/** Purpose ------- DGEQRF computes a QR factorization of a real M-by-N matrix A: A = Q * R. This version has LAPACK-complaint arguments. If the current stream is NULL, this version replaces it with a new stream to overlap computation with communication. Other versions (magma_dgeqrf_gpu and magma_dgeqrf3_gpu) store the intermediate T matrices. Arguments --------- @param[in] m INTEGER The number of rows of the matrix A. M >= 0. @param[in] n INTEGER The number of columns of the matrix A. N >= 0. @param[in,out] dA DOUBLE_PRECISION array on the GPU, dimension (LDDA,N) On entry, the M-by-N matrix A. On exit, the elements on and above the diagonal of the array contain the min(M,N)-by-N upper trapezoidal matrix R (R is upper triangular if m >= n); the elements below the diagonal, with the array TAU, represent the orthogonal matrix Q as a product of min(m,n) elementary reflectors (see Further Details). @param[in] ldda INTEGER The leading dimension of the array dA. LDDA >= max(1,M). To benefit from coalescent memory accesses LDDA must be divisible by 16. @param[out] tau DOUBLE_PRECISION array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details). @param[out] info INTEGER - = 0: successful exit - < 0: if INFO = -i, the i-th argument had an illegal value or another error occured, such as memory allocation failed. Further Details --------------- The matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(k), where k = min(m,n). Each H(i) has the form H(i) = I - tau * v * v' where tau is a real scalar, and v is a real vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), and tau in TAU(i). @ingroup magma_dgeqrf_comp ********************************************************************/ extern "C" magma_int_t magma_dgeqrf2_gpu( magma_int_t m, magma_int_t n, double *dA, magma_int_t ldda, double *tau, magma_int_t *info ) { #define dA(a_1,a_2) ( dA+(a_2)*(ldda) + (a_1)) #define work_ref(a_1) ( work + (a_1)) #define hwork ( work + (nb)*(m)) double *dwork; double *work; magma_int_t i, k, ldwork, lddwork, old_i, old_ib, rows; magma_int_t nbmin, nx, ib, nb; magma_int_t lhwork, lwork; /* Function Body */ *info = 0; if (m < 0) { *info = -1; } else if (n < 0) { *info = -2; } else if (ldda < max(1,m)) { *info = -4; } if (*info != 0) { magma_xerbla( __func__, -(*info) ); return *info; } k = min(m,n); if (k == 0) return *info; nb = magma_get_dgeqrf_nb(m); lwork = (m+n) * nb; lhwork = lwork - (m)*nb; if (MAGMA_SUCCESS != magma_dmalloc( &dwork, n*nb )) { *info = MAGMA_ERR_DEVICE_ALLOC; return *info; } if (MAGMA_SUCCESS != magma_dmalloc_pinned( &work, lwork )) { magma_free( dwork ); *info = MAGMA_ERR_HOST_ALLOC; return *info; } /* Define user stream if current stream is NULL */ magma_queue_t stream[2]; magma_queue_t orig_stream; magmablasGetKernelStream( &orig_stream ); magma_queue_create( &stream[0] ); if (orig_stream == NULL) { magma_queue_create( &stream[1] ); magmablasSetKernelStream(stream[1]); } else { stream[1] = orig_stream; } nbmin = 2; nx = nb; ldwork = m; lddwork= n; if (nb >= nbmin && nb < k && nx < k) { /* Use blocked code initially */ old_i = 0; old_ib = nb; for (i = 0; i < k-nx; i += nb) { ib = min(k-i, nb); rows = m -i; /* download i-th panel */ magma_queue_sync( stream[1] ); magma_dgetmatrix_async( rows, ib, dA(i,i), ldda, work_ref(i), ldwork, stream[0] ); if (i > 0) { /* Apply H' to A(i:m,i+2*ib:n) from the left */ magma_dlarfb_gpu( MagmaLeft, MagmaConjTrans, MagmaForward, MagmaColumnwise, m-old_i, n-old_i-2*old_ib, old_ib, dA(old_i, old_i ), ldda, dwork, lddwork, dA(old_i, old_i+2*old_ib), ldda, dwork+old_ib, lddwork); magma_dsetmatrix_async( old_ib, old_ib, work_ref(old_i), ldwork, dA(old_i, old_i), ldda, stream[1] ); } magma_queue_sync( stream[0] ); lapackf77_dgeqrf(&rows, &ib, work_ref(i), &ldwork, tau+i, hwork, &lhwork, info); /* Form the triangular factor of the block reflector H = H(i) H(i+1) . . . H(i+ib-1) */ lapackf77_dlarft( MagmaForwardStr, MagmaColumnwiseStr, &rows, &ib, work_ref(i), &ldwork, tau+i, hwork, &ib); dpanel_to_q( MagmaUpper, ib, work_ref(i), ldwork, hwork+ib*ib ); /* download the i-th V matrix */ magma_dsetmatrix_async( rows, ib, work_ref(i), ldwork, dA(i,i), ldda, stream[0] ); /* download the T matrix */ magma_queue_sync( stream[1] ); magma_dsetmatrix_async( ib, ib, hwork, ib, dwork, lddwork, stream[0] ); magma_queue_sync( stream[0] ); if (i + ib < n) { if (i+nb < k-nx) { /* Apply H' to A(i:m,i+ib:i+2*ib) from the left */ magma_dlarfb_gpu( MagmaLeft, MagmaConjTrans, MagmaForward, MagmaColumnwise, rows, ib, ib, dA(i, i ), ldda, dwork, lddwork, dA(i, i+ib), ldda, dwork+ib, lddwork); dq_to_panel( MagmaUpper, ib, work_ref(i), ldwork, hwork+ib*ib ); } else { magma_dlarfb_gpu( MagmaLeft, MagmaConjTrans, MagmaForward, MagmaColumnwise, rows, n-i-ib, ib, dA(i, i ), ldda, dwork, lddwork, dA(i, i+ib), ldda, dwork+ib, lddwork); dq_to_panel( MagmaUpper, ib, work_ref(i), ldwork, hwork+ib*ib ); magma_dsetmatrix_async( ib, ib, work_ref(i), ldwork, dA(i,i), ldda, stream[1] ); } old_i = i; old_ib = ib; } } } else { i = 0; } magma_free( dwork ); /* Use unblocked code to factor the last or only block. */ if (i < k) { ib = n-i; rows = m-i; magma_dgetmatrix_async( rows, ib, dA(i, i), ldda, work, rows, stream[1] ); magma_queue_sync( stream[1] ); lhwork = lwork - rows*ib; lapackf77_dgeqrf(&rows, &ib, work, &rows, tau+i, work+ib*rows, &lhwork, info); magma_dsetmatrix_async( rows, ib, work, rows, dA(i, i), ldda, stream[1] ); } magma_free_pinned( work ); magma_queue_destroy( stream[0] ); if (orig_stream == NULL) { magma_queue_destroy( stream[1] ); } magmablasSetKernelStream( orig_stream ); return *info; } /* magma_dgeqrf2_gpu */
/** Purpose ------- DGEQLF computes a QL factorization of a DOUBLE_PRECISION M-by-N matrix A: A = Q * L. Arguments --------- @param[in] m INTEGER The number of rows of the matrix A. M >= 0. @param[in] n INTEGER The number of columns of the matrix A. N >= 0. @param[in,out] A DOUBLE_PRECISION array, dimension (LDA,N) On entry, the M-by-N matrix A. On exit, if m >= n, the lower triangle of the subarray A(m-n+1:m,1:n) contains the N-by-N lower triangular matrix L; if m <= n, the elements on and below the (n-m)-th superdiagonal contain the M-by-N lower trapezoidal matrix L; the remaining elements, with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors (see Further Details). \n Higher performance is achieved if A is in pinned memory, e.g. allocated using magma_malloc_pinned. @param[in] lda INTEGER The leading dimension of the array A. LDA >= max(1,M). @param[out] tau DOUBLE_PRECISION array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details). @param[out] work (workspace) DOUBLE_PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK[0] returns the optimal LWORK. \n Higher performance is achieved if WORK is in pinned memory, e.g. allocated using magma_malloc_pinned. @param[in] lwork INTEGER The dimension of the array WORK. LWORK >= max(1,N,2*NB^2). For optimum performance LWORK >= max(N*NB, 2*NB^2) where NB can be obtained through magma_get_dgeqlf_nb(M). \n If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. @param[out] info INTEGER - = 0: successful exit - < 0: if INFO = -i, the i-th argument had an illegal value or another error occured, such as memory allocation failed. Further Details --------------- The matrix Q is represented as a product of elementary reflectors Q = H(k) . . . H(2) H(1), where k = min(m,n). Each H(i) has the form H(i) = I - tau * v * v' where tau is a real scalar, and v is a real vector with v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in A(1:m-k+i-1,n-k+i), and tau in TAU(i). @ingroup magma_dgeqlf_comp ********************************************************************/ extern "C" magma_int_t magma_dgeqlf( magma_int_t m, magma_int_t n, double *A, magma_int_t lda, double *tau, double *work, magma_int_t lwork, magma_int_t *info) { #define A(i_,j_) ( A + (i_) + (j_)*lda) #define dA(i_,j_) (dA + (i_) + (j_)*ldda) #define dwork(i_) (dwork + (i_)) magmaDouble_ptr dA, dwork; double c_one = MAGMA_D_ONE; magma_int_t i, k, lddwork, old_i, old_ib, nb; magma_int_t rows, cols; magma_int_t ib, ki, kk, mu, nu, iinfo, ldda; int lquery; nb = magma_get_dgeqlf_nb(m); *info = 0; lquery = (lwork == -1); // silence "uninitialized" warnings old_ib = nb; old_i = 0; if (m < 0) { *info = -1; } else if (n < 0) { *info = -2; } else if (lda < max(1,m)) { *info = -4; } k = min(m,n); if (*info == 0) { if (k == 0) work[0] = c_one; else { work[0] = MAGMA_D_MAKE( max(n*nb, 2*nb*nb), 0 ); } if (lwork < max(max(1,n), 2*nb*nb) && ! lquery) *info = -7; } if (*info != 0) { magma_xerbla( __func__, -(*info) ); return *info; } else if (lquery) return *info; /* Quick return if possible */ if (k == 0) return *info; lddwork = ((n+31)/32)*32; ldda = ((m+31)/32)*32; if (MAGMA_SUCCESS != magma_dmalloc( &dA, (n)*ldda + nb*lddwork )) { *info = MAGMA_ERR_DEVICE_ALLOC; return *info; } dwork = dA + ldda*n; magma_queue_t queues[2]; magma_queue_create( &queues[0] ); magma_queue_create( &queues[1] ); if ( (nb > 1) && (nb < k) ) { /* Use blocked code initially. The last kk columns are handled by the block method. First, copy the matrix on the GPU except the last kk columns */ magma_dsetmatrix_async( m, n-nb, A(0, 0), lda, dA(0, 0), ldda, queues[0] ); ki = ((k - nb - 1) / nb) * nb; kk = min(k, ki + nb); for (i = k - kk + ki; i >= k -kk; i -= nb) { ib = min(k-i,nb); if (i < k - kk + ki) { /* 1. Copy asynchronously the current panel to the CPU. 2. Copy asynchronously the submatrix below the panel to the CPU) */ rows = m - k + i + ib; magma_dgetmatrix_async( rows, ib, dA(0, n-k+i), ldda, A(0, n-k+i), lda, queues[1] ); magma_dgetmatrix_async( m-rows, ib, dA(rows, n-k+i), ldda, A(rows, n-k+i), lda, queues[0] ); /* Apply H' to A(1:m-k+i+ib-1,1:n-k+i-1) from the left in two steps - implementing the lookahead techniques. This is the main update from the lookahead techniques. */ rows = m - k + old_i + old_ib; cols = n - k + old_i - old_ib; magma_dlarfb_gpu( MagmaLeft, MagmaConjTrans, MagmaBackward, MagmaColumnwise, rows, cols, old_ib, dA(0, cols+old_ib), ldda, dwork(0), lddwork, dA(0, 0 ), ldda, dwork(old_ib), lddwork); } magma_queue_sync( queues[1] ); /* Compute the QL factorization of