Esempio n. 1
0
status_t
add_safe_mode_settings(char* settings)
{
	if (settings == NULL || settings[0] == '\0')
		return B_OK;

	size_t length = strlen(settings);
	char* buffer = (char*)kernel_args_malloc(length + 1);
	if (buffer == NULL)
		return B_NO_MEMORY;

	driver_settings_file* file = (driver_settings_file*)kernel_args_malloc(
		sizeof(driver_settings_file));
	if (file == NULL) {
		kernel_args_free(buffer);
		return B_NO_MEMORY;
	}

	strlcpy(file->name, B_SAFEMODE_DRIVER_SETTINGS, sizeof(file->name));
	memcpy(buffer, settings, length + 1);
	file->buffer = buffer;
	file->size = length;

	// add it to the list
	file->next = gKernelArgs.driver_settings;
	gKernelArgs.driver_settings = file;

	return B_OK;
}
Esempio n. 2
0
extern "C" void
platform_start_kernel(void)
{
	preloaded_elf32_image *image = static_cast<preloaded_elf32_image *>(
		gKernelArgs.kernel_image.Pointer());

	addr_t kernelEntry = image->elf_header.e_entry;
	addr_t stackTop
		= gKernelArgs.cpu_kstack[0].start + gKernelArgs.cpu_kstack[0].size;

	// clone the Flattened Device Tree blob into the kernel args if we've got it
	if (gFDT) {
		size_t fdtSize = fdt_totalsize(gFDT);
		gKernelArgs.platform_args.fdt = kernel_args_malloc(fdtSize);
		memcpy(gKernelArgs.platform_args.fdt, gFDT, fdtSize);
	}

//	smp_init_other_cpus();
	serial_cleanup();
	mmu_init_for_kernel();
//	smp_boot_other_cpus();

	dprintf("kernel entry at %lx\n", kernelEntry);

	status_t error = arch_start_kernel(&gKernelArgs, kernelEntry,
		stackTop);

	panic("kernel returned %lx!\n", error);
}
Esempio n. 3
0
/*static*/ status_t
ELFLoader<Class>::Create(int fd, preloaded_image** _image)
{
	ImageType* image = (ImageType*)kernel_args_malloc(sizeof(ImageType));
	if (image == NULL)
		return B_NO_MEMORY;

	ssize_t length = read_pos(fd, 0, &image->elf_header, sizeof(EhdrType));
	if (length < (ssize_t)sizeof(EhdrType)) {
		kernel_args_free(image);
		return B_BAD_TYPE;
	}

	const EhdrType& elfHeader = image->elf_header;

	if (memcmp(elfHeader.e_ident, ELF_MAGIC, 4) != 0
		|| elfHeader.e_ident[4] != Class::kIdentClass
		|| elfHeader.e_phoff == 0
		|| !elfHeader.IsHostEndian()
		|| elfHeader.e_phentsize != sizeof(PhdrType)) {
		kernel_args_free(image);
		return B_BAD_TYPE;
	}

	image->elf_class = elfHeader.e_ident[EI_CLASS];

	*_image = image;
	return B_OK;
}
Esempio n. 4
0
extern "C" void
serial_cleanup(void)
{
	if (sSerialEnabled <= 0)
		return;

	gKernelArgs.debug_output = kernel_args_malloc(sBufferPosition);
	if (gKernelArgs.debug_output != NULL) {
		memcpy(gKernelArgs.debug_output, sBuffer, sBufferPosition);
		gKernelArgs.debug_size = sBufferPosition;
	}
}
Esempio n. 5
0
static status_t
load_driver_settings_file(Directory* directory, const char* name)
{
	int fd = open_from(directory, name, O_RDONLY);
	if (fd < 0)
		return fd;

	struct stat stat;
	if (fstat(fd, &stat) < 0)
		return errno;

	char* buffer = (char*)kernel_args_malloc(stat.st_size + 1);
	if (buffer == NULL)
		return B_NO_MEMORY;

	if (read(fd, buffer, stat.st_size) != stat.st_size)
		return B_IO_ERROR;

	driver_settings_file* file = (driver_settings_file*)kernel_args_malloc(
		sizeof(driver_settings_file));
	if (file == NULL) {
		kernel_args_free(buffer);
		return B_NO_MEMORY;
	}

	buffer[stat.st_size] = '\0';
		// null terminate the buffer

	strlcpy(file->name, name, sizeof(file->name));
	file->buffer = buffer;
	file->size = stat.st_size;

