;
			if( !p->completed )
				continue;
			
			if( !p->pid )
				continue;			
			
			s = p->status;
			
			proc_fire_event( L"PROCESS_EXIT", EVENT_EXIT, p->pid, ( WIFSIGNALED(s)?-1:WEXITSTATUS( s )) );			
			
			if( WIFSIGNALED(s) )
			{
				/* 
				   Ignore signal SIGPIPE.We issue it ourselves to the pipe
				   writer when the pipe reader dies.
				*/
				if( WTERMSIG(s) != SIGPIPE )
				{	
					int proc_is_job = ((p==j->first_process) && (p->next == 0));
					if( proc_is_job )
						job_set_flag( j, JOB_NOTIFIED, 1 );
					if( !job_get_flag( j, JOB_SKIP_NOTIFICATION ) )
					{
						if( proc_is_job )
							fwprintf( stdout,
									  _( L"%ls: Job %d, \'%ls\' terminated by signal %ls (%ls)" ),
									  program_name,
									  j->job_id, 
									  j->command_wcstr(),
									  sig2wcs(WTERMSIG(p->status)),
									  signal_get_desc( WTERMSIG(p->status) ) );
						else
							fwprintf( stdout,
									  _( L"%ls: Process %d, \'%ls\' from job %d, \'%ls\' terminated by signal %ls (%ls)" ),
									  program_name,
									  p->pid,
									  p->argv0(),
									  j->job_id,
									  j->command_wcstr(),
									  sig2wcs(WTERMSIG(p->status)),
									  signal_get_desc( WTERMSIG(p->status) ) );
						tputs(clr_eol,1,&writeb);
						fwprintf (stdout, L"\n" );
						found=1;						
					}
					
					/* 
					   Clear status so it is not reported more than once
					*/
					p->status = 0;
				}
			}						
		}
		
		/* 
		   If all processes have completed, tell the user the job has
		   completed and delete it from the active job list.  
		*/
		if( job_is_completed( j ) ) 
		{
			if( !job_get_flag( j, JOB_FOREGROUND) && !job_get_flag( j, JOB_NOTIFIED ) && !job_get_flag( j, JOB_SKIP_NOTIFICATION ) )
			{
				format_job_info( j, _( L"ended" ) );
				found=1;
			}
			proc_fire_event( L"JOB_EXIT", EVENT_EXIT, -j->pgid, 0 );			
			proc_fire_event( L"JOB_EXIT", EVENT_JOB_ID, j->job_id, 0 );			

			job_free(j);
		}		
		else if( job_is_stopped( j ) && !job_get_flag( j, JOB_NOTIFIED ) ) 
		{
			/* 
			   Notify the user about newly stopped jobs. 
			*/
			if( !job_get_flag( j, JOB_SKIP_NOTIFICATION ) )
			{
				format_job_info( j, _( L"stopped" ) );
				found=1;
			}			
			job_set_flag( j, JOB_NOTIFIED, 1 );
		}
	}

	if( found )
		fflush( stdout );

	locked = 0;
	
	return found;	
}
Esempio n. 3
0
int job_reap(bool interactive)
{
    ASSERT_IS_MAIN_THREAD();
    job_t *jnext;
    int found=0;

    /* job_reap may fire an event handler, we do not want to call ourselves recursively (to avoid infinite recursion). */
    static bool locked = false;
    if (locked)
    {
        return 0;
    }
    locked = true;
    
    process_mark_finished_children(false);

    /* Preserve the exit status */
    const int saved_status = proc_get_last_status();

    job_iterator_t jobs;
    const size_t job_count = jobs.count();
    jnext = jobs.next();
    while (jnext)
    {
        job_t *j = jnext;
        jnext = jobs.next();