the current block A(1:m-k+i+ib-1,n-k+i:n-k+i+ib-1) */ rows = m - k + i + ib; cols = n - k + i; lapackf77_dgeqlf( &rows, &ib, A(0,cols), &lda, tau+i, work, &lwork, &iinfo ); if (cols > 0) { /* Form the triangular factor of the block reflector H = H(i+ib-1) . . . H(i+1) H(i) */ lapackf77_dlarft( MagmaBackwardStr, MagmaColumnwiseStr, &rows, &ib, A(0, cols), &lda, tau + i, work, &ib); dpanel_to_q( MagmaLower, ib, A(rows-ib,cols), lda, work+ib*ib); magma_dsetmatrix( rows, ib, A(0,cols), lda, dA(0,cols), ldda ); dq_to_panel( MagmaLower, ib, A(rows-ib,cols), lda, work+ib*ib); // Send the triangular part on the GPU magma_dsetmatrix( ib, ib, work, ib, dwork(0), lddwork ); /* Apply H' to A(1:m-k+i+ib-1,1:n-k+i-1) from the left in two steps - implementing the lookahead techniques. This is the update of first ib columns. */ if (i-ib >= k -kk) magma_dlarfb_gpu( MagmaLeft, MagmaConjTrans, MagmaBackward, MagmaColumnwise, rows, ib, ib, dA(0, cols), ldda, dwork(0), lddwork, dA(0,cols-ib), ldda, dwork(ib), lddwork); else { magma_dlarfb_gpu( MagmaLeft, MagmaConjTrans, MagmaBackward, MagmaColumnwise, rows, cols, ib, dA(0, cols), ldda, dwork(0), lddwork, dA(0, 0 ), ldda, dwork(ib), lddwork); } old_i = i; old_ib = ib; } } mu = m - k + i + nb; nu = n - k + i + nb; magma_dgetmatrix( m, nu, dA(0,0), ldda, A(0,0), lda ); } else { mu = m; nu = n; } /* Use unblocked code to factor the last or only block */ if (mu > 0 && nu > 0) lapackf77_dgeqlf(&mu, &nu, A(0,0), &lda, tau, work, &lwork, &iinfo); magma_queue_destroy( queues[0] ); magma_queue_destroy( queues[1] ); magma_free( dA ); return *info; } /* magma_dgeqlf */
/** Purpose ------- DGEQRF computes a QR factorization of a DOUBLE_PRECISION M-by-N matrix A: A = Q * R. This version does not require work space on the GPU passed as input. GPU memory is allocated in the routine. If the current stream is NULL, this version replaces it with user defined stream to overlap computation with communication. Arguments --------- @param[in] m INTEGER The number of rows of the matrix A. M >= 0. @param[in] n INTEGER The number of columns of the matrix A. N >= 0. @param[in,out] A DOUBLE_PRECISION array, dimension (LDA,N) On entry, the M-by-N matrix A. On exit, the elements on and above the diagonal of the array contain the min(M,N)-by-N upper trapezoidal matrix R (R is upper triangular if m >= n); the elements below the diagonal, with the array TAU, represent the orthogonal matrix Q as a product of min(m,n) elementary reflectors (see Further Details). \n Higher performance is achieved if A is in pinned memory, e.g. allocated using magma_malloc_pinned. @param[in] lda INTEGER The leading dimension of the array A. LDA >= max(1,M). @param[out] tau DOUBLE_PRECISION array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details). @param[out] work (workspace) DOUBLE_PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. \n Higher performance is achieved if WORK is in pinned memory, e.g. allocated using magma_malloc_pinned. @param[in] lwork INTEGER The dimension of the array WORK. LWORK >= max( N*NB, 2*NB*NB ), where NB can be obtained through magma_get_dgeqrf_nb(M). \n If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued. @param[out] info INTEGER - = 0: successful exit - < 0: if INFO = -i, the i-th argument had an illegal value or another error occured, such as memory allocation failed. Further Details --------------- The matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(k), where k = min(m,n). Each H(i) has the form H(i) = I - tau * v * v' where tau is a real scalar, and v is a real vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), and tau in TAU(i). @ingroup magma_dgeqrf_comp ********************************************************************/ extern "C" magma_int_t magma_dgeqrf(magma_int_t m, magma_int_t n, double *A, magma_int_t lda, double *tau, double *work, magma_int_t lwork, magma_int_t *info ) { #define A(i,j) ( A + (i) + (j)*lda ) #define dA(i,j) (dA + (i) + (j)*ldda) double *dA, *dwork, *dT; double c_one = MAGMA_D_ONE; magma_int_t i, k, lddwork, old_i, old_ib; magma_int_t ib, ldda; /* Function Body */ *info = 0; magma_int_t nb = magma_get_dgeqrf_nb(min(m, n)); // need 2*nb*nb to store T and upper triangle of V simultaneously magma_int_t lwkopt = max(n*nb, 2*nb*nb); work[0] = MAGMA_D_MAKE( (double)lwkopt, 0 ); int lquery = (lwork == -1); if (m < 0) { *info = -1; } else if (n < 0) { *info = -2; } else if (lda < max(1,m)) { *info = -4; } else if (lwork < max(1, lwkopt) && ! lquery) { *info = -7; } if (*info != 0) { magma_xerbla( __func__, -(*info) ); return *info; } else if (lquery) return *info; k = min(m,n); if (k == 0) { work[0] = c_one; return *info; } // largest N for larfb is n-nb (trailing matrix lacks 1st panel) lddwork = ((n+31)/32)*32 - nb; ldda = ((m+31)/32)*32; magma_int_t num_gpus = magma_num_gpus(); if ( num_gpus > 1 ) { /* call multiple-GPU interface */ return magma_dgeqrf4(num_gpus, m, n, A, lda, tau, work, lwork, info); } // allocate space for dA, dwork, and dT if (MAGMA_SUCCESS != magma_dmalloc( &dA, n*ldda + nb*lddwork + nb*nb )) { /* Switch to the "out-of-core" (out of GPU-memory) version */ return magma_dgeqrf_ooc(m, n, A, lda, tau, work, lwork, info); } /* Define user stream if current stream is NULL */ magma_queue_t stream[2], current_stream; magmablasGetKernelStream(¤t_stream); magma_queue_create( &stream[0] ); if (current_stream == NULL) { magma_queue_create( &stream[1] ); magmablasSetKernelStream(stream[1]); } else { stream[1] = current_stream; } dwork = dA + n*ldda; dT = dA + n*ldda + nb*lddwork; if ( (nb > 1) && (nb < k) ) { /* Use blocked code initially. Asynchronously send the matrix to the GPU except the first panel. */ magma_dsetmatrix_async( m, n-nb, A(0,nb), lda, dA(0,nb), ldda, stream[0] ); old_i = 0; old_ib = nb; for (i = 0; i < k-nb; i += nb) { ib = min(k-i, nb); if (i > 0) { /* download i-th panel */ magma_queue_sync( stream[1] ); magma_dgetmatrix_async( m-i, ib, dA(i,i), ldda, A(i,i), lda, stream[0] ); /* Apply H' to A(i:m,i+2*ib:n) from the left */ magma_dlarfb_gpu( MagmaLeft, MagmaTrans, MagmaForward, MagmaColumnwise, m-old_i, n-old_i-2*old_ib, old_ib, dA(old_i, old_i), ldda, dT, nb, dA(old_i, old_i+2*old_ib), ldda, dwork, lddwork); magma_dgetmatrix_async( i, ib, dA(0,i), ldda, A(0,i), lda, stream[1] ); magma_queue_sync( stream[0] ); } magma_int_t rows = m-i; lapackf77_dgeqrf(&rows, &ib, A(i,i), &lda, tau+i, work, &lwork, info); /* Form the triangular factor of the block reflector H = H(i) H(i+1) . . . H(i+ib-1) */ lapackf77_dlarft( MagmaForwardStr, MagmaColumnwiseStr, &rows, &ib, A(i,i), &lda, tau+i, work, &ib); dpanel_to_q(MagmaUpper, ib, A(i,i), lda, work+ib*ib); /* download the i-th V matrix */ magma_dsetmatrix_async( rows, ib, A(i,i), lda, dA(i,i), ldda, stream[0] ); /* download the T matrix */ magma_queue_sync( stream[1] ); magma_dsetmatrix_async( ib, ib, work, ib, dT, nb, stream[0] ); magma_queue_sync( stream[0] ); if (i + ib < n) { if (i+ib < k-nb) { /* Apply H' to A(i:m,i+ib:i+2*ib) from the left (look-ahead) */ magma_dlarfb_gpu( MagmaLeft, MagmaTrans, MagmaForward, MagmaColumnwise, rows, ib, ib, dA(i, i ), ldda, dT, nb, dA(i, i+ib), ldda, dwork, lddwork); dq_to_panel(MagmaUpper, ib, A(i,i), lda, work+ib*ib); } else { /* After last panel, update whole trailing matrix. */ /* Apply H' to A(i:m,i+ib:n) from the left */ magma_dlarfb_gpu( MagmaLeft, MagmaTrans, MagmaForward, MagmaColumnwise, rows, n-i-ib, ib, dA(i, i ), ldda, dT, nb, dA(i, i+ib), ldda, dwork, lddwork); dq_to_panel(MagmaUpper, ib, A(i,i), lda, work+ib*ib); } old_i = i; old_ib = ib; } } } else { i = 0; } /* Use unblocked code to factor the last or only block. */ if (i < k) { ib = n-i; if (i != 0) { magma_dgetmatrix_async( m, ib, dA(0,i), ldda, A(0,i), lda, stream[1] ); magma_queue_sync( stream[1] ); } magma_int_t rows = m-i; lapackf77_dgeqrf(&rows, &ib, A(i,i), &lda, tau+i, work, &lwork, info); } magma_queue_destroy( stream[0] ); if (current_stream == NULL) { magma_queue_destroy( stream[1] ); magmablasSetKernelStream(NULL); } magma_free( dA ); return *info; } /* magma_dgeqrf */
/***************************************************************************//** Purpose ------- DORGQR generates an M-by-N DOUBLE PRECISION matrix Q with orthonormal columns, which is defined as the first N columns of a product of K elementary reflectors of order M Q = H(1) H(2) . . . H(k) as returned by DGEQRF. Arguments --------- @param[in] m INTEGER The number of rows of the matrix Q. M >= 0. @param[in] n INTEGER The number of columns of the matrix Q. M >= N >= 0. @param[in] k INTEGER The number of elementary reflectors whose product defines the matrix Q. N >= K >= 0. @param[in,out] A DOUBLE PRECISION array A, dimension (LDDA,N). On entry, the i-th column must contain the vector which defines the elementary reflector H(i), for i = 1,2,...,k, as returned by DGEQRF_GPU in the first k columns of its array argument A. On exit, the M-by-N matrix Q. @param[in] lda INTEGER The first dimension of the array A. LDA >= max(1,M). @param[in] tau DOUBLE PRECISION array, dimension (K) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by DGEQRF_GPU. @param[in] T DOUBLE PRECISION array, dimension (NB, min(M,N)). T contains the T matrices used in blocking the elementary reflectors H(i), e.g., this can be the 6th argument of magma_dgeqrf_gpu (except stored on the CPU, not the GPU). @param[in] nb INTEGER This is the block size used in DGEQRF_GPU, and correspondingly the size of the T matrices, used in the factorization, and stored in T. @param[out] info INTEGER - = 0: successful exit - < 0: if INFO = -i, the i-th argument had an illegal value @ingroup magma_ungqr *******************************************************************************/ extern "C" magma_int_t magma_dorgqr_m( magma_int_t m, magma_int_t n, magma_int_t k, double *A, magma_int_t lda, double *tau, double *T, magma_int_t nb, magma_int_t *info) { #define A(i,j) ( A + (i) + (j)*lda ) #define dA(d,i,j) (dA[d] + (i) + (j)*ldda) #define dT(d,i,j) (dT[d] + (i) + (j)*nb) double c_zero = MAGMA_D_ZERO; double c_one = MAGMA_D_ONE; magma_int_t m_kk, n_kk, k_kk, mi; magma_int_t lwork, ldwork; magma_int_t d, i, ib, j, jb, ki, kk; double *work=NULL; *info = 0; if (m < 0) { *info = -1; } else if ((n < 0) || (n > m)) { *info = -2; } else if ((k < 0) || (k > n)) { *info = -3; } else if (lda < max(1,m)) { *info = -5; } if (*info != 0) { magma_xerbla( __func__, -(*info) ); return *info; } if (n <= 0) { return *info; } magma_int_t di, dn; magma_int_t dpanel; magma_int_t ngpu = magma_num_gpus(); magma_device_t orig_dev; magma_getdevice( &orig_dev ); // Allocate memory on GPUs for A and workspaces magma_int_t ldda = magma_roundup( m, 32 ); magma_int_t lddwork = magma_roundup( n, 32 ); magma_int_t min_lblocks = (n / nb) / ngpu; // min. blocks per gpu magma_int_t last_dev = (n / nb) % ngpu; // device with last block magma_int_t nlocal[ MagmaMaxGPUs ] = { 0 }; double *dA[ MagmaMaxGPUs ] = { NULL }; double *dT[ MagmaMaxGPUs ] = { NULL }; double *dV[ MagmaMaxGPUs ] = { NULL }; double *dW[ MagmaMaxGPUs ] = { NULL }; magma_queue_t queues[ MagmaMaxGPUs ] = { NULL }; for( d = 0; d < ngpu; ++d ) { // example with n = 75, nb = 10, ngpu = 3 // min_lblocks = 2 // last_dev = 1 // gpu 0: 2 blocks, cols: 0- 9, 30-39, 60-69 // gpu 1: 1+ blocks, cols: 10-19, 40-49, 70-74 (partial) // gpu 2: 1 block, cols: 20-29, 50-59 magma_setdevice( d ); nlocal[d] = min_lblocks*nb; if ( d < last_dev ) { nlocal[d] += nb; } else if ( d == last_dev ) { nlocal[d] += (n % nb); } ldwork = nlocal[d]*ldda // dA + nb*m // dT + nb*ldda // dV + nb*lddwork; // dW if ( MAGMA_SUCCESS != magma_dmalloc( &dA[d], ldwork )) { *info = MAGMA_ERR_DEVICE_ALLOC; goto cleanup; } dT[d] = dA[d] + nlocal[d]*ldda; dV[d] = dT[d] + nb*m; dW[d] = dV[d] + nb*ldda; magma_queue_create( d, &queues[d] ); } trace_init( 1, ngpu, 1, queues ); // first kk columns are handled by blocked method. // ki is start of 2nd-to-last block if ((nb > 1) && (nb < k)) { ki = (k - nb - 1) / nb * nb; kk = min(k, ki + nb); } else { ki = 0; kk = 0; } // Allocate CPU work space // n*nb for larfb work // m*nb for V // nb*nb for T lwork = (n + m + nb) * nb; magma_dmalloc_cpu( &work, lwork ); if (work == NULL) { *info = MAGMA_ERR_HOST_ALLOC; goto cleanup; } double *work_T, *work_V; work_T = work + n*nb; work_V = work + n*nb + nb*nb; // Use unblocked code for the last or only block. if (kk < n) { trace_cpu_start( 0, "ungqr", "ungqr last block" ); m_kk = m - kk; n_kk = n - kk; k_kk = k - kk; // dorgqr requires less workspace (n*nb), but is slow if k < dorgqr's block size. // replacing it with the 4 routines below is much faster (e.g., 60x). //magma_int_t iinfo; //lapackf77_dorgqr( &m_kk, &n_kk, &k_kk, // A(kk, kk), &lda, // &tau[kk], work, &lwork, &iinfo ); lapackf77_dlacpy( MagmaFullStr, &m_kk, &k_kk, A(kk,kk), &lda, work_V, &m_kk); lapackf77_dlaset( MagmaFullStr, &m_kk, &n_kk, &c_zero, &c_one, A(kk, kk), &lda ); lapackf77_dlarft( MagmaForwardStr, MagmaColumnwiseStr, &m_kk, &k_kk, work_V, &m_kk, &tau[kk], work_T, &k_kk); lapackf77_dlarfb( MagmaLeftStr, MagmaNoTransStr, MagmaForwardStr, MagmaColumnwiseStr, &m_kk, &n_kk, &k_kk, work_V, &m_kk, work_T, &k_kk, A(kk, kk), &lda, work, &n_kk ); if (kk > 0) { for( j=kk; j < n; j += nb ) { jb = min( n-j, nb ); d = (j / nb) % ngpu; di = ((j / nb) / ngpu) * nb; magma_setdevice( d ); magma_dsetmatrix( m_kk, jb, A(kk, j), lda, dA(d, kk, di), ldda, queues[d] ); // Set A(1:kk,kk+1:n) to zero. magmablas_dlaset( MagmaFull, kk, jb, c_zero, c_zero, dA(d, 0, di), ldda, queues[d] ); } } trace_cpu_end( 0 ); } if (kk > 0) { // Use blocked code // send T to all GPUs for( d = 0; d < ngpu; ++d ) { magma_setdevice( d ); trace_gpu_start( d, 0, "set", "set T" ); magma_dsetmatrix_async( nb, min(m,n), T, nb, dT[d], nb, queues[d] ); trace_gpu_end( d, 0 ); } // queue: set Aii (V) --> laset --> laset --> larfb --> [next] // CPU has no computation for( i = ki; i >= 0; i -= nb ) { ib = min(nb, k - i); mi = m - i; dpanel = (i / nb) % ngpu; di = ((i / nb) / ngpu) * nb; // Send current panel to dV on the GPUs lapackf77_dlaset( "Upper", &ib, &ib, &c_zero, &c_one, A(i, i), &lda ); for( d = 0; d < ngpu; ++d ) { magma_setdevice( d ); trace_gpu_start( d, 0, "set", "set V" ); magma_dsetmatrix_async( mi, ib, A(i, i), lda, dV[d], ldda, queues[d] ); trace_gpu_end( d, 0 ); } // set panel to identity magma_setdevice( dpanel ); trace_gpu_start( dpanel, 0, "laset", "laset" ); magmablas_dlaset( MagmaFull, i, ib, c_zero, c_zero, dA(dpanel, 0, di), ldda, queues[dpanel] ); magmablas_dlaset( MagmaFull, mi, ib, c_zero, c_one, dA(dpanel, i, di), ldda, queues[dpanel] ); trace_gpu_end( dpanel, 0 ); if (i < n) { // Apply H to A(i:m,i:n) from the left for( d = 0; d < ngpu; ++d ) { magma_setdevice( d ); magma_indices_1D_bcyclic( nb, ngpu, d, i, n, &di, &dn ); trace_gpu_start( d, 0, "larfb", "larfb" ); magma_dlarfb_gpu( MagmaLeft, MagmaNoTrans, MagmaForward, MagmaColumnwise, mi, dn-di, ib, dV[d], ldda, dT(d,0,i), nb, dA(d, i, di), ldda, dW[d], lddwork, queues[d] ); trace_gpu_end( d, 0 ); } } } // copy result back to CPU trace_cpu_start( 0, "get", "get A" ); magma_dgetmatrix_1D_col_bcyclic( ngpu, m, n, nb, dA, ldda, A, lda, queues ); trace_cpu_end( 0 ); } #ifdef TRACING char name[80]; snprintf( name, sizeof(name), "dorgqr-n%lld-ngpu%lld.svg", (long long) m, (long long) ngpu ); trace_finalize( name, "trace.css" ); #endif cleanup: for( d = 0; d < ngpu; ++d ) { magma_setdevice( d ); magma_free( dA[d] ); magma_queue_destroy( queues[d] ); } magma_free_cpu( work ); magma_setdevice( orig_dev ); return *info; } /* magma_dorgqr */
/* //////////////////////////////////////////////////////////////////////////// -- Testing dgeqrf */ int main( int argc, char** argv) { real_Double_t gflops, gpu_perf, gpu_time, cpu_perf, cpu_time; double error, work[1]; double c_neg_one = MAGMA_D_NEG_ONE; double *h_A, *h_T, *h_R, *tau, *h_work, tmp[1]; magmaDouble_ptr d_A, d_T, ddA, dtau; magmaDouble_ptr dwork; /* Matrix size */ magma_int_t M = 0, N = 0, n2, lda, ldda, lwork; const int MAXTESTS = 10; magma_int_t msize[MAXTESTS] = { 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 8100, 8192 }; magma_int_t nsize[MAXTESTS] = { 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 8100, 8192 }; magma_int_t i, info, min_mn; magma_int_t ione = 1; //magma_int_t ISEED[4] = {0,0,0,1}; magma_int_t checkres; checkres = getenv("MAGMA_TESTINGS_CHECK") != NULL; // process command line arguments printf( "\nUsage: %s -N <m,n> -c\n", argv[0] ); printf( " -N can be repeated up to %d times. If only m is given, then m=n.\n", MAXTESTS ); printf( " -c or setting $MAGMA_TESTINGS_CHECK runs LAPACK and checks result.\n\n" ); int ntest = 0; for( int i = 1; i < argc; ++i ) { if ( strcmp("-N", argv[i]) == 0 && i+1 < argc ) { magma_assert( ntest < MAXTESTS, "error: -N repeated more than maximum %d tests\n", MAXTESTS ); int m, n; info = sscanf( argv[++i], "%d,%d", &m, &n ); if ( info == 2 && m > 0 && n > 0 ) { msize[ ntest ] = m; nsize[ ntest ] = n; } else if ( info == 1 && m > 0 ) { msize[ ntest ] = m; nsize[ ntest ] = m; // implicitly } else { printf( "error: -N %s is invalid; ensure m > 0, n > 0.\n", argv[i] ); exit(1); } M = max( M, msize[ ntest ] ); N = max( N, nsize[ ntest ] ); ntest++; } else if ( strcmp("-M", argv[i]) == 0 ) { printf( "-M has been replaced in favor of -N m,n to allow -N to be repeated.\n\n" ); exit(1); } else if ( strcmp("-c", argv[i]) == 0 ) { checkres = true; } else { printf( "invalid argument: %s\n", argv[i] ); exit(1); } } if ( ntest == 0 ) { ntest = MAXTESTS; M = msize[ntest-1]; N = nsize[ntest-1]; } ldda = ((M+31)/32)*32; n2 = M * N; min_mn = min(M, N); /* Initialize */ magma_queue_t queue; magma_device_t device[ MagmaMaxGPUs ]; int num = 0; magma_err_t err; magma_init(); err = magma_get_devices( device, MagmaMaxGPUs, &num ); if ( err != 0 || num < 1 ) { fprintf( stderr, "magma_get_devices failed: %d\n", err ); exit(-1); } err = magma_queue_create( device[0], &queue ); if ( err != 0 ) { fprintf( stderr, "magma_queue_create failed: %d\n", err ); exit(-1); } /* Allocate memory for the matrix */ TESTING_MALLOC_PIN( tau, double, min_mn ); TESTING_MALLOC_PIN( h_A, double, n2 ); TESTING_MALLOC_PIN( h_T, double, N*N ); TESTING_MALLOC_PIN( h_R, double, n2 ); TESTING_MALLOC_DEV( d_A, double, ldda*N ); TESTING_MALLOC_DEV( d_T, double, N*N ); TESTING_MALLOC_DEV( ddA, double, N*N ); TESTING_MALLOC_DEV( dtau, double, min_mn ); TESTING_MALLOC_DEV( dwork, double, max(5*min_mn, (32*2+2)*min_mn) ); double *h1 = (double*)malloc(sizeof(double)*N*N); memset(h1, 0, N*N*sizeof(double)); clEnqueueWriteBuffer(queue, ddA, CL_TRUE, 0, sizeof(double)*N*N, h1, 0, NULL, NULL); clEnqueueWriteBuffer(queue, d_T, CL_TRUE, 0, sizeof(double)*N*N, h1, 0, NULL, NULL); lwork = -1; lapackf77_dgeqrf(&M, &N, h_A, &M, tau, tmp, &lwork, &info); lwork = (magma_int_t)MAGMA_D_REAL( tmp[0] ); lwork = max(lwork, N*N); TESTING_MALLOC_PIN( h_work, double, lwork ); printf(" M N CPU GFlop/s (ms) GPU GFlop/s (ms) ||R||_F/||A||_F ||R_T||\n"); printf("=============================================================================\n"); for( i = 0; i < ntest; ++i ) { M = msize[i]; N = nsize[i]; min_mn= min(M, N); lda = M; n2 = lda*N; ldda = ((M+31)/32)*32; gflops = (FLOPS_DGEQRF( M, N ) + FLOPS_DGEQRT( M, N)) / 1e9; /* Initialize the matrix */ magma_int_t ISEED[4] = {0,0,0,1}; lapackf77_dlarnv( &ione, ISEED, &n2, h_A ); lapackf77_dlacpy( MagmaUpperLowerStr, &M, &N, h_A, &lda, h_R, &lda ); magma_dsetmatrix( M, N, h_R, 0, lda, d_A, 0, ldda, queue ); /* ==================================================================== Performs operation using MAGMA =================================================================== */ // warm-up // magma_dgeqr2x3_gpu(&M, &N, d_A, 0, &ldda, dtau, 0, d_T, 0, ddA, 0, dwork, 0, &info, queue); /* magma_dsetmatrix( M, N, h_R, 0, lda, d_A, 0, ldda, queue ); clEnqueueWriteBuffer(queue, ddA, CL_TRUE, 0, sizeof(double)*N*N, h1, 0, NULL, NULL); clEnqueueWriteBuffer(queue, d_T, CL_TRUE, 0, sizeof(double)*N*N, h1, 0, NULL, NULL); */ gpu_time = magma_wtime(); magma_dgeqr2x3_gpu(&M, &N, d_A, 0, &ldda, dtau, 0, d_T, 0, ddA, 0, dwork, 0, &info, queue); gpu_time = magma_wtime() - gpu_time; gpu_perf = gflops / gpu_time; if (info != 0) printf("magma_dgeqrf returned error %d.