	// add it to the list
	file->next = gKernelArgs.driver_settings;
	gKernelArgs.driver_settings = file;

	return B_OK;
}
Esempio n. 6
0
/*!	Convenience function that copies strdup() functions for the
	kernel args heap.
*/
extern "C" char *
kernel_args_strdup(const char *string)
{
	if (string == NULL || string[0] == '\0')
		return NULL;

	size_t length = strlen(string) + 1;

	char *target = (char *)kernel_args_malloc(length);
	if (target == NULL)
		return NULL;

	memcpy(target, string, length);
	return target;
}
Esempio n. 7
0
status_t
elf_load_image(Directory *directory, const char *path)
{
	preloaded_image *image;

	TRACE(("elf_load_image(directory = %p, \"%s\")\n", directory, path));

	int fd = open_from(directory, path, O_RDONLY);
	if (fd < 0)
		return fd;

	// check if this file has already been loaded

	struct stat stat;
	if (fstat(fd, &stat) < 0)
		return errno;

	image = gKernelArgs.preloaded_images;
	for (; image != NULL; image = image->next) {
		if (image->inode == stat.st_ino) {
			// file has already been loaded, no need to load it twice!
			close(fd);
			return B_OK;
		}
	}

	// we still need to load it, so do it

	image = (preloaded_image *)kernel_args_malloc(sizeof(preloaded_image));
	if (image == NULL) {
		close(fd);
		return B_NO_MEMORY;
	}

	status_t status = elf_load_image(fd, image);
	if (status == B_OK) {
		image->name = kernel_args_strdup(path);
		image->inode = stat.st_ino;

		// insert to kernel args
		image->next = gKernelArgs.preloaded_images;
		gKernelArgs.preloaded_images = image;
	} else
		kernel_args_free(image);

	close(fd);
	return status;
}
Esempio n. 8
0
/*static*/ status_t
ELFLoader<Class>::_LoadSymbolTable(int fd, ImageType* image)
{
	const EhdrType& elfHeader = image->elf_header;
	SymType* symbolTable = NULL;
	ShdrType* stringHeader = NULL;
	uint32 numSymbols = 0;
	char* stringTable;
	status_t status;

	// get section headers

	ssize_t size = elfHeader.e_shnum * elfHeader.e_shentsize;
	ShdrType* sectionHeaders = (ShdrType*)malloc(size);
	if (sectionHeaders == NULL) {
		dprintf("error allocating space for section headers\n");
		return B_NO_MEMORY;
	}

	ssize_t length = read_pos(fd, elfHeader.e_shoff, sectionHeaders, size);
	if (length < size) {
		TRACE(("error reading in program headers\n"));
		status = B_ERROR;
		goto error1;
	}

	// find symbol table in section headers

	for (int32 i = 0; i < elfHeader.e_shnum; i++) {
		if (sectionHeaders[i].sh_type == SHT_SYMTAB) {
			stringHeader = &sectionHeaders[sectionHeaders[i].sh_link];

			if (stringHeader->sh_type != SHT_STRTAB) {
				TRACE(("doesn't link to string table\n"));
				status = B_BAD_DATA;
				goto error1;
			}

			// read in symbol table
			size = sectionHeaders[i].sh_size;
			symbolTable = (SymType*)kernel_args_malloc(size);
			if (symbolTable == NULL) {
				status = B_NO_MEMORY;
				goto error1;
			}

			length = read_pos(fd, sectionHeaders[i].sh_offset, symbolTable,
				size);
			if (length < size) {
				TRACE(("error reading in symbol table\n"));
				status = B_ERROR;
				goto error1;
			}

			numSymbols = size / sizeof(SymType);
			break;
		}
	}

	if (symbolTable == NULL) {
		TRACE(("no symbol table\n"));
		status = B_BAD_VALUE;
		goto error1;
	}

	// read in string table

	size = stringHeader->sh_size;
	stringTable = (char*)kernel_args_malloc(size);
	if (stringTable == NULL) {
		status = B_NO_MEMORY;
		goto error2;
	}

	length = read_pos(fd, stringHeader->sh_offset, stringTable, size);
	if (length < size) {
		TRACE(("error reading in string table\n"));
		status = B_ERROR;
		goto error3;
	}