        /*
          If we are reaping only jobs who do not need status messages
          sent to the console, do not consider reaping jobs that need
          status messages
        */
        if ((!job_get_flag(j, JOB_SKIP_NOTIFICATION)) && (!interactive) && (!job_get_flag(j, JOB_FOREGROUND)))
        {
            continue;
        }

        for (process_t *p = j->first_process; p; p=p->next)
        {
            int s;
            if (!p->completed)
                continue;

            if (!p->pid)
                continue;

            s = p->status;

            proc_fire_event(L"PROCESS_EXIT", EVENT_EXIT, p->pid, (WIFSIGNALED(s)?-1:WEXITSTATUS(s)));

            if (WIFSIGNALED(s))
            {
                /*
                   Ignore signal SIGPIPE.We issue it ourselves to the pipe
                   writer when the pipe reader dies.
                */
                if (WTERMSIG(s) != SIGPIPE)
                {
                    int proc_is_job = ((p==j->first_process) && (p->next == 0));
                    if (proc_is_job)
                        job_set_flag(j, JOB_NOTIFIED, 1);
                    if (!job_get_flag(j, JOB_SKIP_NOTIFICATION))
                    {
                        /* Print nothing if we get SIGINT in the foreground process group, to avoid spamming obvious stuff on the console (#1119). If we get SIGINT for the foreground process, assume the user typed ^C and can see it working. It's possible they didn't, and the signal was delivered via pkill, etc., but the SIGINT/SIGTERM distinction is precisely to allow INT to be from a UI and TERM to be programmatic, so this assumption is keeping with the design of signals.
                        If echoctl is on, then the terminal will have written ^C to the console. If off, it won't have. We don't echo ^C either way, so as to respect the user's preference. */
                        if (WTERMSIG(p->status) != SIGINT || ! job_get_flag(j, JOB_FOREGROUND))
                            {
                            if (proc_is_job)
                            {
                                // We want to report the job number, unless it's the only job, in which case we don't need to
                                const wcstring job_number_desc = (job_count == 1) ? wcstring() : format_string(L"Job %d, ", j->job_id);
                                fwprintf(stdout,
                                         _(L"%ls: %ls\'%ls\' terminated by signal %ls (%ls)"),
                                         program_name,
                                         job_number_desc.c_str(),
                                         truncate_command(j->command()).c_str(),
                                         sig2wcs(WTERMSIG(p->status)),
                                         signal_get_desc(WTERMSIG(p->status)));
                            }
                            else
                            {
                                const wcstring job_number_desc = (job_count == 1) ? wcstring() : format_string(L"from job %d, ", j->job_id);
                                fwprintf(stdout,
                                         _(L"%ls: Process %d, \'%ls\' %ls\'%ls\' terminated by signal %ls (%ls)"),
                                         program_name,
                                         p->pid,
                                         p->argv0(),
                                         job_number_desc.c_str(),
                                         truncate_command(j->command()).c_str(),
                                         sig2wcs(WTERMSIG(p->status)),
                                         signal_get_desc(WTERMSIG(p->status)));
                            }
                            tputs(clr_eol,1,&writeb);
                            fwprintf(stdout, L"\n");
                        }
                        found=1;
                    }

                    /*
                       Clear status so it is not reported more than once
                    */
                    p->status = 0;
                }
            }
        }

        /*
           If all processes have completed, tell the user the job has
           completed and delete it from the active job list.
        */
        if (job_is_completed(j))
        {
            if (!job_get_flag(j, JOB_FOREGROUND) && !job_get_flag(j, JOB_NOTIFIED) && !job_get_flag(j, JOB_SKIP_NOTIFICATION))
            {
                format_job_info(j, _(L"ended"), job_count);
                found=1;
            }
            proc_fire_event(L"JOB_EXIT", EVENT_EXIT, -j->pgid, 0);
            proc_fire_event(L"JOB_EXIT", EVENT_JOB_ID, j->job_id, 0);

            job_free(j);
        }
        else if (job_is_stopped(j) && !job_get_flag(j, JOB_NOTIFIED))
        {
            /*
               Notify the user about newly stopped jobs.
            */
            if (!job_get_flag(j, JOB_SKIP_NOTIFICATION))
            {
                format_job_info(j, _(L"stopped"), job_count);
                found=1;
            }
            job_set_flag(j, JOB_NOTIFIED, 1);
        }
    }

    if (found)
        fflush(stdout);

    /* Restore the exit status. */
    proc_set_last_status(saved_status);

    locked = false;

    return found;
}
Esempio n. 4
0
File: exec.c Progetto: CodeMonk/fish
void exec( job_t *j )
{
	process_t *p;
	pid_t pid;
	int mypipe[2];
	sigset_t chldset; 
	int skip_fork;
	
	io_data_t pipe_read, pipe_write;
	io_data_t *tmp;

	io_data_t *io_buffer =0;

