/* * u_int initarm(...) * * Initial entry point on startup. This gets called before main() is * entered. * It should be responsible for setting up everything that must be * in place when main is called. * This includes * Taking a copy of the boot configuration structure. * Initialising the physical console so characters can be printed. * Setting up page tables for the kernel * Relocating the kernel to the bottom of physical memory */ u_int initarm(void *arg) { /* * When we enter here, we are using a temporary first level * translation table with section entries in it to cover the TIPB * peripherals and SDRAM. The temporary first level translation table * is at the end of SDRAM. */ /* Heads up ... Setup the CPU / MMU / TLB functions. */ if (set_cpufuncs()) panic("cpu not recognized!"); init_clocks(); /* The console is going to try to map things. Give pmap a devmap. */ pmap_devmap_register(devmap); consinit(); #ifdef KGDB kgdb_port_init(); #endif #ifdef VERBOSE_INIT_ARM /* Talk to the user */ printf("\nNetBSD/evbarm (OSK5912) booting ...\n"); #endif #ifdef BOOT_ARGS char mi_bootargs[] = BOOT_ARGS; parse_mi_bootargs(mi_bootargs); #endif #ifdef VERBOSE_INIT_ARM printf("initarm: Configuring system ...\n"); #endif /* * Set up the variables that define the availability of physical * memory. */ physical_start = KERNEL_BASE_PHYS; physical_end = physical_start + MEMSIZE_BYTES; physmem = MEMSIZE_BYTES / PAGE_SIZE; /* Fake bootconfig structure for the benefit of pmap.c. */ bootconfig.dramblocks = 1; bootconfig.dram[0].address = physical_start; bootconfig.dram[0].pages = physmem; /* * Our kernel is at the beginning of memory, so set our free space to * all the memory after the kernel. */ physical_freestart = KERN_VTOPHYS(round_page((vaddr_t) _end)); physical_freeend = physical_end; free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; /* * This is going to do all the hard work of setting up the first and * and second level page tables. Pages of memory will be allocated * and mapped for other structures that are required for system * operation. When it returns, physical_freestart and free_pages will * have been updated to reflect the allocations that were made. In * addition, kernel_l1pt, kernel_pt_table[], systempage, irqstack, * abtstack, undstack, kernelstack, msgbufphys will be set to point to * the memory that was allocated for them. */ setup_real_page_tables(); /* * Moved from cpu_startup() as data_abort_handler() references * this during uvm init. */ proc0paddr = (struct user *)kernelstack.pv_va; lwp0.l_addr = proc0paddr; #ifdef VERBOSE_INIT_ARM printf("bootstrap done.\n"); #endif arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL); /* * Pages were allocated during the secondary bootstrap for the * stacks for different CPU modes. * We must now set the r13 registers in the different CPU modes to * point to these stacks. * Since the ARM stacks use STMFD etc. we must set r13 to the top end * of the stack memory. */ #ifdef VERBOSE_INIT_ARM printf("init subsystems: stacks "); #endif set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); /* * Well we should set a data abort handler. * Once things get going this will change as we will need a proper * handler. * Until then we will use a handler that just panics but tells us * why. * Initialisation of the vectors will just panic on a data abort. * This just fills in a slightly better one. */ #ifdef VERBOSE_INIT_ARM printf("vectors "); #endif data_abort_handler_address = (u_int)data_abort_handler; prefetch_abort_handler_address = (u_int)prefetch_abort_handler; undefined_handler_address = (u_int)undefinedinstruction_bounce; /* Initialise the undefined instruction handlers */ #ifdef VERBOSE_INIT_ARM printf("undefined "); #endif undefined_init(); /* Load memory into UVM. */ #ifdef VERBOSE_INIT_ARM printf("page "); #endif uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */ uvm_page_physload(atop(physical_freestart), atop(physical_freeend), atop(physical_freestart), atop(physical_freeend), VM_FREELIST_DEFAULT); /* Boot strap pmap telling it where the kernel page table is */ #ifdef VERBOSE_INIT_ARM printf("pmap "); #endif pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE); #ifdef VERBOSE_INIT_ARM printf("done.\n"); #endif #ifdef KGDB if (boothowto & RB_KDB) { kgdb_debug_init = 1; kgdb_connect(1); } #endif #ifdef DDB db_machine_init(); /* Firmware doesn't load symbols. */ ddb_init(0, NULL, NULL); if (boothowto & RB_KDB) Debugger(); #endif /* We return the new stack pointer address */ return(kernelstack.pv_va + USPACE_SVC_STACK_TOP); }
u_int initarm(void *arg) { int loop; int loop1; u_int l1pagetable; extern int etext __asm("_etext"); extern int end __asm("_end"); int progress_counter = 0; #ifdef DO_MEMORY_DISK vm_offset_t md_root_start; #define MD_ROOT_SIZE (MEMORY_DISK_ROOT_SIZE * DEV_BSIZE) #endif #define gpio8(reg) (*(volatile uint8_t *)(ioreg_vaddr(S3C2800_GPIO_BASE) + (reg))) #define LEDSTEP() __LED(progress_counter++) #define pdatc gpio8(GPIO_PDATC) #define __LED(x) (pdatc = (pdatc & ~0x07) | (~(x) & 0x07)) LEDSTEP(); /* * Heads up ... Setup the CPU / MMU / TLB functions */ if (set_cpufuncs()) panic("CPU not recognized!"); LEDSTEP(); /* Disable all peripheral interrupts */ ioreg32(S3C2800_INTCTL_BASE + INTCTL_INTMSK) = 0; consinit(); #ifdef VERBOSE_INIT_ARM printf("consinit done\n"); #endif #ifdef KGDB LEDSTEP(); kgdb_port_init(); #endif LEDSTEP(); #ifdef VERBOSE_INIT_ARM /* Talk to the user */ printf("\nNetBSD/evbarm (SMDK2800) booting ...