	TRACE(("loaded %ld debug symbols\n", numSymbols));

	// insert tables into image
	image->debug_symbols = symbolTable;
	image->num_debug_symbols = numSymbols;
	image->debug_string_table = stringTable;
	image->debug_string_table_size = size;

	free(sectionHeaders);
	return B_OK;

error3:
	kernel_args_free(stringTable);
error2:
	kernel_args_free(symbolTable);
error1:
	free(sectionHeaders);

	return status;
}
Esempio n. 9
0
extern "C" int
main(stage2_args *args)
{
	TRACE(("boot(): enter\n"));

	if (heap_init(args) < B_OK)
		panic("Could not initialize heap!\n");

	TRACE(("boot(): heap initialized...\n"));

	// set debug syslog default
#if KDEBUG_ENABLE_DEBUG_SYSLOG
	gKernelArgs.keep_debug_output_buffer = true;
#endif

	add_stage2_driver_settings(args);

	platform_init_video();

	// the main platform dependent initialisation
	// has already taken place at this point.

	if (vfs_init(args) < B_OK)
		panic("Could not initialize VFS!\n");

	dprintf("Welcome to the Haiku boot loader!\n");

	bool mountedAllVolumes = false;

	Directory *volume = get_boot_file_system(args);

	if (volume == NULL || (platform_boot_options() & BOOT_OPTION_MENU) != 0) {
		if (volume == NULL)
			puts("\tno boot path found, scan for all partitions...\n");

		if (mount_file_systems(args) < B_OK) {
			// That's unfortunate, but we still give the user the possibility
			// to insert a CD-ROM or just rescan the available devices
			puts("Could not locate any supported boot devices!\n");
		}

		// ToDo: check if there is only one bootable volume!

		mountedAllVolumes = true;

		if (user_menu(&volume) < B_OK) {
			// user requested to quit the loader
			goto out;
		}
	}

	if (volume != NULL) {
		// we got a volume to boot from!
		status_t status;
		while ((status = load_kernel(args, volume)) < B_OK) {
			// loading the kernel failed, so let the user choose another
			// volume to boot from until it works
			volume = NULL;

			if (!mountedAllVolumes) {
				// mount all other file systems, if not already happened
				if (mount_file_systems(args) < B_OK)
					panic("Could not locate any supported boot devices!\n");

				mountedAllVolumes = true;
			}

			if (user_menu(&volume) < B_OK || volume == NULL) {
				// user requested to quit the loader
				goto out;
			}
		}

		// if everything is okay, continue booting; the kernel
		// is already loaded at this point and we definitely
		// know our boot volume, too
		if (status == B_OK) {
			register_boot_file_system(volume);

			if ((platform_boot_options() & BOOT_OPTION_DEBUG_OUTPUT) == 0)
				platform_switch_to_logo();

			load_modules(args, volume);
			load_driver_settings(args, volume);

			// apply boot settings
			apply_boot_settings();

			// set up kernel args version info
			gKernelArgs.kernel_args_size = sizeof(kernel_args);
			gKernelArgs.version = CURRENT_KERNEL_ARGS_VERSION;

			// clone the boot_volume KMessage into kernel accessible memory
			// note, that we need to 4 byte align the buffer and thus allocate
			// 3 more bytes
			void* buffer = kernel_args_malloc(gBootVolume.ContentSize() + 3);
			if (!buffer) {
				panic("Could not allocate memory for the boot volume kernel "
					"arguments");
			}

			buffer = (void*)(((addr_t)buffer + 3) & ~(addr_t)0x3);
			memcpy(buffer, gBootVolume.Buffer(), gBootVolume.ContentSize());
			gKernelArgs.boot_volume = buffer;
			gKernelArgs.boot_volume_size = gBootVolume.ContentSize();

			// ToDo: cleanup, heap_release() etc.
			platform_start_kernel();
		}
	}

out:
	heap_release(args);
	return 0;
}
Esempio n. 10
0
extern "C" status_t
video_display_splash(addr_t frameBuffer)
{
	if (!gKernelArgs.frame_buffer.enabled)
		return B_NO_INIT;