	/*
	  Set to 1 if something goes wrong while exec:ing the job, in
	  which case the cleanup code will kick in.
	*/
	int exec_error=0;

	int needs_keepalive = 0;
	process_t keepalive;
	

	CHECK( j, );
	CHECK_BLOCK();
	
	if( no_exec )
		return;
	
	sigemptyset( &chldset );
	sigaddset( &chldset, SIGCHLD );
	
	debug( 4, L"Exec job '%ls' with id %d", j->command, j->job_id );	
	
	if( block_io )
	{
		if( j->io )
		{
			j->io = io_add( io_duplicate( j, block_io), j->io );
		}
		else
		{
			j->io=io_duplicate( j, block_io);				
		}
	}

	
	io_data_t *input_redirect;

	for( input_redirect = j->io; input_redirect; input_redirect = input_redirect->next )
	{
		if( (input_redirect->io_mode == IO_BUFFER) && 
			input_redirect->is_input )
		{
			/*
			  Input redirection - create a new gobetween process to take
			  care of buffering
			*/
			process_t *fake = halloc( j, sizeof(process_t) );
			fake->type = INTERNAL_BUFFER;
			fake->pipe_write_fd = 1;
			j->first_process->pipe_read_fd = input_redirect->fd;
			fake->next = j->first_process;
			j->first_process = fake;
			break;
		}
	}
	
	if( j->first_process->type==INTERNAL_EXEC )
	{
		/*
		  Do a regular launch -  but without forking first...
		*/
		signal_block();

		/*
		  setup_child_process makes sure signals are properly set
		  up. It will also call signal_unblock
		*/
		if( !setup_child_process( j, 0 ) )
		{
			/*
			  launch_process _never_ returns
			*/
			launch_process( j->first_process );
		}
		else
		{
			job_set_flag( j, JOB_CONSTRUCTED, 1 );
			j->first_process->completed=1;
			return;
		}

	}	

	pipe_read.fd=0;
	pipe_write.fd=1;
	pipe_read.io_mode=IO_PIPE;
	pipe_read.param1.pipe_fd[0] = -1;
	pipe_read.param1.pipe_fd[1] = -1;
	pipe_read.is_input = 1;

	pipe_write.io_mode=IO_PIPE;
	pipe_write.is_input = 0;
	pipe_read.next=0;
	pipe_write.next=0;
	pipe_write.param1.pipe_fd[0]=pipe_write.param1.pipe_fd[1]=-1;
	
	j->io = io_add( j->io, &pipe_write );
	
	signal_block();

	/*
	  See if we need to create a group keepalive process. This is
	  a process that we create to make sure that the process group
	  doesn't die accidentally, and is often needed when a
	  builtin/block/function is inside a pipeline, since that
	  usually means we have to wait for one program to exit before
	  continuing in the pipeline, causing the group leader to
	  exit.
	*/
	
	if( job_get_flag( j, JOB_CONTROL ) )
	{
		for( p=j->first_process; p; p = p->next )
		{
			if( p->type != EXTERNAL )
			{
				if( p->next )
				{
					needs_keepalive = 1;
					break;
				}
				if( p != j->first_process )
				{
					needs_keepalive = 1;
					break;
				}
				
			}
			
		}
	}
		
	if( needs_keepalive )
	{
		keepalive.pid = exec_fork();

		if( keepalive.pid == 0 )
		{
			keepalive.pid = getpid();
			set_child_group( j, &keepalive, 1 );
			pause();			
			exit(0);
		}
		else
		{
			set_child_group( j, &keepalive, 0 );			
		}
	}
	
	/*
	  This loop loops over every process_t in the job, starting it as
	  appropriate. This turns out to be rather complex, since a
	  process_t can be one of many rather different things.