\n"); #endif /* * Ok we have the following memory map * * Physical Address Range Description * ----------------------- ---------------------------------- * 0x00000000 - 0x00ffffff Intel flash Memory (16MB) * 0x02000000 - 0x020fffff AMD flash Memory (1MB) * or (depend on DIPSW setting) * 0x00000000 - 0x000fffff AMD flash Memory (1MB) * 0x02000000 - 0x02ffffff Intel flash Memory (16MB) * * 0x08000000 - 0x09ffffff SDRAM (32MB) * 0x20000000 - 0x3fffffff PCI space * * The initarm() has the responsibility for creating the kernel * page tables. * It must also set up various memory pointers that are used * by pmap etc. */ /* Fake bootconfig structure for the benefit of pmap.c */ /* XXX must make the memory description h/w independent */ bootconfig.dramblocks = 1; bootconfig.dram[0].address = SDRAM_START; bootconfig.dram[0].pages = SDRAM_SIZE / PAGE_SIZE; /* * Set up the variables that define the availablilty of * physical memory. For now, we're going to set * physical_freestart to 0x08200000 (where the kernel * was loaded), and allocate the memory we need downwards. * If we get too close to the bottom of SDRAM, we * will panic. We will update physical_freestart and * physical_freeend later to reflect what pmap_bootstrap() * wants to see. * * XXX pmap_bootstrap() needs an enema. */ physical_start = bootconfig.dram[0].address; physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE); #if DO_MEMORY_DISK #ifdef MEMORY_DISK_ROOT_ROM md_root_start = MEMORY_DISK_ROOT_ADDR; boothowto |= RB_RDONLY; #else /* Reserve physmem for ram disk */ md_root_start = ((physical_end - MD_ROOT_SIZE) & ~(L1_S_SIZE-1)); printf("Reserve %ld bytes for memory disk\n", physical_end - md_root_start); /* copy fs contents */ memcpy((void *)md_root_start, (void *)MEMORY_DISK_ROOT_ADDR, MD_ROOT_SIZE); physical_end = md_root_start; #endif #endif physical_freestart = 0x08000000UL; /* XXX */ physical_freeend = 0x08200000UL; physmem = (physical_end - physical_start) / PAGE_SIZE; #ifdef VERBOSE_INIT_ARM /* Tell the user about the memory */ printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem, physical_start, physical_end - 1); #endif /* * XXX * Okay, the kernel starts 2MB in from the bottom of physical * memory. We are going to allocate our bootstrap pages downwards * from there. * * We need to allocate some fixed page tables to get the kernel * going. We allocate one page directory and a number of page * tables and store the physical addresses in the kernel_pt_table * array. * * The kernel page directory must be on a 16K boundary. The page * tables must be on 4K boundaries. What we do is allocate the * page directory on the first 16K boundary that we encounter, and * the page tables on 4K boundaries otherwise. Since we allocate * at least 3 L2 page tables, we are guaranteed to encounter at * least one 16K aligned region. */ #ifdef VERBOSE_INIT_ARM printf("Allocating page tables\n"); #endif free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; #ifdef VERBOSE_INIT_ARM printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n", physical_freestart, free_pages, free_pages); #endif /* Define a macro to simplify memory allocation */ #define valloc_pages(var, np) \ alloc_pages((var).pv_pa, (np)); \ (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start; #define alloc_pages(var, np) \ physical_freeend -= ((np) * PAGE_SIZE); \ if (physical_freeend < physical_freestart) \ panic("initarm: out of memory"); \ (var) = physical_freeend; \ free_pages -= (np); \ memset((char *)(var), 0, ((np) * PAGE_SIZE)); loop1 = 0; for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) { /* Are we 16KB aligned for an L1 ? */ if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0 && kernel_l1pt.pv_pa == 0) { valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); } else { valloc_pages(kernel_pt_table[loop1], L2_TABLE_SIZE / PAGE_SIZE); ++loop1; } } /* This should never be able to happen but better confirm that. */ if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0) panic("initarm: Failed to align the kernel page directory\n"); /* * Allocate a page for the system page mapped to V0x00000000 * This page will just contain the system vectors and can be * shared by all processes. */ alloc_pages(systempage.pv_pa, 1); /* Allocate stacks for all modes */ valloc_pages(irqstack, IRQ_STACK_SIZE); valloc_pages(abtstack, ABT_STACK_SIZE); valloc_pages(undstack, UND_STACK_SIZE); valloc_pages(kernelstack, UPAGES); #ifdef VERBOSE_INIT_ARM printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa, irqstack.pv_va); printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa, abtstack.pv_va); printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa, undstack.pv_va); printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa, kernelstack.pv_va); #endif alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE); LEDSTEP(); /* * Ok we have allocated physical pages for the primary kernel * page tables */ #ifdef VERBOSE_INIT_ARM printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa); #endif /* * Now we start construction of the L1 page table * We start by mapping the L2 page tables into the L1. * This means that we can replace L1 mappings later on if necessary */ l1pagetable = kernel_l1pt.pv_pa; /* Map the L2 pages tables in the L1 page table */ pmap_link_l2pt(l1pagetable, 0x00000000, &kernel_pt_table[KERNEL_PT_SYS]); for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++) pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000, &kernel_pt_table[KERNEL_PT_KERNEL + loop]); for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++) pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000, &kernel_pt_table[KERNEL_PT_VMDATA + loop]); /* update the top of the kernel VM */ pmap_curmaxkvaddr = KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000); #ifdef VERBOSE_INIT_ARM printf("Mapping kernel\n"); #endif /* Now we fill in the L2 pagetable for the kernel static code/data */ { size_t textsize = (uintptr_t)&etext - KERNEL_TEXT_BASE; size_t totalsize = (uintptr_t)&end - KERNEL_TEXT_BASE; u_int logical; textsize = (textsize + PGOFSET) & ~PGOFSET; totalsize = (totalsize + PGOFSET) & ~PGOFSET; logical = 0x00200000; /* offset of kernel in RAM */ logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, physical_start + logical, textsize, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, physical_start + logical, totalsize - textsize, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); } #ifdef VERBOSE_INIT_ARM printf("Constructing L2 page tables\n"); #endif /* Map the stack pages */ pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa, IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa, ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa, UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa, UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE); for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va, kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); } /* Map