	// clear the video memory
	memset((void*)frameBuffer, 0,
		gKernelArgs.frame_buffer.physical_buffer.size);

	uint8* uncompressedLogo = NULL;
	unsigned int uncompressedSize = kSplashLogoWidth * kSplashLogoHeight;
	switch (gKernelArgs.frame_buffer.depth) {
		case 8:
			platform_set_palette(k8BitPalette);
			uncompressedLogo = (uint8*)kernel_args_malloc(uncompressedSize);
			if (uncompressedLogo == NULL)
				return B_NO_MEMORY;

			uncompress(kSplashLogo8BitCompressedImage,
				sizeof(kSplashLogo8BitCompressedImage), uncompressedLogo,
				uncompressedSize);
		break;
		default: // 24 bits is assumed here
			uncompressedSize *= 3;
			uncompressedLogo = (uint8*)kernel_args_malloc(uncompressedSize);
			if (uncompressedLogo == NULL)
				return B_NO_MEMORY;

			uncompress(kSplashLogo24BitCompressedImage,
				sizeof(kSplashLogo24BitCompressedImage), uncompressedLogo,
				uncompressedSize);
		break;
	}

	// TODO: support 4-bit indexed version of the images!

	// render splash logo
	uint16 iconsHalfHeight = kSplashIconsHeight / 2;

	int width = min_c(kSplashLogoWidth, gKernelArgs.frame_buffer.width);
	int height = min_c(kSplashLogoHeight + iconsHalfHeight,
		gKernelArgs.frame_buffer.height);
	int placementX = max_c(0, min_c(100, kSplashLogoPlacementX));
	int placementY = max_c(0, min_c(100, kSplashLogoPlacementY));

	int x = (gKernelArgs.frame_buffer.width - width) * placementX / 100;
	int y = (gKernelArgs.frame_buffer.height - height) * placementY / 100;

	height = min_c(kSplashLogoHeight, gKernelArgs.frame_buffer.height);
	switch (gKernelArgs.frame_buffer.depth) {
		case 8:
			break;
	}
	video_blit_image(frameBuffer, uncompressedLogo, width, height,
		kSplashLogoWidth, x, y);

	kernel_args_free(uncompressedLogo);

	const uint8* lowerHalfIconImage;
	uncompressedSize = kSplashIconsWidth * kSplashIconsHeight;
	switch (gKernelArgs.frame_buffer.depth) {
		case 8:
			// pointer into the lower half of the icons image data
			gKernelArgs.boot_splash
				= (uint8*)kernel_args_malloc(uncompressedSize);
			if (gKernelArgs.boot_splash == NULL)
				return B_NO_MEMORY;
			uncompress(kSplashIcons8BitCompressedImage,
				sizeof(kSplashIcons8BitCompressedImage),
				gKernelArgs.boot_splash, uncompressedSize);
			lowerHalfIconImage = (uint8 *)gKernelArgs.boot_splash
				+ (kSplashIconsWidth * iconsHalfHeight);
		break;
		default:	// 24bits is assumed here
			uncompressedSize *= 3;
			// pointer into the lower half of the icons image data
			gKernelArgs.boot_splash
				= (uint8*)kernel_args_malloc(uncompressedSize);
			if (gKernelArgs.boot_splash == NULL)
				return B_NO_MEMORY;
			uncompress(kSplashIcons24BitCompressedImage,
				sizeof(kSplashIcons24BitCompressedImage),
				gKernelArgs.boot_splash, uncompressedSize);
			lowerHalfIconImage = (uint8 *)gKernelArgs.boot_splash
				+ (kSplashIconsWidth * iconsHalfHeight) * 3;
		break;
	}

	// render initial (grayed out) icons
	// the grayed out version is the lower half of the icons image

	width = min_c(kSplashIconsWidth, gKernelArgs.frame_buffer.width);
	height = min_c(kSplashLogoHeight + iconsHalfHeight,
		gKernelArgs.frame_buffer.height);
	placementX = max_c(0, min_c(100, kSplashIconsPlacementX));
	placementY = max_c(0, min_c(100, kSplashIconsPlacementY));

	x = (gKernelArgs.frame_buffer.width - width) * placementX / 100;
	y = kSplashLogoHeight + (gKernelArgs.frame_buffer.height - height)
		* placementY / 100;

	height = min_c(iconsHalfHeight, gKernelArgs.frame_buffer.height);
	video_blit_image(frameBuffer, lowerHalfIconImage, width, height,
		kSplashIconsWidth, x, y);
	return B_OK;
}