	  The loop also has to handle pipelining between the jobs.
	*/

	for( p=j->first_process; p; p = p->next )
	{
		mypipe[1]=-1;
		skip_fork=0;
		
		pipe_write.fd = p->pipe_write_fd;
		pipe_read.fd = p->pipe_read_fd;
//		debug( 0, L"Pipe created from fd %d to fd %d", pipe_write.fd, pipe_read.fd );
		

		/* 
		   This call is used so the global environment variable array
		   is regenerated, if needed, before the fork. That way, we
		   avoid a lot of duplicate work where EVERY child would need
		   to generate it, since that result would not get written
		   back to the parent. This call could be safely removed, but
		   it would result in slightly lower performance - at least on
		   uniprocessor systems.
		*/
		if( p->type == EXTERNAL )
			env_export_arr( 1 );
		
		
		/*
		  Set up fd:s that will be used in the pipe 
		*/
		
		if( p == j->first_process->next )
		{
			j->io = io_add( j->io, &pipe_read );
		}
		
		if( p->next )
		{
//			debug( 1, L"%ls|%ls" , p->argv[0], p->next->argv[0]);
			
			if( exec_pipe( mypipe ) == -1 )
			{
				debug( 1, PIPE_ERROR );
				wperror (L"pipe");
				exec_error=1;
				break;
			}

			memcpy( pipe_write.param1.pipe_fd, mypipe, sizeof(int)*2);
		}
		else
		{
			/*
			  This is the last element of the pipeline.
			  Remove the io redirection for pipe output.
			*/
			j->io = io_remove( j->io, &pipe_write );
			
		}

		switch( p->type )
		{
			case INTERNAL_FUNCTION:
			{
				const wchar_t * orig_def;
				wchar_t * def=0;
				array_list_t *named_arguments;
				int shadows;
				

				/*
				  Calls to function_get_definition might need to
				  source a file as a part of autoloading, hence there
				  must be no blocks.
				*/

				signal_unblock();
				orig_def = function_get_definition( p->argv[0] );
				named_arguments = function_get_named_arguments( p->argv[0] );
				shadows = function_get_shadows( p->argv[0] );

				signal_block();
				
				if( orig_def )
				{
					def = halloc_register( j, wcsdup(orig_def) );
				}
				if( def == 0 )
				{
					debug( 0, _( L"Unknown function '%ls'" ), p->argv[0] );
					break;
				}

				parser_push_block( shadows?FUNCTION_CALL:FUNCTION_CALL_NO_SHADOW );
				
				current_block->param2.function_call_process = p;
				current_block->param1.function_call_name = halloc_register( current_block, wcsdup( p->argv[0] ) );
						

				/*
				  set_argv might trigger an event
				  handler, hence we need to unblock
				  signals.
				*/
				signal_unblock();
				parse_util_set_argv( p->argv+1, named_arguments );
				signal_block();
								
				parser_forbid_function( p->argv[0] );

				if( p->next )
				{
					io_buffer = io_buffer_create( 0 );					
					j->io = io_add( j->io, io_buffer );
				}
				
				internal_exec_helper( def, TOP, j->io );
				
				parser_allow_function();
				parser_pop_block();
				
				break;				
			}
			
			case INTERNAL_BLOCK:
			{
				if( p->next )
				{
					io_buffer = io_buffer_create( 0 );					
					j->io = io_add( j->io, io_buffer );
				}
								
				internal_exec_helper( p->argv[0], TOP, j->io );			
				break;
				
			}

			case INTERNAL_BUILTIN:
			{
				int builtin_stdin=0;
				int fg;
				int close_stdin=0;

				/*
				  If this is the first process, check the io
				  redirections and see where we should be reading
				  from.
				*/
				if( p == j->first_process )
				{
					io_data_t *in = io_get( j->io, 0 );
					
					if( in )
					{
						switch( in->io_mode )
						{
							
							case IO_FD:
							{
								builtin_stdin = in->param1.old_fd;
								break;
							}
							case IO_PIPE:
							{
								builtin_stdin = in->param1.pipe_fd[0];
								break;
							}
							
							case IO_FILE:
							{
								builtin_stdin=wopen( in->param1.filename,
                                              in->param2.flags, OPEN_MASK );
								if( builtin_stdin == -1 )
								{
									debug( 1, 
										   FILE_ERROR,
										   in->param1.filename );
									wperror( L"open" );
								}
								else
								{
									close_stdin = 1;
								}
								
								break;
							}
	
							case IO_CLOSE:
							{
								/*
								  FIXME:

								  When
								  requesting
								  that
								  stdin
								  be
								  closed,
								  we
								  really
								  don't
								  do
								  anything. How
								  should
								  this
								  be
								  handled?
								 */
								builtin_stdin = -1;
								
								break;
							}
							
							default:
							{
								builtin_stdin=-1;
								debug( 1, 
									   _( L"Unknown input redirection type %d" ),
									   in->io_mode);
								break;
							}
						
						}
					}
				}
				else
				{
					builtin_stdin = pipe_read.param1.pipe_fd[0];
				}

				if( builtin_stdin == -1 )
				{
					exec_error=1;
					break;
				}
				else
				{
					int old_out = builtin_out_redirect;
					int old_err = builtin_err_redirect;

					/* 
					   Since this may be the foreground job, and since
					   a builtin may execute another foreground job,
					   we need to pretend to suspend this job while
					   running the builtin, in order to avoid a
					   situation where two jobs are running at once.