\n", (int) info); if ( checkres ) { /* ===================================================================== Performs operation using LAPACK =================================================================== */ cpu_time = magma_wtime(); lapackf77_dgeqrf(&M, &N, h_A, &lda, tau, h_work, &lwork, &info); lapackf77_dlarft( MagmaForwardStr, MagmaColumnwiseStr, &M, &N, h_A, &lda, tau, h_work, &N); cpu_time = magma_wtime() - cpu_time; cpu_perf = gflops / cpu_time; if (info != 0) printf("lapackf77_dgeqrf returned error %d.\n", (int) info); /* ===================================================================== Check the result compared to LAPACK =================================================================== */ magma_dgetmatrix( M, N, d_A, 0, ldda, h_R, 0, M, queue ); magma_dgetmatrix( N, N, ddA, 0, N, h_T, 0, N, queue ); // Restore the upper triangular part of A before the check for(int col=0; col<N; col++){ for(int row=0; row<=col; row++) h_R[row + col*M] = h_T[row + col*N]; } error = lapackf77_dlange("M", &M, &N, h_A, &lda, work); blasf77_daxpy(&n2, &c_neg_one, h_A, &ione, h_R, &ione); error = lapackf77_dlange("M", &M, &N, h_R, &lda, work) / error; // Check if T is the same double terr = 0.; magma_dgetmatrix( N, N, d_T, 0, N, h_T, 0, N, queue ); for(int col=0; col<N; col++) for(int row=0; row<=col; row++) terr += ( MAGMA_D_ABS(h_work[row + col*N] - h_T[row + col*N])* MAGMA_D_ABS(h_work[row + col*N] - h_T[row + col*N]) ); terr = magma_dsqrt(terr); printf("%5d %5d %7.2f (%7.2f) %7.2f (%7.2f) %8.2e %8.2e\n", (int) M, (int) N, cpu_perf, 1000.*cpu_time, gpu_perf, 1000.*gpu_time, error, terr); } else { printf("%5d %5d --- ( --- ) %7.2f (%7.2f) --- \n", (int) M, (int) N, gpu_perf, 1000.*gpu_time); } } /* Memory clean up */ TESTING_FREE_PIN( tau ); TESTING_FREE_PIN( h_A ); TESTING_FREE_PIN( h_T ); TESTING_FREE_PIN( h_work ); TESTING_FREE_PIN( h_R ); TESTING_FREE_DEV( d_A ); TESTING_FREE_DEV( d_T ); TESTING_FREE_DEV( ddA ); TESTING_FREE_DEV( dtau ); free(h1); magma_queue_destroy( queue ); magma_finalize(); }
extern "C" magma_int_t magma_dormqr(const char side, const char trans, magma_int_t m, magma_int_t n, magma_int_t k, double *A, magma_int_t lda, double *tau, double *C, magma_int_t ldc, double *work, magma_int_t lwork, magma_int_t *info) { /* -- MAGMA (version 1.4.0) -- Univ. of Tennessee, Knoxville Univ. of California, Berkeley Univ. of Colorado, Denver August 2013 Purpose ======= DORMQR overwrites the general real M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N': Q * C C * Q TRANS = 'T': Q**T * C C * Q**T where Q is a real orthogonal matrix defined as the product of k elementary reflectors Q = H(1) H(2) . . . H(k) as returned by DGEQRF. Q is of order M if SIDE = 'L' and of order N if SIDE = 'R'. Arguments ========= SIDE (input) CHARACTER*1 = 'L': apply Q or Q**T from the Left; = 'R': apply Q or Q**T from the Right. TRANS (input) CHARACTER*1 = 'N': No transpose, apply Q; = 'T': Transpose, apply Q**T. M (input) INTEGER The number of rows of the matrix C. M >= 0. N (input) INTEGER The number of columns of the matrix C. N >= 0. K (input) INTEGER The number of elementary reflectors whose product defines the matrix Q. If SIDE = 'L', M >= K >= 0; if SIDE = 'R', N >= K >= 0. A (input) DOUBLE_PRECISION array, dimension (LDA,K) The i-th column must contain the vector which defines the elementary reflector H(i), for i = 1,2,...,k, as returned by DGEQRF in the first k columns of its array argument A. A is modified by the routine but restored on exit. LDA (input) INTEGER The leading dimension of the array A. If SIDE = 'L', LDA >= max(1,M); if SIDE = 'R', LDA >= max(1,N). TAU (input) DOUBLE_PRECISION array, dimension (K) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by DGEQRF. C (input/output) DOUBLE_PRECISION array, dimension (LDC,N) On entry, the M-by-N matrix C. On exit, C is overwritten by Q*C or Q**T * C or C * Q**T or C*Q. LDC (input) INTEGER The leading dimension of the array C. LDC >= max(1,M). WORK (workspace/output) DOUBLE_PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(0) returns the optimal LWORK. LWORK (input) INTEGER The dimension of the array WORK. If SIDE = 'L', LWORK >= max(1,N); if SIDE = 'R', LWORK >= max(1,M). For optimum performance LWORK >= N*NB if SIDE = 'L', and LWORK >= M*NB if SIDE = 'R', where NB is the optimal blocksize. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value ===================================================================== */ #define A(a_1,a_2) ( A + (a_1) + (a_2)*lda) #define dC(a_1,a_2) (dC + (a_1) + (a_2)*lddc) magma_int_t nb = magma_get_dgeqrf_nb( min( m, n )); double c_one = MAGMA_D_ONE; char side_[2] = {side, 0}; char trans_[2] = {trans, 0}; magma_int_t nq_i, lddwork; magma_int_t i; double *T; magma_int_t i1, i2, step, ib, ic, jc, mi, ni, nq, nw; int left, notran, lquery; magma_int_t iinfo, lwkopt; *info = 0; left = lapackf77_lsame(side_, "L"); notran = lapackf77_lsame(trans_, "N"); lquery = (lwork == -1); /* NQ is the order of Q and NW is the minimum dimension of WORK */ if (left) { nq = m; nw = n; } else { nq = n; nw = m; } lwkopt = max(1,nw) * nb; work[0] = MAGMA_D_MAKE( lwkopt, 0 ); if (! left && ! lapackf77_lsame(side_, "R")) { *info = -1; } else if (! notran && ! lapackf77_lsame(trans_, MagmaTransStr)) { *info = -2; } else if (m < 0) { *info = -3; } else if (n < 0) { *info = -4; } else if (k < 0 || k > nq) { *info = -5; } else if (lda < max(1,nq)) { *info = -7; } else if (ldc < max(1,m)) { *info = -10; } else if (lwork < max(1,nw) && ! lquery) { *info = -12; } if (*info != 0) { magma_xerbla( __func__, -(*info) ); return *info; } else if (lquery) { return *info; } /* Quick return if possible */ if (m == 0 || n == 0 || k == 0) { work[0] = c_one; return *info; } /* Allocate work space on the GPU */ magma_int_t lddc = m; double *dwork, *dC; magma_dmalloc( &dC, lddc*n ); magma_dmalloc( &dwork, (m + n + nb)*nb ); if ( dC == NULL || dwork == NULL ) { magma_free( dC ); magma_free( dwork ); *info = MAGMA_ERR_DEVICE_ALLOC; return *info; } /* work space on CPU */ T = (double*) malloc( 2*nb*nb * sizeof(double) ); if ( T == NULL ) { magma_free( dC ); magma_free( dwork ); *info = MAGMA_ERR_HOST_ALLOC; return *info; } /* Copy matrix C from the CPU to the GPU */ magma_dsetmatrix( m, n, C, ldc, dC, lddc ); if (nb >= k) { /* Use CPU code */ lapackf77_dormqr(side_, trans_, &m, &n, &k, A, &lda, &tau[1], C, &ldc, work, &lwork, &iinfo); } else { /* Use hybrid CPU-GPU code */ if ( (left && (! notran)) || ((! left) && notran) ) { i1 = 0; i2 = k; step = nb; } else { i1 = ((k - 1) / nb) * nb; i2 = 0; step = -nb; } // silence "uninitialized" warnings mi = 0; ni = 0; if (left) { ni = n; jc = 0; } else { mi = m; ic = 0; } for( i=i1; (step<0 ? i>=i2 : i<i2); i += step ) { ib = min(nb, k - i); /* Form the triangular factor of the block reflector H = H(i) H(i+1) . . . H(i+ib-1) */ nq_i = nq - i; lapackf77_dlarft("F", "C", &nq_i, &ib, A(i,i), &lda, &tau[i], T, &ib); /* 1) Put 0s in the upper triangular part of A; 2) copy the panel from A to the GPU, and 3) restore A */ dpanel_to_q('U', ib, A(i,i), lda, T+ib*ib); magma_dsetmatrix( nq_i, ib, A(i,i), lda, dwork, nq_i ); dq_to_panel('U', ib, A(i,i), lda, T+ib*ib); if (left) { /* H or H' is applied to C(i:m,1:n) */ mi = m - i; ic = i; } else { /* H or H' is applied to C(1:m,i:n) */ ni = n - i; jc = i; } if (left) lddwork = ni; else lddwork = mi; /* Apply H or H'; First copy T to the GPU */ magma_dsetmatrix( ib, ib, T, ib, dwork+nq_i*ib, ib ); magma_dlarfb_gpu( side, trans, MagmaForward, MagmaColumnwise, mi, ni, ib, dwork, nq_i, dwork+nq_i*ib, ib, dC(ic,jc), lddc, dwork+nq_i*ib + ib*ib, lddwork); } magma_dgetmatrix( m, n, dC, lddc, C, ldc ); } work[0] = MAGMA_D_MAKE( lwkopt, 0 ); magma_free( dC ); magma_free( dwork ); free( T ); return *info; } /* magma_dormqr */
extern "C" magma_err_t magma_dgeqrf_gpu( magma_int_t m, magma_int_t n, magmaDouble_ptr dA, size_t dA_offset, magma_int_t ldda, double *tau, magmaDouble_ptr dT, size_t dT_offset, magma_int_t *info, magma_queue_t queue) { /* -- clMAGMA (version 1.1.0) -- Univ. of Tennessee, Knoxville Univ. of California, Berkeley Univ. of Colorado, Denver @date January 2014 Purpose ======= DGEQRF computes a QR factorization of a DOUBLE_PRECISION M-by-N matrix A: A = Q * R. This version stores the triangular matrices used in the factorization so that they can be applied directly (i.e., without being recomputed) later. As a result, the application of Q is much faster. Arguments ========= M (input) INTEGER The number of rows of the matrix A. M >= 0. N (input) INTEGER The number of columns of the matrix A. N >= 0. A (input/output) DOUBLE_PRECISION array on the GPU, dimension (LDDA,N) On entry, the M-by-N matrix A. On exit, the elements on and above the diagonal of the array contain the min(M,N)-by-N upper trapezoidal matrix R (R is upper triangular if m >= n); the elements below the diagonal, with the array TAU, represent the orthogonal matrix Q as a product of min(m,n) elementary reflectors (see Further Details). LDDA (input) INTEGER The leading dimension of the array A. LDDA >= max(1,M). To benefit from coalescent memory accesses LDDA must be dividable by 16. TAU (output) DOUBLE_PRECISION array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details). dT (workspace/output) DOUBLE_PRECISION array on the GPU, dimension (2*MIN(M, N) + (N+31)/32*32 )*NB, where NB can be obtained through magma_get_dgeqrf_nb(M). It starts with MIN(M,N)*NB block that store the triangular T matrices, followed by the MIN(M,N)*NB block of the diagonal inverses for the R matrix. The rest of the array is used as workspace. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value or another error occured, such as memory allocation failed. Further Details =============== The matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(k), where k = min(m,n). Each H(i) has the form H(i) = I - tau * v * v' where tau is a real scalar, and v is a real vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), and tau in TAU(i). ===================================================================== */ #define a_ref(a_1,a_2) dA, (dA_offset + (a_1) + (a_2)*(ldda)) #define t_ref(a_1) dT, (dT_offset + (a_1)*nb) #define d_ref(a_1) dT, (dT_offset + (minmn + (a_1))*nb) #define dd_ref(a_1) dT, (dT_offset + (2*minmn+(a_1))*nb) #define work_ref(a_1) ( work + (a_1)) #define hwork ( work + (nb)*(m)) magma_int_t i, k, minmn, old_i, old_ib, rows, cols; magma_int_t ib, nb; magma_int_t ldwork, lddwork, lwork, lhwork; double *work, *ut; /* check arguments */ *info = 0; if (m < 0) { *info = -1; } else if (n < 0) { *info = -2; } else if (ldda < max(1,m)) { *info = -4; } if (*info != 0) { magma_xerbla( __func__, -(*info) ); return *info; } k = minmn = min(m,n); if (k == 0) return *info; nb = magma_get_dgeqrf_nb(m); lwork = (m + n + nb)*nb; lhwork = lwork - m*nb; if (MAGMA_SUCCESS != magma_dmalloc_cpu( &work, lwork )) { *info = MAGMA_ERR_HOST_ALLOC; return *info; } ut = hwork+nb*(n); memset( ut, 0, nb*nb*sizeof(double)); magma_event_t event[2] = {NULL, NULL}; ldwork = m; lddwork= n; if ( (nb > 1) && (nb < k) ) { /* Use blocked code initially */ old_i = 0; old_ib = nb; for (i = 0; i < k-nb; i += nb) { ib = min(k-i, nb); rows = m -i; magma_dgetmatrix_async( rows, ib, a_ref(i,i), ldda, work_ref(i), 0, ldwork, queue, &event[1] ); if (i>0){ /* Apply H' to A(i:m,i+2*ib:n) from the left */ cols = n-old_i-2*old_ib; magma_dlarfb_gpu( MagmaLeft, MagmaTrans, MagmaForward, MagmaColumnwise, m-old_i, cols, old_ib, a_ref(old_i, old_i ), ldda, t_ref(old_i), nb, a_ref(old_i, old_i+2*old_ib), ldda, dd_ref(0), lddwork, queue); /* store the diagonal */ magma_dsetmatrix_async( old_ib, old_ib, ut, 0, old_ib, d_ref(old_i), old_ib, queue, &event[0] ); } magma_event_sync(event[1]); lapackf77_dgeqrf(&rows, &ib, work_ref(i), &ldwork, tau+i, hwork, &lhwork, info); /* Form the triangular factor of the block reflector H = H(i) H(i+1) . . . H(i+ib-1) */ lapackf77_dlarft( MagmaForwardStr, MagmaColumnwiseStr, &rows, &ib, work_ref(i), &ldwork, tau+i, hwork, &ib); /* Put 0s in the upper triangular part of a panel (and 1s on the diagonal); copy the upper triangular in ut and invert it */ magma_event_sync(event[0]); dsplit_diag_block(ib, work_ref(i), ldwork, ut); magma_dsetmatrix( rows, ib, work_ref(i), 0, ldwork, a_ref(i,i), ldda, queue); if (i + ib < n) { /* Send the triangular factor T to the GPU */ magma_dsetmatrix( ib, ib, hwork, 0, ib, t_ref(i), nb, queue ); if (i+nb < k-nb){ /* Apply H' to A(i:m,i+ib:i+2*ib) from the left */ magma_dlarfb_gpu( MagmaLeft, MagmaTrans, MagmaForward, MagmaColumnwise, rows, ib, ib, a_ref(i, i ), ldda, t_ref(i), nb, a_ref(i, i+ib), ldda, dd_ref(0), lddwork, queue); } else { cols = n-i-ib; magma_dlarfb_gpu( MagmaLeft, MagmaTrans, MagmaForward, MagmaColumnwise, rows, cols, ib, a_ref(i, i ), ldda, t_ref(i), nb, a_ref(i, i+ib), ldda, dd_ref(0), lddwork, queue); /* Fix the diagonal block */ magma_dsetmatrix( ib, ib, ut, 0, ib, d_ref(i), ib , queue); } old_i = i; old_ib = ib; } } } else { i = 0; } /* Use unblocked code to factor the last or only block. */ if (i < k) { ib = n-i; rows = m-i; magma_dgetmatrix( rows, ib, a_ref(i, i), ldda, work, 0, rows, queue ); lhwork = lwork - rows*ib; lapackf77_dgeqrf(&rows, &ib, work, &rows, tau+i, work+ib*rows, &lhwork, info); magma_dsetmatrix( rows, ib, work, 0, rows, a_ref(i, i), ldda, queue ); } magma_free_cpu( work ); return *info; } /* magma_dgeqrf */
/** Purpose ------- DGEQRF computes a QR factorization of a DOUBLE PRECISION M-by-N matrix A: A = Q * R. This version does not require work space on the GPU passed as input. GPU memory is allocated in the routine. This uses 2 queues to overlap communication and computation. Arguments --------- @param[in] m INTEGER The number of rows of the matrix A. M >= 0. @param[in] n INTEGER The number of columns of the matrix A. N >= 0. @param[in,out] A DOUBLE PRECISION array, dimension (LDA,N) On entry, the M-by-N matrix A. On exit, the elements on and above the diagonal of the array contain the min(M,N)-by-N upper trapezoidal matrix R (R is upper triangular if m >= n); the elements below the diagonal, with the array TAU, represent the orthogonal matrix Q as a product of min(m,n) elementary reflectors (see Further Details). \n Higher performance is achieved if A is in pinned memory, e.g. allocated using magma_malloc_pinned. @param[in] lda INTEGER The leading dimension of the array A. LDA >= max(1,M). @param[out] tau DOUBLE PRECISION array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details). @param[out] work (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK[0] returns the optimal LWORK. \n Higher performance is achieved if WORK is in pinned memory, e.g. allocated using magma_malloc_pinned. @param[in] lwork INTEGER The dimension of the array WORK. LWORK >= max( N*NB, 2*NB*NB ), where NB can be obtained through magma_get_dgeqrf_nb( M, N ). \n If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued. @param[out] info INTEGER - = 0: successful exit - < 0: if INFO = -i, the i-th argument had an illegal value or another error occured, such as memory allocation failed. Further Details --------------- The matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(k), where k = min(m,n). Each H(i) has the form H(i) = I - tau * v * v' where tau is a real scalar, and v is a real vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), and tau in TAU(i). @ingroup magma_dgeqrf_comp ********************************************************************/ extern "C" magma_int_t magma_dgeqrf( magma_int_t m, magma_int_t n, double *A, magma_int_t lda, double *tau, double *work, magma_int_t lwork, magma_int_t *info ) { #define A(i_,j_) (A + (i_) + (j_)*lda) #ifdef HAVE_clBLAS #define dA(i_,j_) dA, ((i_) + (j_)*ldda + dA_offset) #define dT(i_,j_) dT, ((i_) + (j_)*nb + dT_offset) #define dwork(i_) dwork, ((i_) + dwork_offset) #else #define dA(i_,j_) (dA + (i_) + (j_)*ldda) #define dT(i_,j_) (dT + (i_) + (j_)*nb) #define dwork(i_) (dwork + (i_)) #endif /* Constants */ const double c_one = MAGMA_D_ONE; /* Local variables */ magmaDouble_ptr dA, dT, dwork; magma_int_t i, ib, min_mn, ldda, lddwork, old_i, old_ib; /* Function Body */ *info = 0; magma_int_t nb = magma_get_dgeqrf_nb( m, n ); // need 2*nb*nb to store T and upper triangle of V simultaneously magma_int_t lwkopt = max( n*nb, 2*nb*nb ); work[0] = magma_dmake_lwork( lwkopt ); bool lquery = (lwork == -1); if (m < 0) { *info = -1; } else if (n < 0) { *info = -2; } else if (lda < max(1,m)) { *info = -4; } else if (lwork < max(1, lwkopt) && ! lquery) { *info = -7; } if (*info != 0) { magma_xerbla( __func__, -(*info) ); return *info; } else if (lquery) return *info; min_mn = min( m, n ); if (min_mn == 0) { work[0] = c_one; return *info; } // largest N for larfb is n-nb (trailing matrix lacks 1st panel) lddwork = magma_roundup( n, 32 ) - nb; ldda = magma_roundup( m, 32 ); magma_int_t ngpu = magma_num_gpus(); if ( ngpu > 1 ) { /* call multiple-GPU interface */ return magma_dgeqrf_m( ngpu, m, n, A, lda, tau, work, lwork, info ); } // allocate space for dA, dwork, and dT if (MAGMA_SUCCESS != magma_dmalloc( &dA, n*ldda + nb*lddwork + nb*nb )) { /* alloc failed so call non-GPU-resident version */ return magma_dgeqrf_ooc( m, n, A, lda, tau, work, lwork, info ); } dwork = dA + n*ldda; dT = dA + n*ldda + nb*lddwork; magma_queue_t queues[2]; magma_device_t cdev; magma_getdevice( &cdev ); magma_queue_create( cdev, &queues[0] ); magma_queue_create( cdev, &queues[1] ); //used for timing CPU and GPU int iter = 0; float cpu_time = 0.0; float gpu_time = 0.0; int affinity = map_cpu(0); if(affinity != 0) { printf("affinity failed\n"); return -1; } magma_set_lapack_numthreads(1); // for initial setting, better to be automatic in the future // SetGPUFreq(324, 324); // system("echo 1200000 > /sys/devices/system/cpu/cpu0/cpufreq/scaling_setspeed"); SetGPUFreq(2600, 705); system("echo 2500000 > /sys/devices/system/cpu/cpu0/cpufreq/scaling_setspeed"); double gpu_iter1_low = 2096.544434; double gpu_iter1_high = 478.825226; double cpu_iter1_low = 1792.011230; double cpu_iter1_high = 1413.732788; double gpu_pred_high = gpu_iter1_high; double gpu_pred_low = gpu_iter1_low; double cpu_pred_high = cpu_iter1_high; double cpu_pred_low = cpu_iter1_low; double ratio_split_freq = 0; double time_until_interrupt = 0; cudaEvent_t start_cpu, stop_cpu; cudaEvent_t start_gpu, stop_gpu; // switches for different modes bool timing = false; //for initial setting only, greatly impact performance bool dvfs = false; //turn on dvfs energy saving bool relax = false; //turn on relax scheme bool r2h = false; // turn on race to halt //these parameters need to be tuned in future works. double dvfs_converage = 0.5; double prediction_offset_gpu = 0.65; double prediction_offset_cpu = 0.65; //for nvprof profiler, brings slight constant performance overhead //cudaProfilerStart(); if ( (nb > 1) && (nb < min_mn) ) { /* Use blocked code initially. Asynchronously send the matrix to the GPU except the first panel. */ magma_dsetmatrix_async( m, n-nb, A(0,nb), lda, dA(0,nb), ldda, queues[0] ); old_i = 0; old_ib = nb; for (i = 0; i < min_mn-nb; i += nb) { ib = min( min_mn-i, nb ); if (i > 0) { /* get i-th panel from device */ magma_queue_sync( queues[1] ); magma_dgetmatrix_async( m-i, ib, dA(i,i), ldda, A(i,i), lda, queues[0] ); if (timing) { //start gpu timing cudaEventCreate(&start_gpu); cudaEventCreate(&stop_gpu); cudaEventRecord(start_gpu, 0); } /* Apply H' to A(i:m,i+2*ib:n) from the left */ magma_dlarfb_gpu( MagmaLeft, MagmaConjTrans, MagmaForward, MagmaColumnwise, m-old_i, n-old_i-2*old_ib, old_ib, dA(old_i, old_i), ldda, dT(0,0), nb, dA(old_i, old_i+2*old_ib), ldda, dwork(0), lddwork, queues[1] ); double ratio_slack_pred = 1.0 - (double)nb/(m-iter*nb); cpu_pred_high = cpu_pred_high * ratio_slack_pred; cpu_pred_low = cpu_pred_low * ratio_slack_pred; gpu_pred_high = gpu_pred_high * ratio_slack_pred * ratio_slack_pred; gpu_pred_low = gpu_pred_low * ratio_slack_pred * ratio_slack_pred; if (timing) { printf("iter:%d GPU time pred:%f\n", iter, gpu_pred_high); printf("iter:%d CPU time pred:%f\n", iter, cpu_pred_high); } if (iter < dvfs_converage*(min_mn-nb)/nb) { if (cpu_pred_high > gpu_pred_high) { //slack on GPU ratio_split_freq = (cpu_pred_high - gpu_pred_high) / (gpu_pred_high * ((gpu_iter1_low / gpu_iter1_high) - 1)); time_until_interrupt = gpu_pred_low * ratio_split_freq; //printf("iter:%d time_until_interrupt:%f\n", iter, time_until_interrupt); // printf("iter:%d ratio_split_freq:%f\n", iter, ratio_split_freq); if (dvfs) { if ((!relax) || (relax && ratio_split_freq > 0.05)) { if (ratio_split_freq < 1) dvfs_adjust(time_until_interrupt*prediction_offset_gpu, 'g'); else dvfs_adjust(cpu_pred_high, 'g'); } } else if (r2h) { r2h_adjust(gpu_pred_high, cpu_pred_high - gpu_pred_high, 'g'); } } else { //slack on CPU ratio_split_freq = (gpu_pred_high - cpu_pred_high) / (cpu_pred_high * ((cpu_iter1_low / cpu_iter1_high) - 1)); time_until_interrupt = cpu_pred_low * ratio_split_freq; if (dvfs) { if ((!relax) || (relax && ratio_split_freq > 0.05)) { if (ratio_split_freq < 1) dvfs_adjust(time_until_interrupt*prediction_offset_cpu, 'c'); else dvfs_adjust(gpu_pred_high, 'c'); } } else if (r2h) { r2h_adjust(cpu_pred_high, gpu_pred_high - cpu_pred_high, 'c'); } } } if (timing) { //end gpu timing cudaEventRecord(stop_gpu, 0); cudaEventSynchronize(stop_gpu); cudaEventElapsedTime(&gpu_time, start_gpu, stop_gpu); cudaEventDestroy(start_gpu); cudaEventDestroy(stop_gpu); printf("iter:%d GPU time:%f\n", iter, gpu_time); } magma_dgetmatrix_async( i, ib, dA(0,i), ldda, A(0,i), lda, queues[1] ); magma_queue_sync( queues[0] ); } magma_int_t rows = m-i; if (timing) { //start cpu timing cudaEventCreate(&start_cpu); cudaEventCreate(&stop_cpu); cudaEventRecord(start_cpu, 0); } lapackf77_dgeqrf( &rows, &ib, A(i,i), &lda, tau+i, work, &lwork, info ); /* Form the triangular factor of the block reflector H = H(i) H(i+1) . . . H(i+ib-1) */ lapackf77_dlarft( MagmaForwardStr, MagmaColumnwiseStr, &rows, &ib, A(i,i), &lda, tau+i, work, &ib ); if (timing) { //end cpu timing cudaEventRecord(stop_cpu, 0); cudaEventSynchronize(stop_cpu); cudaEventElapsedTime(&cpu_time, start_cpu, stop_cpu); cudaEventDestroy(start_cpu); cudaEventDestroy(stop_cpu); printf("iter:%d CPU time:%f\n", iter, cpu_time); if (gpu_time < cpu_time) { printf("slack: +\n"); } else { printf("slack: -\n"); } } magma_dpanel_to_q( MagmaUpper, ib, A(i,i), lda, work+ib*ib ); /* put i-th V matrix onto device */ magma_dsetmatrix_async( rows, ib, A(i,i), lda, dA(i,i), ldda, queues[0] ); /* put T matrix onto device */ magma_queue_sync( queues[1] ); magma_dsetmatrix_async( ib, ib, work, ib, dT(0,0), nb, queues[0] ); magma_queue_sync( queues[0] ); if (i + ib < n) { if (i+ib < min_mn-nb) { /* Apply H' to A(i:m,i+ib:i+2*ib) from the left (look-ahead) */ magma_dlarfb_gpu( MagmaLeft, MagmaConjTrans, MagmaForward, MagmaColumnwise, rows, ib, ib, dA(i, i ), ldda, dT(0,0), nb, dA(i, i+ib), ldda, dwork(0), lddwork, queues[1] ); magma_dq_to_panel( MagmaUpper, ib, A(i,i), lda, work+ib*ib ); } else { /* After last panel, update whole trailing matrix. */ /* Apply H' to A(i:m,i+ib:n) from the left */ magma_dlarfb_gpu( MagmaLeft, MagmaConjTrans, MagmaForward, MagmaColumnwise, rows, n-i-ib, ib, dA(i, i ), ldda, dT(0,0), nb, dA(i, i+ib), ldda, dwork(0), lddwork, queues[1] ); magma_dq_to_panel( MagmaUpper, ib, A(i,i), lda, work+ib*ib ); } old_i = i; old_ib = ib; } iter ++; } //for nvprof profiler. //cudaProfilerStop(); } else { i = 0; } /* Use unblocked code to factor the last or only block. */ if (i < min_mn) { ib = n-i; if (i != 0) { magma_dgetmatrix( m, ib, dA(0,i), ldda, A(0,i), lda, queues[1] ); } magma_int_t rows = m-i; lapackf77_dgeqrf( &rows, &ib, A(i,i), &lda, tau+i, work, &lwork, info ); } magma_queue_destroy( queues[0] ); magma_queue_destroy( queues[1] ); magma_free( dA ); return *info; } /* magma_dgeqrf */
extern "C" magma_int_t magma_dormqr2_gpu(const char side, const char trans, magma_int_t m, magma_int_t n, magma_int_t k, double *da, magma_int_t ldda, double *tau, double *dc, magma_int_t lddc, double *wa, magma_int_t ldwa, magma_int_t *info) { /* -- MAGMA (version 1.4.0) -- Univ. of Tennessee, Knoxville Univ. of California, Berkeley Univ. of Colorado, Denver August 2013 Purpose ======= DORMQR overwrites the general real M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N': Q * C C * Q TRANS = 'T': Q**T * C C * Q**T where Q is a real orthogonal matrix defined as the product of k elementary reflectors Q = H(1) H(2) . . . H(k) as returned by DGEQRF. Q is of order M if SIDE = 'L' and of order N if SIDE = 'R'. Arguments ========= SIDE (input) CHARACTER*1 = 'L': apply Q or Q**T from the Left; = 'R': apply Q or Q**T from the Right. TRANS (input) CHARACTER*1 = 'N': No transpose, apply Q; = 'T': Transpose, apply Q**T. M (input) INTEGER The number of rows of the matrix C. M >= 0. N (input) INTEGER The number of columns of the matrix C. N >= 0. K (input) INTEGER The number of elementary reflectors whose product defines the matrix Q. If SIDE = 'L', M >= K >= 0; if SIDE = 'R', N >= K >= 0. DA (input) DOUBLE_PRECISION array, dimension (LDA,K) The i-th column must contain the vector which defines the elementary reflector H(i), for i = 1,2,...,k, as returned by DGEQRF in the first k columns of its array argument A. The diagonal and the upper part are destroyed, the reflectors are not modified. LDDA (input) INTEGER The leading dimension of the array DA. LDDA >= max(1,M) if SIDE = 'L'; LDDA >= max(1,N) if SIDE = 'R'. TAU (input) DOUBLE_PRECISION array, dimension (K) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by DGEQRF. DC (device input/output) DOUBLE_PRECISION array, dimension (LDDC,N) On entry, the M-by-N matrix C. On exit, C is overwritten by (Q*C) or (Q**T * C) or (C * Q**T) or (C*Q). LDDC (input) INTEGER The leading dimension of the array C. LDDC >= max(1,M). WA (input/workspace) DOUBLE_PRECISION array, dimension (LDWA,M) if SIDE = 'L' (LDWA,N) if SIDE = 'R' The vectors which define the elementary reflectors, as returned by DSYTRD_GPU. LDWA (input) INTEGER The leading dimension of the array A. LDWA >= max(1,M) if SIDE = 'L'; LDWA >= max(1,N) if SIDE = 'R'. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value ===================================================================== */ char side_[2] = {side, 0}; char trans_[2] = {trans, 0}; /* Allocate work space on the GPU */ double *dwork; magma_int_t wa_offset, dc_offset, i__4, lddwork; magma_int_t i; double t[2*4160] /* was [65][64] */; magma_int_t i1, i2, step, ib, ic, jc, nb, mi, ni, nq, nw; int left, notran; wa_offset = 1 + ldwa; wa -= wa_offset; --tau; dc_offset = 1 + lddc; dc -= dc_offset; *info = 0; left = lapackf77_lsame(side_, "L"); notran = lapackf77_lsame(trans_, "N"); /* NQ is the order of Q and NW is the minimum dimension of WORK */ if (left) { nq = m; nw = n; magma_dmalloc( &dwork, (n + 64)*64 ); } else { nq = n; nw = m; magma_dmalloc( &dwork, (m + 64)*64 ); } if (! left && ! lapackf77_lsame(side_, "R")) { *info = -1; } else if (! notran && ! lapackf77_lsame(trans_, "T")) { *info = -2; } else if (m < 0) { *info = -3; } else if (n < 0) { *info = -4; } else if (k < 0 || k > nq) { *info = -5; } else if (ldda < max(1,nq)) { *info = -7; } else if (lddc < max(1,m)) { *info = -10; } else if (ldwa < max(1,nq)) { *info = -12; } // size of the block nb = 64; if (*info != 0) { magma_xerbla( __func__, -(*info) ); return *info; } /* Quick return if possible */ if (m == 0 || n == 0 || k == 0) { return *info; } /* Use hybrid CPU-GPU code */ if ( ( left && (! notran) ) || ( (! left) && notran ) ) { i1 = 1; i2 = k; step = nb; } else { i1 = ((k - 1)/nb)*nb + 1; i2 = 1; step = -nb; } // silence "uninitialized" warnings mi = 0; ni = 0; if (left) { ni = n; jc = 1; } else { mi = m; ic = 1; } magmablas_dsetdiag1subdiag0('L', k, nb, da, ldda); // for i=i1 to i2 by step for (i = i1; (step < 0 ? i >= i2 : i <= i2); i += step) { ib = min(nb, k - i + 1); /* Form the triangular factor of the block reflector H = H(i) H(i+1) . . . H(i+ib-1) */ i__4 = nq - i + 1; lapackf77_dlarft("F", "C", &i__4, &ib, &wa[i + i*ldwa], &ldwa, &tau[i], t, &ib); if (left) { /* H or H' is applied to C(i:m,1:n) */ mi = m - i + 1; ic = i; } else { /* H or H' is applied to C(1:m,i:n) */ ni = n - i + 1; jc = i; } if (left) lddwork = ni; else lddwork = mi; /* Apply H or H'; First copy T to the GPU */ magma_dsetmatrix( ib, ib, t, ib, dwork, ib ); magma_dlarfb_gpu( side, trans, MagmaForward, MagmaColumnwise, mi, ni, ib, da + (i - 1) + (i - 1)*ldda , ldda, dwork, ib, &dc[ic + jc*lddc], lddc, dwork + ib*ib, lddwork); } magma_free( dwork ); return *info; } /* magma_dormqr */
/** Purpose ------- DGEQRF2_MGPU computes a QR factorization of a real M-by-N matrix A: A = Q * R. This is a GPU interface of the routine. Arguments --------- @param[in] m INTEGER The number of rows of the matrix A. M >= 0. @param[in] n INTEGER The number of columns of the matrix A. N >= 0. @param[in,out] dA DOUBLE_PRECISION array on the GPU, dimension (LDDA,N) On entry, the M-by-N matrix dA. On exit, the elements on and above the diagonal of the array contain the min(M,N)-by-N upper trapezoidal matrix R (R is upper triangular if m >= n); the elements below the diagonal, with the array TAU, represent the orthogonal matrix Q as a product of min(m,n) elementary reflectors (see Further Details). @param[in] ldda INTEGER The leading dimension of the array dA. LDDA >= max(1,M). To benefit from coalescent memory accesses LDDA must be divisible by 16. @param[out] tau DOUBLE_PRECISION array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details). @param[out] info INTEGER - = 0: successful exit - < 0: if INFO = -i, the i-th argument had an illegal value or another error occured, such as memory allocation failed. Further Details --------------- The matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(k), where k = min(m,n). Each H(i) has the form H(i) = I - tau * v * v' where tau is a real scalar, and v is a real vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), and tau in TAU(i). @ingroup magma_dgeqrf_comp ********************************************************************/ extern "C" magma_int_t magma_dgeqrf2_mgpu( magma_int_t num_gpus, magma_int_t m, magma_int_t n, double **dlA, magma_int_t ldda, double *tau, magma_int_t *info ) { #define dlA(dev, i, j) (dlA[dev] + (i) + (j)*(ldda)) #define hpanel(i) (hpanel + (i)) // set to NULL to make cleanup easy: free(NULL) does nothing. double *dwork[MagmaMaxGPUs]={NULL}, *dpanel[MagmaMaxGPUs]={NULL}; double *hwork=NULL, *hpanel=NULL; magma_queue_t stream[MagmaMaxGPUs][2]={{NULL}}; magma_event_t panel_event[MagmaMaxGPUs]={NULL}; magma_int_t