the vector page. */ #if 1 /* MULTI-ICE requires that page 0 is NC/NB so that it can download the * cache-clean code there. */ pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa, VM_PROT_READ | VM_PROT_WRITE, PTE_NOCACHE); #else pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); #endif #ifdef MEMORY_DISK_DYNAMIC /* map MD root image */ pmap_map_chunk(l1pagetable, SMDK2800_MEMORY_DISK_VADDR, md_root_start, MD_ROOT_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); md_root_setconf((void *)md_root_start, MD_ROOT_SIZE); #endif /* MEMORY_DISK_DYNAMIC */ /* * map integrated peripherals at same address in l1pagetable * so that we can continue to use console. */ pmap_devmap_bootstrap(l1pagetable, smdk2800_devmap); /* * Now we have the real page tables in place so we can switch to them. * Once this is done we will be running with the REAL kernel page * tables. */ /* * Update the physical_freestart/physical_freeend/free_pages * variables. */ { physical_freestart = physical_start + (((((uintptr_t)&end) + PGOFSET) & ~PGOFSET) - KERNEL_BASE); physical_freeend = physical_end; free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; } /* Switch tables */ #ifdef VERBOSE_INIT_ARM printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n", physical_freestart, free_pages, free_pages); printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa); #endif LEDSTEP(); cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); cpu_setttb(kernel_l1pt.pv_pa, true); cpu_tlb_flushID(); cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); /* * Moved from cpu_startup() as data_abort_handler() references * this during uvm init */ uvm_lwp_setuarea(&lwp0, kernelstack.pv_va); #ifdef VERBOSE_INIT_ARM printf("done!\n"); #endif #if 0 /* * The IFPGA registers have just moved. * Detach the diagnostic serial port and reattach at the new address. */ plcomcndetach(); /* * XXX this should only be done in main() but it useful to * have output earlier ... */ consinit(); #endif LEDSTEP(); #ifdef VERBOSE_INIT_ARM printf("bootstrap done.\n"); #endif arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL); /* * Pages were allocated during the secondary bootstrap for the * stacks for different CPU modes. * We must now set the r13 registers in the different CPU modes to * point to these stacks. * Since the ARM stacks use STMFD etc. we must set r13 to the top end * of the stack memory. */ #ifdef VERBOSE_INIT_ARM printf("init subsystems: stacks "); #endif set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); LEDSTEP(); /* * Well we should set a data abort handler. * Once things get going this will change as we will need a proper * handler. * Until then we will use a handler that just panics but tells us * why. * Initialisation of the vectors will just panic on a data abort. * This just fills in a slightly better one. */ #ifdef VERBOSE_INIT_ARM printf("vectors "); #endif data_abort_handler_address = (u_int)data_abort_handler; prefetch_abort_handler_address = (u_int)prefetch_abort_handler; undefined_handler_address = (u_int)undefinedinstruction_bounce; /* Initialise the undefined instruction handlers */ #ifdef VERBOSE_INIT_ARM printf("undefined "); #endif undefined_init(); LEDSTEP(); /* Load memory into UVM. */ #ifdef VERBOSE_INIT_ARM printf("page "); #endif uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */ uvm_page_physload(atop(physical_freestart), atop(physical_freeend), atop(physical_freestart), atop(physical_freeend), VM_FREELIST_DEFAULT); LEDSTEP(); /* Boot strap pmap telling it where the kernel page table is */ #ifdef VERBOSE_INIT_ARM printf("pmap "); #endif pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE); LEDSTEP(); /* Setup the IRQ system */ #ifdef VERBOSE_INIT_ARM printf("irq "); #endif /* XXX irq_init(); */ #ifdef VERBOSE_INIT_ARM printf("done.\n"); #endif #ifdef BOOTHOWTO_INIT boothowto |= BOOTHOWTO_INIT; #endif { uint8_t gpio = ~gpio8(GPIO_PDATF); if (gpio & (1<<5)) /* SW3 */ boothowto ^= RB_SINGLE; if (gpio & (1<<7)) /* SW7 */ boothowto ^= RB_KDB; #ifdef VERBOSE_INIT_ARM printf( "sw: %x boothowto: %x\n", gpio, boothowto ); #endif } #ifdef KGDB if (boothowto & RB_KDB) { kgdb_debug_init = 1; kgdb_connect(1); } #endif #ifdef DDB db_machine_init(); if (boothowto & RB_KDB) Debugger(); #endif /* We return the new stack pointer address */ return (kernelstack.pv_va + USPACE_SVC_STACK_TOP); }
/* * u_int initarm(...) * * Initial entry point on startup. This gets called before main() is * entered. * It should be responsible for setting up everything that must be * in place when main is called. * This includes * Taking a copy of the boot configuration structure. * Initialising the physical console so characters can be printed. * Setting up page tables for the kernel * Relocating the kernel to the bottom of physical memory */ u_int initarm(void *arg) { pmap_devmap_register(devmap); awin_bootstrap(AWIN_CORE_VBASE, CONADDR_VA); /* Heads up ... Setup the CPU / MMU / TLB functions. */ if (set_cpufuncs()) panic("cpu not recognized!"); /* The console is going to try to map things. Give pmap a devmap. */ consinit(); #ifdef VERBOSE_INIT_ARM printf("\nuboot arg = %#x, %#x, %#x, %#x\n", uboot_args[0], uboot_args[1], uboot_args[2], uboot_args[3]); #endif #ifdef KGDB kgdb_port_init(); #endif cpu_reset_address = awin_wdog_reset; #ifdef VERBOSE_INIT_ARM /* Talk to the user */ printf("\nNetBSD/evbarm (cubie) booting ...\n"); #endif #ifdef BOOT_ARGS char mi_bootargs[] = BOOT_ARGS; parse_mi_bootargs(mi_bootargs); #endif #ifdef VERBOSE_INIT_ARM printf("initarm: Configuring system ...