					   The reason this is done here, and not by the
					   relevant builtins, is that this way, the
					   builtin does not need to know what job it is
					   part of. It could probably figure that out by
					   walking the job list, but it seems more robust
					   to make exec handle things.
					*/
					
					builtin_push_io( builtin_stdin );
					
					builtin_out_redirect = has_fd( j->io, 1 );
					builtin_err_redirect = has_fd( j->io, 2 );		

					fg = job_get_flag( j, JOB_FOREGROUND );
					job_set_flag( j, JOB_FOREGROUND, 0 );
					
					signal_unblock();
					
					p->status = builtin_run( p->argv, j->io );
					
					builtin_out_redirect=old_out;
					builtin_err_redirect=old_err;
					
					signal_block();
					
					/*
					  Restore the fg flag, which is temporarily set to
					  false during builtin execution so as not to confuse
					  some job-handling builtins.
					*/
					job_set_flag( j, JOB_FOREGROUND, fg );
				}
				
				/*
				  If stdin has been redirected, close the redirection
				  stream.
				*/
				if( close_stdin )
				{
					exec_close( builtin_stdin );
				}				
				break;				
			}
		}
		
		if( exec_error )
		{
			break;
		}
		
		switch( p->type )
		{

			case INTERNAL_BLOCK:
			case INTERNAL_FUNCTION:
			{
				int status = proc_get_last_status();
						
				/*
				  Handle output from a block or function. This usually
				  means do nothing, but in the case of pipes, we have
				  to buffer such io, since otherwise the internal pipe
				  buffer might overflow.
				*/
				if( !io_buffer )
				{
					/*
					  No buffer, so we exit directly. This means we
					  have to manually set the exit status.
					*/
					if( p->next == 0 )
					{
						proc_set_last_status( job_get_flag( j, JOB_NEGATE )?(!status):status);
					}
					p->completed = 1;
					break;
				}

				j->io = io_remove( j->io, io_buffer );
				
				io_buffer_read( io_buffer );
				
				if( io_buffer->param2.out_buffer->used != 0 )
				{
					pid = exec_fork();

					if( pid == 0 )
					{
						
						/*
						  This is the child process. Write out the contents of the pipeline.
						*/
						p->pid = getpid();
						setup_child_process( j, p );

						exec_write_and_exit(io_buffer->fd, 
											io_buffer->param2.out_buffer->buff,
											io_buffer->param2.out_buffer->used,
											status);
					}
					else
					{
						/* 
						   This is the parent process. Store away
						   information on the child, and possibly give
						   it control over the terminal.
						*/
						p->pid = pid;						
						set_child_group( j, p, 0 );
												
					}					
					
				}
				else
				{
					if( p->next == 0 )
					{
						proc_set_last_status( job_get_flag( j, JOB_NEGATE )?(!status):status);
					}
					p->completed = 1;
				}
				
				io_buffer_destroy( io_buffer );
				
				io_buffer=0;
				break;
				
			}


			case INTERNAL_BUFFER:
			{
		
				pid = exec_fork();
				
				if( pid == 0 )
				{
					/*
					  This is the child process. Write out the
					  contents of the pipeline.
					*/
					p->pid = getpid();
					setup_child_process( j, p );
					
					exec_write_and_exit( 1,
										 input_redirect->param2.out_buffer->buff, 
										 input_redirect->param2.out_buffer->used,
										 0);
				}
				else
				{
					/* 
					   This is the parent process. Store away
					   information on the child, and possibly give
					   it control over the terminal.
					*/
					p->pid = pid;						
					set_child_group( j, p, 0 );	
				}	

				break;				
			}
			
			case INTERNAL_BUILTIN:
			{
				int skip_fork;
				