i, j, min_mn, dev, ldhpanel, lddwork, rows; magma_int_t ib, nb; magma_int_t lhwork, lwork; magma_int_t panel_dev, i_local, i_nb_local, n_local[MagmaMaxGPUs], la_dev, dpanel_offset; *info = 0; if (m < 0) { *info = -1; } else if (n < 0) { *info = -2; } else if (ldda < max(1,m)) { *info = -4; } if (*info != 0) { magma_xerbla( __func__, -(*info) ); return *info; } min_mn = min(m,n); if (min_mn == 0) return *info; magma_device_t orig_dev; magma_getdevice( &orig_dev ); magma_queue_t orig_stream; magmablasGetKernelStream( &orig_stream ); nb = magma_get_dgeqrf_nb( m ); /* dwork is (n*nb) --- for T (nb*nb) and dlarfb work ((n-nb)*nb) --- * + dpanel (ldda*nb), on each GPU. * I think dlarfb work could be smaller, max(n_local[:]). * Oddly, T and dlarfb work get stacked on top of each other, both with lddwork=n. * on GPU that owns panel, set dpanel = dlA(dev,i,i_local). * on other GPUs, set dpanel = dwork[dev] + dpanel_offset. */ lddwork = n; dpanel_offset = lddwork*nb; for( dev=0; dev < num_gpus; dev++ ) { magma_setdevice( dev ); if ( MAGMA_SUCCESS != magma_dmalloc( &(dwork[dev]), (lddwork + ldda)*nb )) { *info = MAGMA_ERR_DEVICE_ALLOC; goto CLEANUP; } } /* hwork is MAX( workspace for dgeqrf (n*nb), two copies of T (2*nb*nb) ) * + hpanel (m*nb). * for last block, need 2*n*nb total. */ ldhpanel = m; lhwork = max( n*nb, 2*nb*nb ); lwork = max( lhwork + ldhpanel*nb, 2*n*nb ); if ( MAGMA_SUCCESS != magma_dmalloc_pinned( &hwork, lwork )) { *info = MAGMA_ERR_HOST_ALLOC; goto CLEANUP; } hpanel = hwork + lhwork; /* Set the number of local n for each GPU */ for( dev=0; dev < num_gpus; dev++ ) { n_local[dev] = ((n/nb)/num_gpus)*nb; if (dev < (n/nb) % num_gpus) n_local[dev] += nb; else if (dev == (n/nb) % num_gpus) n_local[dev] += n % nb; } for( dev=0; dev < num_gpus; dev++ ) { magma_setdevice( dev ); magma_queue_create( &stream[dev][0] ); magma_queue_create( &stream[dev][1] ); magma_event_create( &panel_event[dev] ); } if ( nb < min_mn ) { /* Use blocked code initially */ // Note: as written, ib cannot be < nb. for( i = 0; i < min_mn-nb; i += nb ) { /* Set the GPU number that holds the current panel */ panel_dev = (i/nb) % num_gpus; /* Set the local index where the current panel is (j == i) */ i_local = i/(nb*num_gpus)*nb; ib = min(min_mn-i, nb); rows = m-i; /* Send current panel to the CPU, after panel_event indicates it has been updated */ magma_setdevice( panel_dev ); magma_queue_wait_event( stream[panel_dev][1], panel_event[panel_dev] ); magma_dgetmatrix_async( rows, ib, dlA(panel_dev, i, i_local), ldda, hpanel(i), ldhpanel, stream[panel_dev][1] ); magma_queue_sync( stream[panel_dev][1] ); // Factor panel lapackf77_dgeqrf( &rows, &ib, hpanel(i), &ldhpanel, tau+i, hwork, &lhwork, info ); if ( *info != 0 ) { fprintf( stderr, "error %d\n", (int) *info ); } // Form the triangular factor of the block reflector // H = H(i) H(i+1) . . . H(i+ib-1) lapackf77_dlarft( MagmaForwardStr, MagmaColumnwiseStr, &rows, &ib, hpanel(i), &ldhpanel, tau+i, hwork, &ib ); dpanel_to_q( MagmaUpper, ib, hpanel(i), ldhpanel, hwork + ib*ib ); // Send the current panel back to the GPUs for( dev=0; dev < num_gpus; dev++ ) { magma_setdevice( dev ); if (dev == panel_dev) dpanel[dev] = dlA(dev, i, i_local); else dpanel[dev] = dwork[dev] + dpanel_offset; magma_dsetmatrix_async( rows, ib, hpanel(i), ldhpanel, dpanel[dev], ldda, stream[dev][0] ); } for( dev=0; dev < num_gpus; dev++ ) { magma_setdevice( dev ); magma_queue_sync( stream[dev][0] ); } // TODO: if dpanel_to_q copied whole block, wouldn't need to restore // -- just send the copy to the GPUs. // TODO: also, could zero out the lower triangle and use Azzam's larfb w/ gemm. /* Restore the panel */ dq_to_panel( MagmaUpper, ib, hpanel(i), ldhpanel, hwork + ib*ib ); if (i + ib < n) { /* Send the T matrix to the GPU. */ for( dev=0; dev < num_gpus; dev++ ) { magma_setdevice( dev ); magma_dsetmatrix_async( ib, ib, hwork, ib, dwork[dev], lddwork, stream[dev][0] ); } la_dev = (panel_dev+1) % num_gpus; for( dev=0; dev < num_gpus; dev++ ) { magma_setdevice( dev ); magmablasSetKernelStream( stream[dev][0] ); if (dev == la_dev && i+nb < min_mn-nb) { // If not last panel, // for look-ahead panel, apply H' to A(i:m,i+ib:i+2*ib) i_nb_local = (i+nb)/(nb*num_gpus)*nb; magma_dlarfb_gpu( MagmaLeft, MagmaConjTrans, MagmaForward, MagmaColumnwise, rows, ib, ib, dpanel[dev], ldda, // V dwork[dev], lddwork, // T dlA(dev, i, i_nb_local), ldda, // C dwork[dev]+ib, lddwork ); // work magma_event_record( panel_event[dev], stream[dev][0] ); // for trailing matrix, apply H' to A(i:m,i+2*ib:n) magma_dlarfb_gpu( MagmaLeft, MagmaConjTrans, MagmaForward, MagmaColumnwise, rows, n_local[dev]-(i_nb_local+ib), ib, dpanel[dev], ldda, // V dwork[dev], lddwork, // T dlA(dev, i, i_nb_local+ib), ldda, // C dwork[dev]+ib, lddwork ); // work } else { // for trailing matrix, apply H' to A(i:m,i+ib:n) i_nb_local = i_local; if (dev <= panel_dev) { i_nb_local += ib; } magma_dlarfb_gpu( MagmaLeft, MagmaConjTrans, MagmaForward, MagmaColumnwise, rows, n_local[dev]-i_nb_local, ib, dpanel[dev], ldda, // V dwork[dev], lddwork, // T dlA(dev, i, i_nb_local), ldda, // C dwork[dev]+ib, lddwork ); // work } } // Restore top of panel (after larfb is done) magma_setdevice( panel_dev ); magma_dsetmatrix_async( ib, ib, hpanel(i), ldhpanel, dlA(panel_dev, i, i_local), ldda, stream[panel_dev][0] ); } } } else { i = 0; } /* Use unblocked code to factor the last or only block row. */ if (i < min_mn) { rows = m-i; for( j=i; j < n; j += nb ) { panel_dev = (j/nb) % num_gpus; i_local = j/(nb*num_gpus)*nb; ib = min( n-j, nb ); magma_setdevice( panel_dev ); magma_dgetmatrix( rows, ib, dlA(panel_dev, i, i_local), ldda, hwork + (j-i)*rows, rows ); } // needs lwork >= 2*n*nb: // needs (m-i)*(n-i) for last block row, bounded by nb*n. // needs (n-i)*nb for dgeqrf work, bounded by n*nb. ib = n-i; // total columns in block row lhwork = lwork - ib*rows; lapackf77_dgeqrf( &rows, &ib, hwork, &rows, tau+i, hwork + ib*rows, &lhwork, info ); if ( *info != 0 ) { fprintf( stderr, "error %d\n", (int) *info ); } for( j=i; j < n; j += nb ) { panel_dev = (j/nb) % num_gpus; i_local = j/(nb*num_gpus)*nb; ib = min( n-j, nb ); magma_setdevice( panel_dev ); magma_dsetmatrix( rows, ib, hwork + (j-i)*rows, rows, dlA(panel_dev, i, i_local), ldda ); } } CLEANUP: // free(NULL) does nothing. for( dev=0; dev < num_gpus; dev++ ) { magma_setdevice( dev ); magma_queue_destroy( stream[dev][0] ); magma_queue_destroy( stream[dev][1] ); magma_event_destroy( panel_event[dev] ); magma_free( dwork[dev] ); } magma_free_pinned( hwork ); magma_setdevice( orig_dev ); magmablasSetKernelStream( orig_stream ); return *info; } /* magma_dgeqrf2_mgpu */
/** Purpose ------- DORMQR overwrites the general real M-by-N matrix C with @verbatim SIDE = MagmaLeft SIDE = MagmaRight TRANS = MagmaNoTrans: Q * C C * Q TRANS = MagmaTrans: Q**H * C C * Q**H @endverbatim where Q is a real orthogonal matrix defined as the product of k elementary reflectors Q = H(1) H(2) . . . H(k) as returned by DGEQRF. Q is of order M if SIDE = MagmaLeft and of order N if SIDE = MagmaRight. Arguments --------- @param[in] ngpu INTEGER Number of GPUs to use. ngpu > 0. @param[in] side magma_side_t - = MagmaLeft: apply Q or Q**H from the Left; - = MagmaRight: apply Q or Q**H from the Right. @param[in] trans magma_trans_t - = MagmaNoTrans: No transpose, apply Q; - = MagmaTrans: Conjugate transpose, apply Q**H. @param[in] m INTEGER The number of rows of the matrix C. M >= 0. @param[in] n INTEGER The number of columns of the matrix C. N >= 0. @param[in] k INTEGER The number of elementary reflectors whose product defines the matrix Q. If SIDE = MagmaLeft, M >= K >= 0; if SIDE = MagmaRight, N >= K >= 0. @param[in] A DOUBLE PRECISION array, dimension (LDA,K) The i-th column must contain the vector which defines the elementary reflector H(i), for i = 1,2,...,k, as returned by DGEQRF in the first k columns of its array argument A. @param[in] lda INTEGER The leading dimension of the array A. If SIDE = MagmaLeft, LDA >= max(1,M); if SIDE = MagmaRight, LDA >= max(1,N). @param[in] tau DOUBLE PRECISION array, dimension (K) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by DGEQRF. @param[in,out] C DOUBLE PRECISION array, dimension (LDC,N) On entry, the M-by-N matrix C. On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q. @param[in] ldc INTEGER The leading dimension of the array C. LDC >= max(1,M). @param[out] work (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK[0] returns the optimal LWORK. @param[in] lwork INTEGER The dimension of the array WORK. If SIDE = MagmaLeft, LWORK >= max(1,N); if SIDE = MagmaRight, LWORK >= max(1,M). For optimum performance LWORK >= N*NB if SIDE = MagmaLeft, and LWORK >= M*NB if SIDE = MagmaRight, where NB is the optimal blocksize. \n If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. @param[out] info INTEGER - = 0: successful exit - < 0: if INFO = -i, the i-th argument had an illegal value @ingroup magma_dgeqrf_comp ********************************************************************/ extern "C" magma_int_t magma_dormqr_m( magma_int_t ngpu, magma_side_t side, magma_trans_t trans, magma_int_t m, magma_int_t n, magma_int_t k, double *A, magma_int_t lda, double *tau, double *C, magma_int_t ldc, double *work, magma_int_t lwork, magma_int_t *info) { #define A(i, j) (A + (j)*lda + (i)) #define C(i, j) (C + (j)*ldc + (i)) #define dC(gpui, i, j) (dw[gpui] + (j)*lddc + (i)) #define dA_c(gpui, ind, i, j) (dw[gpui] + maxnlocal*lddc + (ind)*lddar*lddac + (i) + (j)*lddac) #define dA_r(gpui, ind, i, j) (dw[gpui] + maxnlocal*lddc + (ind)*lddar*lddac + (i) + (j)*lddar) #define dT(gpui, ind) (dw[gpui] + maxnlocal*lddc + 2*lddac*lddar + (ind)*((nb+1)*nb)) #define dwork(gpui, ind) (dw[gpui] + maxnlocal*lddc + 2*lddac*lddar + 2*((nb+1)*nb) + (ind)*(lddwork*nb)) /* Constants */ double c_zero = MAGMA_D_ZERO; double c_one = MAGMA_D_ONE; /* Local variables */ const char* side_ = lapack_side_const( side ); const char* trans_ = lapack_trans_const( trans ); magma_int_t nb = 128; double *T = NULL; magmaDouble_ptr dw[MagmaMaxGPUs] = { NULL }; magma_queue_t queues[MagmaMaxGPUs][2] = {{ NULL }}; magma_event_t events[MagmaMaxGPUs][2] = {{ NULL }}; magma_int_t