\n"); #if defined(CPU_CORTEXA7) || defined(CPU_CORTEXA9) || defined(CPU_CORTEXA15) printf("initarm: cbar=%#x\n", armreg_cbar_read()); #endif #endif /* * Set up the variables that define the availability of physical * memory. */ psize_t ram_size = awin_memprobe(); /* * If MEMSIZE specified less than what we really have, limit ourselves * to that. */ #ifdef MEMSIZE if (ram_size == 0 || ram_size > (unsigned)MEMSIZE * 1024 * 1024) ram_size = (unsigned)MEMSIZE * 1024 * 1024; #else KASSERTMSG(ram_size > 0, "RAM size unknown and MEMSIZE undefined"); #endif /* Fake bootconfig structure for the benefit of pmap.c. */ bootconfig.dramblocks = 1; bootconfig.dram[0].address = AWIN_SDRAM_PBASE; bootconfig.dram[0].pages = ram_size / PAGE_SIZE; #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS const bool mapallmem_p = true; KASSERT(ram_size <= KERNEL_VM_BASE - KERNEL_BASE); #else const bool mapallmem_p = false; #endif KASSERT((armreg_pfr1_read() & ARM_PFR1_SEC_MASK) != 0); arm32_bootmem_init(bootconfig.dram[0].address, ram_size, KERNEL_BASE_PHYS); arm32_kernel_vm_init(KERNEL_VM_BASE, ARM_VECTORS_LOW, 0, devmap, mapallmem_p); if (mapallmem_p) { /* * "bootargs" env variable is passed as 4th argument * to kernel but it's using the physical address and * we to convert that to a virtual address. */ if (uboot_args[3] - AWIN_SDRAM_PBASE < ram_size) { const char * const args = (const char *) (uboot_args[3] + KERNEL_PHYS_VOFFSET); strlcpy(bootargs, args, sizeof(bootargs)); } } boot_args = bootargs; parse_mi_bootargs(boot_args); /* we've a specific device_register routine */ evbarm_device_register = cubie_device_register; #if NAWIN_FB > 0 char *ptr; if (get_bootconf_option(boot_args, "console", BOOTOPT_TYPE_STRING, &ptr) && strncmp(ptr, "fb", 2) == 0) { use_fb_console = true; } #endif return initarm_common(KERNEL_VM_BASE, KERNEL_VM_SIZE, NULL, 0); }
void init_x86_64(paddr_t first_avail) { extern void consinit(void); extern struct extent *iomem_ex; struct region_descriptor region; struct mem_segment_descriptor *ldt_segp; int x, first16q, ist; u_int64_t seg_start, seg_end; u_int64_t seg_start1, seg_end1; cpu_init_msrs(&cpu_info_primary); proc0.p_addr = proc0paddr; cpu_info_primary.ci_curpcb = &proc0.p_addr->u_pcb; x86_bus_space_init(); consinit(); /* XXX SHOULD NOT BE DONE HERE */ /* * Initailize PAGE_SIZE-dependent variables. */ uvm_setpagesize(); #if 0 uvmexp.ncolors = 2; #endif /* * Boot arguments are in a single page specified by /boot. * * We require the "new" vector form, as well as memory ranges * to be given in bytes rather than KB. * * locore copies the data into bootinfo[] for us. */ if ((bootapiver & (BAPIV_VECTOR | BAPIV_BMEMMAP)) == (BAPIV_VECTOR | BAPIV_BMEMMAP)) { if (bootinfo_size >= sizeof(bootinfo)) panic("boot args too big"); getbootinfo(bootinfo, bootinfo_size); } else panic("invalid /boot"); avail_start = PAGE_SIZE; /* BIOS leaves data in low memory */ /* and VM system doesn't work with phys 0 */ #ifdef MULTIPROCESSOR if (avail_start < MP_TRAMPOLINE + PAGE_SIZE) avail_start = MP_TRAMPOLINE + PAGE_SIZE; #endif /* * Call pmap initialization to make new kernel address space. * We must do this before loading pages into the VM system. */ pmap_bootstrap(VM_MIN_KERNEL_ADDRESS, IOM_END + trunc_page(KBTOB(biosextmem))); if (avail_start != PAGE_SIZE) pmap_prealloc_lowmem_ptps(); if (mem_cluster_cnt == 0) { /* * Allocate the physical addresses used by RAM from the iomem * extent map. This is done before the addresses are * page rounded just to make sure we get them all. */ if (extent_alloc_region(iomem_ex, 0, KBTOB(biosbasemem), EX_NOWAIT)) { /* XXX What should we do? */ printf("WARNING: CAN'T ALLOCATE BASE MEMORY FROM " "IOMEM EXTENT MAP!\n"); } mem_clusters[0].start = 0; mem_clusters[0].size = trunc_page(KBTOB(biosbasemem)); physmem += atop(mem_clusters[0].size); if (extent_alloc_region(iomem_ex, IOM_END, KBTOB(biosextmem), EX_NOWAIT)) { /* XXX What should we do? */ printf("WARNING: CAN'T ALLOCATE EXTENDED MEMORY FROM " "IOMEM EXTENT MAP!\n"); } #if 0 #if NISADMA > 0 /* * Some motherboards/BIOSes remap the 384K of RAM that would * normally be covered by the ISA hole to the end of memory * so that it can be used. However, on a 16M system, this * would cause bounce buffers to be allocated and used. * This is not desirable behaviour, as more than 384K of * bounce buffers might be allocated. As a work-around, * we round memory down to the nearest 1M boundary if * we're using any isadma devices and the remapped memory * is what puts us over 16M. */ if (biosextmem > (15*1024) && biosextmem < (16*1024)) { char pbuf[9]; format_bytes(pbuf, sizeof(pbuf), biosextmem - (15*1024)); printf("Warning: ignoring %s of remapped memory\n", pbuf); biosextmem = (15*1024); } #endif #endif mem_clusters[1].start = IOM_END; mem_clusters[1].size = trunc_page(KBTOB(biosextmem)); physmem += atop(mem_clusters[1].size); mem_cluster_cnt = 2; avail_end = IOM_END + trunc_page(KBTOB(biosextmem)); } /* * If we have 16M of RAM or less, just put it all on * the default free list. Otherwise, put the first * 16M of RAM on a lower priority free list (so that * all of the ISA DMA'able memory won't be eaten up * first-off). */ if (avail_end <= (16 * 1024 * 1024)) first16q = VM_FREELIST_DEFAULT; else first16q = VM_FREELIST_FIRST16; /* Make sure the end of the space used by the kernel is rounded. */ first_avail = round_page(first_avail); kern_end = KERNBASE + first_avail; /* * Now, load the memory clusters (which have already been * rounded and truncated) into the VM system. * * NOTE: WE ASSUME THAT MEMORY STARTS AT 0 AND THAT THE KERNEL * IS LOADED AT IOM_END (1M). */ for (x = 0; x < mem_cluster_cnt; x++) { seg_start = mem_clusters[x].start; seg_end = mem_clusters[x].start + mem_clusters[x].size; seg_start1 = 0; seg_end1 = 0; if (seg_start > 0xffffffffULL) { printf("skipping %lld bytes of memory above 4GB\n", seg_end - seg_start); continue; } if (seg_end > 0x100000000ULL) { printf("skipping %lld bytes of memory above 4GB\n", seg_end - 0x100000000ULL); seg_end = 0x100000000ULL; } /* * Skip memory before our available starting point. */ if (seg_end <= avail_start) continue; if (avail_start >= seg_start && avail_start < seg_end) { if (seg_start != 0) panic("init_x86_64: memory doesn't start at 0"); seg_start = avail_start; if (seg_start == seg_end) continue; } /* * If this segment contains the kernel, split it * in two, around the kernel. */ if (seg_start <= IOM_END && first_avail <= seg_end) { seg_start1 = first_avail; seg_end1 = seg_end; seg_end = IOM_END; } /* First hunk */ if (seg_start != seg_end) { if (seg_start <= (16 * 1024 * 1024) && first16q != VM_FREELIST_DEFAULT) { u_int64_t tmp; if (seg_end > (16 * 1024 * 1024)) tmp = (16 * 1024 * 1024); else tmp = seg_end; #if DEBUG_MEMLOAD printf("loading 0x%qx-0x%qx (0x%lx-0x%lx)\n", (unsigned long long)seg_start, (unsigned long long)tmp, atop(seg_start), atop(tmp)); #endif