				/*
				  Handle output from builtin commands. In the general
				  case, this means forking of a worker process, that
				  will write out the contents of the stdout and stderr
				  buffers to the correct file descriptor. Since
				  forking is expensive, fish tries to avoid it wehn
				  possible.
				*/

				/*
				  If a builtin didn't produce any output, and it is
				  not inside a pipeline, there is no need to fork
				*/
				skip_fork =
					( !sb_out->used ) &&
					( !sb_err->used ) &&
					( !p->next );
	
				/*
				  If the output of a builtin is to be sent to an internal
				  buffer, there is no need to fork. This helps out the
				  performance quite a bit in complex completion code.
				*/

				io_data_t *io = io_get( j->io, 1 );
				int buffer_stdout = io && io->io_mode == IO_BUFFER;
				
				if( ( !sb_err->used ) && 
					( !p->next ) &&
					( sb_out->used ) && 
					( buffer_stdout ) )
				{
					char *res = wcs2str( (wchar_t *)sb_out->buff );
					b_append( io->param2.out_buffer, res, strlen( res ) );
					skip_fork = 1;
					free( res );
				}

				for( io = j->io; io; io=io->next )
				{
					if( io->io_mode == IO_FILE && wcscmp(io->param1.filename, L"/dev/null" ))
					{
						skip_fork = 0;
					}
				}
				
				if( skip_fork )
				{
					p->completed=1;
					if( p->next == 0 )
					{
						debug( 3, L"Set status of %ls to %d using short circut", j->command, p->status );
						
						int status = proc_format_status(p->status);
						proc_set_last_status( job_get_flag( j, JOB_NEGATE )?(!status):status );
					}
					break;
				}

				/*
				  Ok, unfortunatly, we have to do a real fork. Bummer.
				*/
								
				pid = exec_fork();
				if( pid == 0 )
				{

					/*
					  This is the child process. Setup redirections,
					  print correct output to stdout and stderr, and
					  then exit.
					*/
					p->pid = getpid();
					setup_child_process( j, p );
					do_builtin_io( sb_out->used ? (wchar_t *)sb_out->buff : 0, sb_err->used ? (wchar_t *)sb_err->buff : 0 );
					
					exit( p->status );
						
				}
				else
				{
					/* 
					   This is the parent process. Store away
					   information on the child, and possibly give
					   it control over the terminal.
					*/
					p->pid = pid;
						
					set_child_group( j, p, 0 );
										
				}					
				
				break;
			}
			
			case EXTERNAL:
			{
				pid = exec_fork();
				if( pid == 0 )
				{
					/*
					  This is the child process. 
					*/
					p->pid = getpid();
					setup_child_process( j, p );
					launch_process( p );
					
					/*
					  launch_process _never_ returns...
					*/
				}
				else
				{
					/* 
					   This is the parent process. Store away
					   information on the child, and possibly fice
					   it control over the terminal.
					*/
					p->pid = pid;

					set_child_group( j, p, 0 );
															
				}
				break;
			}
			
		}

		if( p->type == INTERNAL_BUILTIN )
			builtin_pop_io();
				
		/* 
		   Close the pipe the current process uses to read from the
		   previous process_t
		*/
		if( pipe_read.param1.pipe_fd[0] >= 0 )
			exec_close( pipe_read.param1.pipe_fd[0] );
		/* 
		   Set up the pipe the next process uses to read from the
		   current process_t
		*/
		if( p->next )
			pipe_read.param1.pipe_fd[0] = mypipe[0];
		
		/* 
		   If there is a next process in the pipeline, close the
		   output end of the current pipe (the surrent child
		   subprocess already has a copy of the pipe - this makes sure
		   we don't leak file descriptors either in the shell or in
		   the children).
		*/
		if( p->next )
		{
			exec_close(mypipe[1]);
		}		
	}

	/*
	  The keepalive process is no longer needed, so we terminate it
	  with extreme prejudice
	*/
	if( needs_keepalive )
	{
		kill( keepalive.pid, SIGKILL );
	}
	
	signal_unblock();	

	debug( 3, L"Job is constructed" );

	j->io = io_remove( j->io, &pipe_read );

	for( tmp = block_io; tmp; tmp=tmp->next )
		j->io = io_remove( j->io, tmp );
	
	job_set_flag( j, JOB_CONSTRUCTED, 1 );

	if( !job_get_flag( j, JOB_FOREGROUND ) )
	{
		proc_last_bg_pid = j->pgid;
	}

	if( !exec_error )
	{
		job_continue (j, 0);
	}
	
}
Esempio n. 5
0
void job_continue(job_t *j, bool cont)
{
    /*
      Put job first in the job list
    */
    job_promote(j);
    job_set_flag(j, JOB_NOTIFIED, 0);

