Esempio n. 1
0
/* Find the first occurrence of the character string NEEDLE in the character
   string HAYSTACK, using case-insensitive comparison.
   Note: This function may, in multibyte locales, return success even if
   strlen (haystack) < strlen (needle) !  */
char *
mbscasestr (const char *haystack, const char *needle)
{
  /* Be careful not to look at the entire extent of haystack or needle
     until needed.  This is useful because of these two cases:
       - haystack may be very long, and a match of needle found early,
       - needle may be very long, and not even a short initial segment of
         needle may be found in haystack.  */
  if (MB_CUR_MAX > 1)
    {
      mbui_iterator_t iter_needle;

      mbui_init (iter_needle, needle);
      if (mbui_avail (iter_needle))
        {
          /* Minimizing the worst-case complexity:
             Let n = mbslen(haystack), m = mbslen(needle).
             The naïve algorithm is O(n*m) worst-case.
             The Knuth-Morris-Pratt algorithm is O(n) worst-case but it needs a
             memory allocation.
             To achieve linear complexity and yet amortize the cost of the
             memory allocation, we activate the Knuth-Morris-Pratt algorithm
             only once the naïve algorithm has already run for some time; more
             precisely, when
               - the outer loop count is >= 10,
               - the average number of comparisons per outer loop is >= 5,
               - the total number of comparisons is >= m.
             But we try it only once.  If the memory allocation attempt failed,
             we don't retry it.  */
          bool try_kmp = true;
          size_t outer_loop_count = 0;
          size_t comparison_count = 0;
          size_t last_ccount = 0;                  /* last comparison count */
          mbui_iterator_t iter_needle_last_ccount; /* = needle + last_ccount */

          mbchar_t b;
          mbui_iterator_t iter_haystack;

          mbui_init (iter_needle_last_ccount, needle);

          mb_copy (&b, &mbui_cur (iter_needle));
          if (b.wc_valid)
            b.wc = towlower (b.wc);

          mbui_init (iter_haystack, haystack);
          for (;; mbui_advance (iter_haystack))
            {
              mbchar_t c;

              if (!mbui_avail (iter_haystack))
                /* No match.  */
                return NULL;

              /* See whether it's advisable to use an asymptotically faster
                 algorithm.  */
              if (try_kmp
                  && outer_loop_count >= 10
                  && comparison_count >= 5 * outer_loop_count)
                {
                  /* See if needle + comparison_count now reaches the end of
                     needle.  */
                  size_t count = comparison_count - last_ccount;
                  for (;
                       count > 0 && mbui_avail (iter_needle_last_ccount);
                       count--)
                    mbui_advance (iter_needle_last_ccount);
                  last_ccount = comparison_count;
                  if (!mbui_avail (iter_needle_last_ccount))
                    {
                      /* Try the Knuth-Morris-Pratt algorithm.  */
                      const char *result;
                      bool success =
                        knuth_morris_pratt_multibyte (haystack, needle,
                                                      &result);
                      if (success)
                        return (char *) result;
                      try_kmp = false;
                    }
                }

              outer_loop_count++;
              comparison_count++;
              mb_copy (&c, &mbui_cur (iter_haystack));
              if (c.wc_valid)
                c.wc = towlower (c.wc);
              if (mb_equal (c, b))
                /* The first character matches.  */
                {
                  mbui_iterator_t rhaystack;
                  mbui_iterator_t rneedle;

                  memcpy (&rhaystack, &iter_haystack, sizeof (mbui_iterator_t));
                  mbui_advance (rhaystack);

                  mbui_init (rneedle, needle);
                  if (!mbui_avail (rneedle))
                    abort ();
                  mbui_advance (rneedle);

                  for (;; mbui_advance (rhaystack), mbui_advance (rneedle))
                    {
                      if (!mbui_avail (rneedle))
                        /* Found a match.  */
                        return (char *) mbui_cur_ptr (iter_haystack);
                      if (!mbui_avail (rhaystack))
                        /* No match.  */
                        return NULL;
                      comparison_count++;
                      if (!mb_caseequal (mbui_cur (rhaystack),
                                         mbui_cur (rneedle)))
                        /* Nothing in this round.  */
                        break;
                    }
                }
            }
        }
      else
        return (char *) haystack;
    }
  else
    {
      if (*needle != '\0')
        {
          /* Minimizing the worst-case complexity:
             Let n = strlen(haystack), m = strlen(needle).
             The naïve algorithm is O(n*m) worst-case.
             The Knuth-Morris-Pratt algorithm is O(n) worst-case but it needs a
             memory allocation.
             To achieve linear complexity and yet amortize the cost of the
             memory allocation, we activate the Knuth-Morris-Pratt algorithm
             only once the naïve algorithm has already run for some time; more
             precisely, when
               - the outer loop count is >= 10,
               - the average number of comparisons per outer loop is >= 5,
               - the total number of comparisons is >= m.
             But we try it only once.  If the memory allocation attempt failed,
             we don't retry it.  */
          bool try_kmp = true;
          size_t outer_loop_count = 0;
          size_t comparison_count = 0;
          size_t last_ccount = 0;                  /* last comparison count */
          const char *needle_last_ccount = needle; /* = needle + last_ccount */

          /* Speed up the following searches of needle by caching its first
             character.  */
          unsigned char b = TOLOWER ((unsigned char) *needle);

          needle++;
          for (;; haystack++)
            {
              if (*haystack == '\0')
                /* No match.  */
                return NULL;