uvm_page_physload(atop(seg_start), atop(tmp), atop(seg_start), atop(tmp), first16q); seg_start = tmp; } if (seg_start != seg_end) { #if DEBUG_MEMLOAD printf("loading 0x%qx-0x%qx (0x%lx-0x%lx)\n", (unsigned long long)seg_start, (unsigned long long)seg_end, atop(seg_start), atop(seg_end)); #endif uvm_page_physload(atop(seg_start), atop(seg_end), atop(seg_start), atop(seg_end), VM_FREELIST_DEFAULT); } } /* Second hunk */ if (seg_start1 != seg_end1) { if (seg_start1 <= (16 * 1024 * 1024) && first16q != VM_FREELIST_DEFAULT) { u_int64_t tmp; if (seg_end1 > (16 * 1024 * 1024)) tmp = (16 * 1024 * 1024); else tmp = seg_end1; #if DEBUG_MEMLOAD printf("loading 0x%qx-0x%qx (0x%lx-0x%lx)\n", (unsigned long long)seg_start1, (unsigned long long)tmp, atop(seg_start1), atop(tmp)); #endif uvm_page_physload(atop(seg_start1), atop(tmp), atop(seg_start1), atop(tmp), first16q); seg_start1 = tmp; } if (seg_start1 != seg_end1) { #if DEBUG_MEMLOAD printf("loading 0x%qx-0x%qx (0x%lx-0x%lx)\n", (unsigned long long)seg_start1, (unsigned long long)seg_end1, atop(seg_start1), atop(seg_end1)); #endif uvm_page_physload(atop(seg_start1), atop(seg_end1), atop(seg_start1), atop(seg_end1), VM_FREELIST_DEFAULT); } } } /* * Steal memory for the message buffer (at end of core). */ { struct vm_physseg *vps = NULL; psize_t sz = round_page(MSGBUFSIZE); psize_t reqsz = sz; for (x = 0; x < vm_nphysseg; x++) { vps = &vm_physmem[x]; if (ptoa(vps->avail_end) == avail_end) break; } if (x == vm_nphysseg) panic("init_x86_64: can't find end of memory"); /* Shrink so it'll fit in the last segment. */ if ((vps->avail_end - vps->avail_start) < atop(sz)) sz = ptoa(vps->avail_end - vps->avail_start); vps->avail_end -= atop(sz); vps->end -= atop(sz); msgbuf_paddr = ptoa(vps->avail_end); /* Remove the last segment if it now has no pages. */ if (vps->start == vps->end) { for (vm_nphysseg--; x < vm_nphysseg; x++) vm_physmem[x] = vm_physmem[x + 1]; } /* Now find where the new avail_end is. */ for (avail_end = 0, x = 0; x < vm_nphysseg; x++) if (vm_physmem[x].avail_end > avail_end) avail_end = vm_physmem[x].avail_end; avail_end = ptoa(avail_end); /* Warn if the message buffer had to be shrunk. */ if (sz != reqsz) printf("WARNING: %ld bytes not available for msgbuf " "in last cluster (%ld used)\n", reqsz, sz); } /* * XXXfvdl todo: acpi wakeup code. */ pmap_growkernel(VM_MIN_KERNEL_ADDRESS + 32 * 1024 * 1024); pmap_kenter_pa(idt_vaddr, idt_paddr, VM_PROT_READ|VM_PROT_WRITE); pmap_kenter_pa(idt_vaddr + PAGE_SIZE, idt_paddr + PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE); pmap_kenter_pa(lo32_vaddr, lo32_paddr, VM_PROT_READ|VM_PROT_WRITE); idt = (struct gate_descriptor *)idt_vaddr; gdtstore = (char *)(idt + NIDT); ldtstore = gdtstore + DYNSEL_START; /* make gdt gates and memory segments */ set_mem_segment(GDT_ADDR_MEM(gdtstore, GCODE_SEL), 0, 0xfffff, SDT_MEMERA, SEL_KPL, 1, 0, 1); set_mem_segment(GDT_ADDR_MEM(gdtstore, GDATA_SEL), 0, 0xfffff, SDT_MEMRWA, SEL_KPL, 1, 0, 1); set_sys_segment(GDT_ADDR_SYS(gdtstore, GLDT_SEL), ldtstore, LDT_SIZE - 1, SDT_SYSLDT, SEL_KPL, 0); set_mem_segment(GDT_ADDR_MEM(gdtstore, GUCODE_SEL), 0, atop(VM_MAXUSER_ADDRESS) - 1, SDT_MEMERA, SEL_UPL, 1, 0, 1); set_mem_segment(GDT_ADDR_MEM(gdtstore, GUDATA_SEL), 0, atop(VM_MAXUSER_ADDRESS) - 1, SDT_MEMRWA, SEL_UPL, 1, 0, 1); /* make ldt gates and memory segments */ setgate((struct gate_descriptor *)(ldtstore + LSYS5CALLS_SEL), &IDTVEC(oosyscall), 0, SDT_SYS386CGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL)); *(struct mem_segment_descriptor *)(ldtstore + LUCODE_SEL) = *GDT_ADDR_MEM(gdtstore, GUCODE_SEL); *(struct mem_segment_descriptor *)(ldtstore + LUDATA_SEL) = *GDT_ADDR_MEM(gdtstore, GUDATA_SEL); /* * 32 bit GDT entries. */ set_mem_segment(GDT_ADDR_MEM(gdtstore, GUCODE32_SEL), 0, atop(VM_MAXUSER_ADDRESS) - 1, SDT_MEMERA, SEL_UPL, 1, 1, 0); set_mem_segment(GDT_ADDR_MEM(gdtstore, GUDATA32_SEL), 0, atop(VM_MAXUSER_ADDRESS) - 1, SDT_MEMRWA, SEL_UPL, 1, 1, 0); /* * 32 bit LDT entries. */ ldt_segp = (struct mem_segment_descriptor *)(ldtstore + LUCODE32_SEL); set_mem_segment(ldt_segp, 0, atop(VM_MAXUSER_ADDRESS32) - 1, SDT_MEMERA, SEL_UPL, 1, 1, 0); ldt_segp = (struct mem_segment_descriptor *)(ldtstore + LUDATA32_SEL); set_mem_segment(ldt_segp, 0, atop(VM_MAXUSER_ADDRESS32) - 1, SDT_MEMRWA, SEL_UPL, 1, 1, 0); /* * Other entries. */ memcpy((struct gate_descriptor *)(ldtstore + LSOL26CALLS_SEL), (struct gate_descriptor *)(ldtstore + LSYS5CALLS_SEL), sizeof (struct gate_descriptor)); memcpy((struct gate_descriptor *)(ldtstore + LBSDICALLS_SEL), (struct gate_descriptor *)(ldtstore + LSYS5CALLS_SEL), sizeof (struct gate_descriptor)); /* exceptions */ for (x = 0; x < 32; x++) { ist = (x == 8) ? 1 : 0; setgate(&idt[x], IDTVEC(exceptions)[x], ist, SDT_SYS386IGT, (x == 3 || x == 4) ? SEL_UPL : SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); idt_allocmap[x] = 1; } /* new-style interrupt gate for syscalls */ setgate(&idt[128], &IDTVEC(osyscall), 0, SDT_SYS386IGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL)); idt_allocmap[128] = 1; setregion(®ion, gdtstore, DYNSEL_START - 1); lgdt(®ion); cpu_init_idt(); #ifdef DDB db_machine_init(); ddb_init(); if (boothowto & RB_KDB) Debugger(); #endif #ifdef KGDB kgdb_port_init(); if (boothowto & RB_KDB) { kgdb_debug_init = 1; kgdb_connect(1); } #endif intr_default_setup(); softintr_init(); splraise(IPL_IPI); enable_intr(); /* Make sure maxproc is sane */ if (maxproc > cpu_maxproc()) maxproc = cpu_maxproc(); }