    CHECK_BLOCK();

    debug(4,
          L"Continue job %d, gid %d (%ls), %ls, %ls",
          j->job_id,
          j->pgid,
          j->command_wcstr(),
          job_is_completed(j)?L"COMPLETED":L"UNCOMPLETED",
          is_interactive?L"INTERACTIVE":L"NON-INTERACTIVE");

    if (!job_is_completed(j))
    {
        if (job_get_flag(j, JOB_TERMINAL) && job_get_flag(j, JOB_FOREGROUND))
        {
            /* Put the job into the foreground. Hack: ensure that stdin is marked as blocking first (#176). */
            make_fd_blocking(STDIN_FILENO);

            signal_block();

            bool ok = terminal_give_to_job(j, cont);

            signal_unblock();

            if (!ok)
                return;
        }

        /*
           Send the job a continue signal, if necessary.
        */
        if (cont)
        {
            process_t *p;

            for (p=j->first_process; p; p=p->next)
                p->stopped=0;

            if (job_get_flag(j, JOB_CONTROL))
            {
                if (killpg(j->pgid, SIGCONT))
                {
                    wperror(L"killpg (SIGCONT)");
                    return;
                }
            }
            else
            {
                for (p=j->first_process; p; p=p->next)
                {
                    if (kill(p->pid, SIGCONT) < 0)
                    {
                        wperror(L"kill (SIGCONT)");
                        return;
                    }
                }
            }
        }

        if (job_get_flag(j, JOB_FOREGROUND))
        {
            /* Look for finished processes first, to avoid select() if it's already done. */
            process_mark_finished_children(false);

            /*
               Wait for job to report.
            */
            while (! reader_exit_forced() && ! job_is_stopped(j) && ! job_is_completed(j))
            {
//					debug( 1, L"select_try()" );
                switch (select_try(j))
                {
                    case 1:
                    {
                        read_try(j);
                        process_mark_finished_children(false);
                        break;
                    }
                    
                    case 0:
                    {
                        /* No FDs are ready. Look for finished processes. */
                        process_mark_finished_children(false);
                        break;
                    }

                    case -1:
                    {
                        /*
                          If there is no funky IO magic, we can use
                          waitpid instead of handling child deaths
                          through signals. This gives a rather large
                          speed boost (A factor 3 startup time
                          improvement on my 300 MHz machine) on
                          short-lived jobs.
                         
                          This will return early if we get a signal,
                          like SIGHUP.
                        */
                        process_mark_finished_children(true);
                        break;
                    }
                }
            }
        }
    }

    if (job_get_flag(j, JOB_FOREGROUND))
    {

        if (job_is_completed(j))
        {

            // It's possible that the job will produce output and exit before we've even read from it.
            // We'll eventually read the output, but it may be after we've executed subsequent calls
            // This is why my prompt colors kept getting screwed up - the builtin echo calls
            // were sometimes having their output combined with the set_color calls in the wrong order!
            read_try(j);

            process_t *p = j->first_process;
            while (p->next)
                p = p->next;

            if (WIFEXITED(p->status) || WIFSIGNALED(p->status))
            {
                /*
                   Mark process status only if we are in the foreground
                   and the last process in a pipe, and it is not a short circuited builtin
                */
                if (p->pid)
                {
                    int status = proc_format_status(p->status);
                    //wprintf(L"setting status %d for %ls\n", job_get_flag( j, JOB_NEGATE )?!status:status, j->command);
                    proc_set_last_status(job_get_flag(j, JOB_NEGATE)?!status:status);
                }
            }
        }

        /* Put the shell back in the foreground. */
        if (job_get_flag(j, JOB_TERMINAL) && job_get_flag(j, JOB_FOREGROUND))
        {
            int ok;

            signal_block();

            ok = terminal_return_from_job(j);

            signal_unblock();

            if (!ok)
                return;

        }
    }

}