              /* See whether it's advisable to use an asymptotically faster
                 algorithm.  */
              if (try_kmp
                  && outer_loop_count >= 10
                  && comparison_count >= 5 * outer_loop_count)
                {
                  /* See if needle + comparison_count now reaches the end of
                     needle.  */
                  if (needle_last_ccount != NULL)
                    {
                      needle_last_ccount +=
                        strnlen (needle_last_ccount,
                                 comparison_count - last_ccount);
                      if (*needle_last_ccount == '\0')
                        needle_last_ccount = NULL;
                      last_ccount = comparison_count;
                    }
                  if (needle_last_ccount == NULL)
                    {
                      /* Try the Knuth-Morris-Pratt algorithm.  */
                      const unsigned char *result;
                      bool success =
                        knuth_morris_pratt ((const unsigned char *) haystack,
                                            (const unsigned char *) (needle - 1),
                                            strlen (needle - 1),
                                            &result);
                      if (success)
                        return (char *) result;
                      try_kmp = false;
                    }
                }

              outer_loop_count++;
              comparison_count++;
              if (TOLOWER ((unsigned char) *haystack) == b)
                /* The first character matches.  */
                {
                  const char *rhaystack = haystack + 1;
                  const char *rneedle = needle;

                  for (;; rhaystack++, rneedle++)
                    {
                      if (*rneedle == '\0')
                        /* Found a match.  */
                        return (char *) haystack;
                      if (*rhaystack == '\0')
                        /* No match.  */
                        return NULL;
                      comparison_count++;
                      if (TOLOWER ((unsigned char) *rhaystack)
                          != TOLOWER ((unsigned char) *rneedle))
                        /* Nothing in this round.  */
                        break;
                    }
                }
            }
        }
      else
        return (char *) haystack;
    }
}
Esempio n. 2
0
/* Find the first occurrence of NEEDLE in HAYSTACK, using case-insensitive
   comparison.
   Note: This function may, in multibyte locales, return success even if
   strlen (haystack) < strlen (needle) !  */
char *
c_strcasestr (const char *haystack, const char *needle)
{
  /* Be careful not to look at the entire extent of haystack or needle
     until needed.  This is useful because of these two cases:
       - haystack may be very long, and a match of needle found early,
       - needle may be very long, and not even a short initial segment of
         needle may be found in haystack.  */
  if (*needle != '\0')
    {
      /* Minimizing the worst-case complexity:
	 Let n = strlen(haystack), m = strlen(needle).
	 The naïve algorithm is O(n*m) worst-case.
	 The Knuth-Morris-Pratt algorithm is O(n) worst-case but it needs a
	 memory allocation.
	 To achieve linear complexity and yet amortize the cost of the memory
	 allocation, we activate the Knuth-Morris-Pratt algorithm only once
	 the naïve algorithm has already run for some time; more precisely,
	 when
	   - the outer loop count is >= 10,
	   - the average number of comparisons per outer loop is >= 5,
	   - the total number of comparisons is >= m.
	 But we try it only once.  If the memory allocation attempt failed,
	 we don't retry it.  */
      bool try_kmp = true;
      size_t outer_loop_count = 0;
      size_t comparison_count = 0;
      size_t last_ccount = 0;			/* last comparison count */
      const char *needle_last_ccount = needle;	/* = needle + last_ccount */

      /* Speed up the following searches of needle by caching its first
	 character.  */
      unsigned char b = c_tolower ((unsigned char) *needle);

      needle++;
      for (;; haystack++)
	{
	  if (*haystack == '\0')
	    /* No match.  */
	    return NULL;

	  /* See whether it's advisable to use an asymptotically faster
	     algorithm.  */
	  if (try_kmp
	      && outer_loop_count >= 10
	      && comparison_count >= 5 * outer_loop_count)
	    {
	      /* See if needle + comparison_count now reaches the end of
		 needle.  */
	      if (needle_last_ccount != NULL)
		{
		  needle_last_ccount +=
		    strnlen (needle_last_ccount, comparison_count - last_ccount);
		  if (*needle_last_ccount == '\0')
		    needle_last_ccount = NULL;
		  last_ccount = comparison_count;
		}
	      if (needle_last_ccount == NULL)
		{
		  /* Try the Knuth-Morris-Pratt algorithm.  */
		  const char *result;
		  bool success =
		    knuth_morris_pratt (haystack, needle - 1, &result);
		  if (success)
		    return (char *) result;
		  try_kmp = false;
		}
	    }

	  outer_loop_count++;
	  comparison_count++;
	  if (c_tolower ((unsigned char) *haystack) == b)
	    /* The first character matches.  */
	    {
	      const char *rhaystack = haystack + 1;
	      const char *rneedle = needle;

	      for (;; rhaystack++, rneedle++)
		{
		  if (*rneedle == '\0')
		    /* Found a match.  */
		    return (char *) haystack;
		  if (*rhaystack == '\0')
		    /* No match.  */
		    return NULL;
		  comparison_count++;
		  if (c_tolower ((unsigned char) *rhaystack)
		      != c_tolower ((unsigned char) *rneedle))
		    /* Nothing in this round.  */
		    break;
		}
	    }
	}
    }
  else
    return (char *) haystack;
}