/* * u_int initarm(...) * * Initial entry point on startup. This gets called before main() is * entered. * It should be responsible for setting up everything that must be * in place when main is called. * This includes * Taking a copy of the boot configuration structure. * Initialising the physical console so characters can be printed. * Setting up page tables for the kernel * Relocating the kernel to the bottom of physical memory */ u_int initarm(void *arg) { pmap_devmap_register(devmap); awin_bootstrap(AWIN_CORE_VBASE, CONADDR_VA); /* Heads up ... Setup the CPU / MMU / TLB functions. */ if (set_cpufuncs()) panic("cpu not recognized!"); /* The console is going to try to map things. Give pmap a devmap. */ consinit(); #ifdef VERBOSE_INIT_ARM printf("\nuboot arg = %#"PRIxPTR", %#"PRIxPTR", %#"PRIxPTR", %#"PRIxPTR"\n", uboot_args[0], uboot_args[1], uboot_args[2], uboot_args[3]); #endif #ifdef KGDB kgdb_port_init(); #endif cpu_reset_address = awin_wdog_reset; #ifdef VERBOSE_INIT_ARM /* Talk to the user */ printf("\nNetBSD/evbarm (" BOARDTYPE ") booting ...\n"); #endif #ifdef BOOT_ARGS char mi_bootargs[] = BOOT_ARGS; parse_mi_bootargs(mi_bootargs); #endif #ifdef VERBOSE_INIT_ARM printf("initarm: Configuring system ...\n"); #if defined(CPU_CORTEXA7) || defined(CPU_CORTEXA9) || defined(CPU_CORTEXA15) if (!CPU_ID_CORTEX_A8_P(curcpu()->ci_arm_cpuid)) { printf("initarm: cbar=%#x\n", armreg_cbar_read()); } #endif #endif /* * Set up the variables that define the availability of physical * memory. */ psize_t ram_size = awin_memprobe(); #if AWIN_board == AWIN_cubieboard /* the cubietruck has 2GB whereas the cubieboards only has 1GB */ cubietruck_p = (ram_size == 0x80000000); #endif /* * If MEMSIZE specified less than what we really have, limit ourselves * to that. */ #ifdef MEMSIZE if (ram_size == 0 || ram_size > (unsigned)MEMSIZE * 1024 * 1024) ram_size = (unsigned)MEMSIZE * 1024 * 1024; #else KASSERTMSG(ram_size > 0, "RAM size unknown and MEMSIZE undefined"); #endif /* * Configure DMA tags */ awin_dma_bootstrap(ram_size); /* Fake bootconfig structure for the benefit of pmap.c. */ bootconfig.dramblocks = 1; bootconfig.dram[0].address = AWIN_SDRAM_PBASE; bootconfig.dram[0].pages = ram_size / PAGE_SIZE; #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS const bool mapallmem_p = true; #ifndef PMAP_NEED_ALLOC_POOLPAGE if (ram_size > KERNEL_VM_BASE - KERNEL_BASE) { printf("%s: dropping RAM size from %luMB to %uMB\n", __func__, (unsigned long) (ram_size >> 20), (KERNEL_VM_BASE - KERNEL_BASE) >> 20); ram_size = KERNEL_VM_BASE - KERNEL_BASE; }
/* * u_int initarm(...) * * Initial entry point on startup. This gets called before main() is * entered. * It should be responsible for setting up everything that must be * in place when main is called. * This includes * Taking a copy of the boot configuration structure. * Initialising the physical console so characters can be printed. * Setting up page tables for the kernel * Relocating the kernel to the bottom of physical memory */ u_int initarm(void *arg) { /* * Heads up ... Setup the CPU / MMU / TLB functions */ if (set_cpufuncs()) panic("cpu not recognized!"); /* map some peripheral registers */ pmap_devmap_bootstrap((vaddr_t)armreg_ttbr_read() & -L1_TABLE_SIZE, netwalker_devmap); cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); /* Register devmap for devices we mapped in start */ pmap_devmap_register(netwalker_devmap); setup_ioports(); consinit(); #ifdef NO_POWERSAVE cpu_do_powersave=0; #endif init_clocks(); #ifdef KGDB kgdb_port_init(); #endif /* Talk to the user */ printf("\nNetBSD/evbarm (" ___STRING(EVBARM_BOARDTYPE) ") booting ...\n"); #ifdef BOOT_ARGS char mi_bootargs[] = BOOT_ARGS; parse_mi_bootargs(mi_bootargs); #endif bootargs[0] = '\0'; #if defined(VERBOSE_INIT_ARM) || 1 printf("initarm: Configuring system"); printf(", CLIDR=%010o CTR=%#x", armreg_clidr_read(), armreg_ctr_read()); printf("\n"); #endif /* * Ok we have the following memory map * * Physical Address Range Description * ----------------------- ---------------------------------- * * 0x90000000 - 0xAFFFFFFF DDR SDRAM (512MByte) * * The initarm() has the responsibility for creating the kernel * page tables. * It must also set up various memory pointers that are used * by pmap etc. */ #ifdef VERBOSE_INIT_ARM printf("initarm: Configuring system ...\n"); #endif /* Fake bootconfig structure for the benefit of pmap.c */ /* XXX must make the memory description h/w independent */ bootconfig.dramblocks = 1; bootconfig.dram[0].address = MEMSTART; bootconfig.dram[0].pages = (MEMSIZE * 1024 * 1024) / PAGE_SIZE; psize_t ram_size = bootconfig.dram[0].pages * PAGE_SIZE; #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS if (ram_size > KERNEL_VM_BASE - KERNEL_BASE) { printf("%s: dropping RAM size from %luMB to %uMB\n", __func__, (unsigned long) (ram_size >> 20), (KERNEL_VM_BASE - KERNEL_BASE) >> 20); ram_size = KERNEL_VM_BASE - KERNEL_BASE; }
u_int initarm(void *arg) { const struct pmap_devmap const *devmap; bus_addr_t rambase; const psize_t ram_reserve = 0x200000; psize_t ram_size; /* allocate/map our basic memory mapping */ switch (EXYNOS_PRODUCT_FAMILY(exynos_soc_id)) { #if defined(EXYNOS4) case EXYNOS4_PRODUCT_FAMILY: devmap = e4_devmap; rambase = EXYNOS4_SDRAM_PBASE; break; #endif #if defined(EXYNOS5) case EXYNOS5_PRODUCT_FAMILY: devmap = e5_devmap; rambase = EXYNOS5_SDRAM_PBASE; break; #endif default: /* Won't work, but... */ panic("Unknown product family %llx", EXYNOS_PRODUCT_FAMILY(exynos_soc_id)); } pmap_devmap_register(devmap); /* bootstrap soc. uart_address is determined in odroid_start */ paddr_t uart_address = armreg_tpidruro_read(); exynos_bootstrap(EXYNOS_CORE_VBASE, EXYNOS_IOPHYSTOVIRT(uart_address)); /* set up CPU / MMU / TLB functions */ if (set_cpufuncs()) panic("cpu not recognized!"); /* get normal console working */ consinit(); #ifdef KGDB kgdb_port_init(); #endif #ifdef VERBOSE_INIT_ARM printf("\nuboot arg = %#"PRIxPTR", %#"PRIxPTR", %#"PRIxPTR", %#"PRIxPTR"\n", uboot_args[0], uboot_args[1], uboot_args[2], uboot_args[3]); printf("Exynos SoC ID %08x\n", exynos_soc_id); printf("initarm: cbar=%#x\n", armreg_cbar_read()); #endif /* determine cpu0 clock rate */ exynos_clocks_bootstrap(); #ifdef VERBOSE_INIT_ARM printf("CPU0 now running on %"PRIu64" Mhz\n", exynos_get_cpufreq()/(1000*1000)); #endif #if NARML2CC > 0 if (CPU_ID_CORTEX_A9_P(curcpu()->ci_arm_cpuid)) { /* probe and enable the PL310 L2CC */ const bus_space_handle_t pl310_bh = EXYNOS_IOPHYSTOVIRT(armreg_cbar_read()); #ifdef ARM_TRUSTZONE_FIRMWARE exynos4_l2cc_init(); #endif arml2cc_init(&exynos_bs_tag, pl310_bh, 0x2000); } #endif cpu_reset_address = exynos_wdt_reset; #ifdef VERBOSE_INIT_ARM printf("\nNetBSD/evbarm (odroid) booting ...\n"); #endif #ifdef BOOT_ARGS char mi_bootargs[] = BOOT_ARGS; parse_mi_bootargs(mi_bootargs); #endif boot_args = bootargs; parse_mi_bootargs(boot_args); exynos_extract_mac_adress(); /* * Determine physical memory by looking at the PoP package. This PoP * package ID seems to be only available on Exynos4 * * First assume the default 2Gb of memory, dictated by mapping too */ ram_size = (psize_t) 0xC0000000 - 0x40000000; #if defined(EXYNOS4) switch (exynos_pop_id) { case EXYNOS_PACKAGE_ID_2_GIG: KASSERT(ram_size <= 2UL*1024*1024*1024); break; default: printf("Unknown PoP package id 0x%08x, assuming 1Gb\n", exynos_pop_id); ram_size = (psize_t) 0x10000000; } #endif /* Fake bootconfig structure for the benefit of pmap.c. */ bootconfig.dramblocks = 1; bootconfig.dram[0].address = rambase; bootconfig.dram[0].pages = ram_size / PAGE_SIZE; #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS const bool mapallmem_p = true; #ifndef PMAP_NEED_ALLOC_POOLPAGE if (ram_size > KERNEL_VM_BASE - KERNEL_BASE) { printf("%s: dropping RAM size from %luMB to %uMB\n", __func__, (unsigned long) (ram_size >> 20), (KERNEL_VM_BASE - KERNEL_BASE) >> 20); ram_size = KERNEL_VM_BASE - KERNEL_BASE; }
/* * u_int initarm(...) * * Initial entry point on startup. This gets called before main() is * entered. * It should be responsible for setting up everything that must be * in place when main is called. * This includes * Taking a copy of the boot configuration structure. * Initialising the physical console so characters can be printed. * Setting up page tables for the kernel * Relocating the kernel to the bottom of physical memory */ u_int initarm(void *arg) { extern vaddr_t xscale_cache_clean_addr; int loop; int loop1; u_int l1pagetable; #ifdef DIAGNOSTIC extern vsize_t xscale_minidata_clean_size; /* used in KASSERT */ #endif /* Register devmap for devices we mapped in start */ pmap_devmap_register(viper_devmap); /* start 32.768 kHz OSC */ ioreg_write(VIPER_CLKMAN_VBASE + 0x08, 2); /* Get ready for splfoo() */ pxa2x0_intr_bootstrap(VIPER_INTCTL_VBASE); /* * Heads up ... Setup the CPU / MMU / TLB functions */ if (set_cpufuncs()) panic("cpu not recognized!"); #if 0 /* Calibrate the delay loop. */ #endif /* setup GPIO for BTUART, in case bootloader doesn't take care of it */ pxa2x0_gpio_bootstrap(VIPER_GPIO_VBASE); pxa2x0_gpio_config(viper_gpioconf); /* turn on clock to UART block. XXX: this should not be done here. */ ioreg_write(VIPER_CLKMAN_VBASE+CLKMAN_CKEN, CKEN_FFUART|CKEN_BTUART | ioreg_read(VIPER_CLKMAN_VBASE+CLKMAN_CKEN)); consinit(); #ifdef KGDB kgdb_port_init(); #endif /* Talk to the user */ printf("\nNetBSD/evbarm (viper) booting ...\n"); #if 0 /* * Examine the boot args string for options we need to know about * now. */ process_kernel_args((char *)nwbootinfo.bt_args); #endif printf("initarm: Configuring system ...\n"); /* Fake bootconfig structure for the benefit of pmap.c */ /* XXX must make the memory description h/w independent */ bootconfig.dramblocks = 1; bootconfig.dram[0].address = MEMSTART; bootconfig.dram[0].pages = MEMSIZE / PAGE_SIZE; /* * Set up the variables that define the availablilty of * physical memory. For now, we're going to set * physical_freestart to 0xa0200000 (where the kernel * was loaded), and allocate the memory we need downwards. * If we get too close to the page tables that RedBoot * set up, we will panic. We will update physical_freestart * and physical_freeend later to reflect what pmap_bootstrap() * wants to see. * * XXX pmap_bootstrap() needs an enema. * (now that would be truly hardcore XXX) */ physical_start = bootconfig.dram[0].address; physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE); physical_freestart = 0xa0009000UL; physical_freeend = 0xa0200000UL; physmem = (physical_end - physical_start) / PAGE_SIZE; #ifdef VERBOSE_INIT_ARM /* Tell the user about the memory */ printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem, physical_start, physical_end - 1); #endif /* * Okay, the kernel starts 2MB in from the bottom of physical * memory. We are going to allocate our bootstrap pages downwards * from there. * * We need to allocate some fixed page tables to get the kernel * going. We allocate one page directory and a number of page * tables and store the physical addresses in the kernel_pt_table * array. * * The kernel page directory must be on a 16K boundary. The page * tables must be on 4K boundaries. What we do is allocate the * page directory on the first 16K boundary that we encounter, and * the page tables on 4K boundaries otherwise. Since we allocate * at least 3 L2 page tables, we are guaranteed to encounter at * least one 16K aligned region. */ #ifdef VERBOSE_INIT_ARM printf("Allocating page tables\n"); #endif free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; #ifdef VERBOSE_INIT_ARM printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n", physical_freestart, free_pages, free_pages); #endif /* Define a macro to simplify memory allocation */ #define valloc_pages(var, np) \ alloc_pages((var).pv_pa, (np)); \ (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start; #define alloc_pages(var, np) \ physical_freeend -= ((np) * PAGE_SIZE); \ if (physical_freeend < physical_freestart) \ panic("initarm: out of memory"); \ (var) = physical_freeend; \ free_pages -= (np); \ memset((char *)(var), 0, ((np) * PAGE_SIZE)); loop1 = 0; for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) { /* Are we 16KB aligned for an L1 ? */ if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0 && kernel_l1pt.pv_pa == 0) { valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); } else { valloc_pages(kernel_pt_table[loop1], L2_TABLE_SIZE / PAGE_SIZE); ++loop1; } } /* This should never be able to happen but better confirm that. */ if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0) panic("initarm: Failed to align the kernel page directory"); /* * Allocate a page for the system page mapped to V0x00000000 * This page will just contain the system vectors and can be * shared by all processes. */ alloc_pages(systempage.pv_pa, 1); /* Allocate stacks for all modes */ valloc_pages(irqstack, IRQ_STACK_SIZE); valloc_pages(abtstack, ABT_STACK_SIZE); valloc_pages(undstack, UND_STACK_SIZE); valloc_pages(kernelstack, UPAGES); /* Allocate enough pages for cleaning the Mini-Data cache. */ KASSERT(xscale_minidata_clean_size <= PAGE_SIZE); valloc_pages(minidataclean, 1); #ifdef VERBOSE_INIT_ARM printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa, irqstack.pv_va); printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa, abtstack.pv_va); printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa, undstack.pv_va); printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa, kernelstack.pv_va); #endif /* * XXX Defer this to later so that we can reclaim the memory * XXX used by the RedBoot page tables. */ alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE); /* * Ok we have allocated physical pages for the primary kernel * page tables */ #ifdef VERBOSE_INIT_ARM printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa); #endif /* * Now we start construction of the L1 page table * We start by mapping the L2 page tables into the L1. * This means that we can replace L1 mappings later on if necessary */ l1pagetable = kernel_l1pt.pv_pa; /* Map the L2 pages tables in the L1 page table */ pmap_link_l2pt(l1pagetable, 0x00000000, &kernel_pt_table[KERNEL_PT_SYS]); for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++) pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000, &kernel_pt_table[KERNEL_PT_KERNEL + loop]); for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++) pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000, &kernel_pt_table[KERNEL_PT_VMDATA + loop]); /* update the top of the kernel VM */ pmap_curmaxkvaddr = KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000); #ifdef VERBOSE_INIT_ARM printf("Mapping kernel\n"); #endif /* Now we fill in the L2 pagetable for the kernel static code/data */ { extern char etext[], _end[]; size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE; size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE; u_int logical; textsize = (textsize + PGOFSET) & ~PGOFSET; totalsize = (totalsize + PGOFSET) & ~PGOFSET; logical = 0x00200000; /* offset of kernel in RAM */ logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, physical_start + logical, textsize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, physical_start + logical, totalsize - textsize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); } #ifdef VERBOSE_INIT_ARM printf("Constructing L2 page tables\n"); #endif /* Map the stack pages */ pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa, IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa, ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa, UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa, UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE); for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va, kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); } /* Map the Mini-Data cache clean area. */ xscale_setup_minidata(l1pagetable, minidataclean.pv_va, minidataclean.pv_pa); /* Map the vector page. */ #if 1 /* MULTI-ICE requires that page 0 is NC/NB so that it can download the * cache-clean code there. */ pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE); #else pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); #endif /* * map integrated peripherals at same address in l1pagetable * so that we can continue to use console. */ pmap_devmap_bootstrap(l1pagetable, viper_devmap); /* * Give the XScale global cache clean code an appropriately * sized chunk of unmapped VA space starting at 0xff000000 * (our device mappings end before this address). */ xscale_cache_clean_addr = 0xff000000U; /* * Now we have the real page tables in place so we can switch to them. * Once this is done we will be running with the REAL kernel page * tables. */ /* * Update the physical_freestart/physical_freeend/free_pages * variables. */ { extern char _end[]; physical_freestart = physical_start + (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) - KERNEL_BASE); physical_freeend = physical_end; free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; } /* Switch tables */ #ifdef VERBOSE_INIT_ARM printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n", physical_freestart, free_pages, free_pages); printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa); #endif cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); setttb(kernel_l1pt.pv_pa); cpu_tlb_flushID(); cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); /* * Moved from cpu_startup() as data_abort_handler() references * this during uvm init */ proc0paddr = (struct user *)kernelstack.pv_va; lwp0.l_addr = proc0paddr; #ifdef VERBOSE_INIT_ARM printf("bootstrap done.\n"); #endif arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL); /* * Pages were allocated during the secondary bootstrap for the * stacks for different CPU modes. * We must now set the r13 registers in the different CPU modes to * point to these stacks. * Since the ARM stacks use STMFD etc. we must set r13 to the top end * of the stack memory. */ printf("init subsystems: stacks "); set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); /* * Well we should set a data abort handler. * Once things get going this will change as we will need a proper * handler. * Until then we will use a handler that just panics but tells us * why. * Initialisation of the vectors will just panic on a data abort. * This just fills in a slightly better one. */ printf("vectors "); data_abort_handler_address = (u_int)data_abort_handler; prefetch_abort_handler_address = (u_int)prefetch_abort_handler; undefined_handler_address = (u_int)undefinedinstruction_bounce; /* Initialise the undefined instruction handlers */ printf("undefined "); undefined_init(); /* Load memory into UVM. */ printf("page "); uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */ uvm_page_physload(atop(physical_freestart), atop(physical_freeend), atop(physical_freestart), atop(physical_freeend), VM_FREELIST_DEFAULT); /* Boot strap pmap telling it where the kernel page table is */ printf("pmap "); pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE); #ifdef __HAVE_MEMORY_DISK__ md_root_setconf(memory_disk, sizeof memory_disk); #endif #ifdef KGDB if (boothowto & RB_KDB) { kgdb_debug_init = 1; kgdb_connect(1); } #endif #ifdef DDB db_machine_init(); /* Firmware doesn't load symbols. */ ddb_init(0, NULL, NULL); if (boothowto & RB_KDB) Debugger(); #endif /* We return the new stack pointer address */ return(kernelstack.pv_va + USPACE_SVC_STACK_TOP); }