ind_c; magma_device_t dev; magma_device_t orig_dev; magma_getdevice( &orig_dev ); *info = 0; magma_int_t left = (side == MagmaLeft); magma_int_t notran = (trans == MagmaNoTrans); magma_int_t lquery = (lwork == -1); /* NQ is the order of Q and NW is the minimum dimension of WORK */ magma_int_t nq, nw; if (left) { nq = m; nw = n; } else { nq = n; nw = m; } if (! left && side != MagmaRight) { *info = -1; } else if (! notran && trans != MagmaTrans) { *info = -2; } else if (m < 0) { *info = -3; } else if (n < 0) { *info = -4; } else if (k < 0 || k > nq) { *info = -5; } else if (lda < max(1,nq)) { *info = -7; } else if (ldc < max(1,m)) { *info = -10; } else if (lwork < max(1,nw) && ! lquery) { *info = -12; } magma_int_t lwkopt = max(1,nw) * nb; if (*info == 0) { work[0] = magma_dmake_lwork( lwkopt ); } if (*info != 0) { magma_xerbla( __func__, -(*info) ); return *info; } else if (lquery) { return *info; } /* Quick return if possible */ if (m == 0 || n == 0 || k == 0) { work[0] = c_one; return *info; } if (nb >= k) { /* Use CPU code */ lapackf77_dormqr(side_, trans_, &m, &n, &k, A, &lda, tau, C, &ldc, work, &lwork, info); return *info; } magma_int_t lddc = magma_roundup( m, 64 ); // TODO why 64 instead of 32 ? magma_int_t lddac = nq; magma_int_t lddar = nb; magma_int_t lddwork = nw; magma_int_t nlocal[ MagmaMaxGPUs ] = { 0 }; magma_int_t nb_l=256; magma_int_t nbl = magma_ceildiv( n, nb_l ); // number of blocks magma_int_t maxnlocal = magma_ceildiv( nbl, ngpu )*nb_l; ngpu = min( ngpu, magma_ceildiv( n, nb_l )); // Don't use GPU that will not have data. magma_int_t ldw = maxnlocal*lddc // dC + 2*lddac*lddar // 2*dA + 2*(nb + 1 + lddwork)*nb; // 2*(dT and dwork) if (MAGMA_SUCCESS != magma_dmalloc_pinned( &T, nb*nb )) { *info = MAGMA_ERR_HOST_ALLOC; goto cleanup; } for (dev = 0; dev < ngpu; ++dev) { magma_setdevice( dev ); if (MAGMA_SUCCESS != magma_dmalloc( &dw[dev], ldw )) { *info = MAGMA_ERR_DEVICE_ALLOC; goto cleanup; } magma_queue_create( dev, &queues[dev][0] ); magma_queue_create( dev, &queues[dev][1] ); magma_event_create( &events[dev][0] ); magma_event_create( &events[dev][1] ); } /* Use hybrid CPU-MGPU code */ if (left) { //copy C to mgpus for (magma_int_t i = 0; i < nbl; ++i) { dev = i % ngpu; magma_setdevice( dev ); magma_int_t kb = min(nb_l, n-i*nb_l); magma_dsetmatrix_async( m, kb, C(0, i*nb_l), ldc, dC(dev, 0, i/ngpu*nb_l), lddc, queues[dev][0] ); nlocal[dev] += kb; } magma_int_t i1, i2, i3; if ( !notran ) { i1 = 0; i2 = k; i3 = nb; } else { i1 = (k - 1) / nb * nb; i2 = 0; i3 = -nb; } ind_c = 0; for (magma_int_t i = i1; (i3 < 0 ? i >= i2 : i < i2); i += i3) { // start the copy of A panel magma_int_t kb = min(nb, k - i); for (dev = 0; dev < ngpu; ++dev) { magma_setdevice( dev ); magma_event_sync( events[dev][ind_c] ); // check if the new data can be copied magma_dsetmatrix_async(nq-i, kb, A(i, i), lda, dA_c(dev, ind_c, i, 0), lddac, queues[dev][0] ); // set upper triangular part of dA to identity magmablas_dlaset_band( MagmaUpper, kb, kb, kb, c_zero, c_one, dA_c(dev, ind_c, i, 0), lddac, queues[dev][0] ); } /* Form the triangular factor of the block reflector H = H(i) H(i+1) . . . H(i+ib-1) */ magma_int_t nqi = nq - i; lapackf77_dlarft("F", "C", &nqi, &kb, A(i, i), &lda, &tau[i], T, &kb); /* H or H' is applied to C(1:m,i:n) */ /* Apply H or H'; First copy T to the GPU */ for (dev = 0; dev < ngpu; ++dev) { magma_setdevice( dev ); magma_dsetmatrix_async(kb, kb, T, kb, dT(dev, ind_c), kb, queues[dev][0] ); } for (dev = 0; dev < ngpu; ++dev) { magma_setdevice( dev ); magma_queue_sync( queues[dev][0] ); // check if the data was copied magma_dlarfb_gpu( side, trans, MagmaForward, MagmaColumnwise, m-i, nlocal[dev], kb, dA_c(dev, ind_c, i, 0), lddac, dT(dev, ind_c), kb, dC(dev, i, 0), lddc, dwork(dev, ind_c), lddwork, queues[dev][1] ); magma_event_record(events[dev][ind_c], queues[dev][1] ); } ind_c = (ind_c+1)%2; } for (dev = 0; dev < ngpu; ++dev) { magma_setdevice( dev ); magma_queue_sync( queues[dev][1] ); } //copy C from mgpus for (magma_int_t i = 0; i < nbl; ++i) { dev = i % ngpu; magma_setdevice( dev ); magma_int_t kb = min(nb_l, n-i*nb_l); magma_dgetmatrix( m, kb, dC(dev, 0, i/ngpu*nb_l), lddc, C(0, i*nb_l), ldc, queues[dev][1] ); // magma_dgetmatrix_async( m, kb, // dC(dev, 0, i/ngpu*nb_l), lddc, // C(0, i*nb_l), ldc, queues[dev][0] ); } } else { *info = MAGMA_ERR_NOT_IMPLEMENTED; magma_xerbla( __func__, -(*info) ); goto cleanup; /* if ( notran ) { i1 = 0; i2 = k; i3 = nb; } else { i1 = (k - 1) / nb * nb; i2 = 0; i3 = -nb; } mi = m; ic = 0; for (i = i1; (i3 < 0 ? i >= i2 : i < i2); i += i3) { ib = min(nb, k - i); // Form the triangular factor of the block reflector // H = H(i) H(i+1) . . . H(i+ib-1) i__4 = nq - i; lapackf77_dlarft("F", "C", &i__4, &ib, A(i, i), &lda, &tau[i], T, &ib); // 1) copy the panel from A to the GPU, and // 2) set upper triangular part of dA to identity magma_dsetmatrix( i__4, ib, A(i, i), lda, dA(i, 0), ldda, queues[dev][1] ); magmablas_dlaset_band( MagmaUpper, ib, ib, ib, c_zero, c_one, dA(i, 0), ldda, queues[dev][1] ); // H or H' is applied to C(1:m,i:n) ni = n - i; jc = i; // Apply H or H'; First copy T to the GPU magma_dsetmatrix( ib, ib, T, ib, dT, ib, queues[dev][1] ); magma_dlarfb_gpu( side, trans, MagmaForward, MagmaColumnwise, mi, ni, ib, dA(i, 0), ldda, dT, ib, dC(ic, jc), lddc, dwork, lddwork, queues[dev][1] ); } */ } cleanup: work[0] = magma_dmake_lwork( lwkopt ); for (dev = 0; dev < ngpu; ++dev) { magma_setdevice( dev ); magma_event_destroy( events[dev][0] ); magma_event_destroy( events[dev][1] ); magma_queue_destroy( queues[dev][0] ); magma_queue_destroy( queues[dev][1] ); magma_free( dw[dev] ); } magma_setdevice( orig_dev ); magma_free_pinned( T ); return *info; } /* magma_dormqr */
extern "C" magma_int_t magma_dgeqrf_ooc(magma_int_t m, magma_int_t n, double *a, magma_int_t lda, double *tau, double *work, magma_int_t lwork, magma_int_t *info ) { /* -- MAGMA (version 1.4.0) -- Univ. of Tennessee, Knoxville Univ. of California, Berkeley Univ. of Colorado, Denver August 2013 Purpose ======= DGEQRF_OOC computes a QR factorization of a DOUBLE_PRECISION M-by-N matrix A: A = Q * R. This version does not require work space on the GPU passed as input. GPU memory is allocated in the routine. This is an out-of-core (ooc) version that is similar to magma_dgeqrf but the difference is that this version can use a GPU even if the matrix does not fit into the GPU memory at once. Arguments ========= M (input) INTEGER The number of rows of the matrix A. M >= 0. N (input) INTEGER The number of columns of the matrix A. N >= 0. A (input/output) DOUBLE_PRECISION array, dimension (LDA,N) On entry, the M-by-N matrix A. On exit, the elements on and above the diagonal of the array contain the min(M,N)-by-N upper trapezoidal matrix R (R is upper triangular if m >= n); the elements below the diagonal, with the array TAU, represent the orthogonal matrix Q as a product of min(m,n) elementary reflectors (see Further Details). Higher performance is achieved if A is in pinned memory, e.g. allocated using magma_malloc_pinned. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,M). TAU (output) DOUBLE_PRECISION array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details). WORK (workspace/output) DOUBLE_PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. Higher performance is achieved if WORK is in pinned memory, e.g. allocated using magma_malloc_pinned. LWORK (input) INTEGER The dimension of the array WORK. LWORK >= N*NB, where NB can be obtained through magma_get_dgeqrf_nb(M). If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value or another error occured, such as memory allocation failed. Further Details =============== The matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(k), where k = min(m,n). Each H(i) has the form H(i) = I - tau * v * v' where tau is a real scalar, and v is a real vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), and tau in TAU(i). ===================================================================== */ #define a_ref(a_1,a_2) ( a+(a_2)*(lda) + (a_1)) #define da_ref(a_1,a_2) (da+(a_2)*ldda + (a_1)) double *da, *dwork; double c_one = MAGMA_D_ONE; int k, lddwork, ldda; *info = 0; int nb = magma_get_dgeqrf_nb(min(m, n)); int lwkopt = n * nb; work[0] = MAGMA_D_MAKE( (double)lwkopt, 0 ); int lquery = (lwork == -1); if (m < 0) { *info = -1; } else if (n < 0) { *info = -2; } else if (lda < max(1,m)) { *info = -4; } else if (lwork < max(1,n) && ! lquery) { *info = -7; } if (*info != 0) { magma_xerbla( __func__, -(*info) ); return *info; } else if (lquery) return *info; /* Check how much memory do we have */ size_t freeMem, totalMem; cudaMemGetInfo( &freeMem, &totalMem ); freeMem /= sizeof(double); magma_int_t IB, NB = (magma_int_t)(0.8*freeMem/m); NB = (NB / nb) * nb; if (NB >= n) return magma_dgeqrf(m, n, a, lda, tau, work, lwork, info); k = min(m,n); if (k == 0) { work[0] = c_one; return *info; } lddwork = ((NB+31)/32)*32+nb; ldda = ((m+31)/32)*32; if (MAGMA_SUCCESS != magma_dmalloc( &da, (NB + nb)*ldda + nb*lddwork )) { *info = MAGMA_ERR_DEVICE_ALLOC; return *info; } magma_queue_t stream[2]; magma_queue_create( &stream[0] ); magma_queue_create( &stream[1] ); // magmablasSetKernelStream(stream[1]); double *ptr = da + ldda * NB; dwork = da + ldda*(NB + nb); /* start the main loop over the blocks that fit in the GPU memory */ for(int i=0; i<n; i+=NB) { IB = min(n-i, NB); //printf("Processing %5d columns -- %5d to %5d ... \n", IB, i, i+IB); /* 1. Copy the next part of the matrix to the GPU */ magma_dsetmatrix_async( (m), IB, a_ref(0,i), lda, da_ref(0,0), ldda, stream[0] ); magma_queue_sync( stream[0] ); /* 2. Update it with the previous transformations */ for(int j=0; j<min(i,k); j+=nb) { magma_int_t ib = min(k-j, nb); /* Get a panel in ptr. */ // 1. Form the triangular factor of the block reflector // 2. Send it to the GPU. // 3. Put 0s in the upper triangular part of V. // 4. Send V to the GPU in ptr. // 5. Update the matrix. // 6. Restore the upper part of V. magma_int_t rows = m-j; lapackf77_dlarft( MagmaForwardStr, MagmaColumnwiseStr, &rows, &ib, a_ref(j,j), &lda, tau+j, work, &ib); magma_dsetmatrix_async( ib, ib, work, ib, dwork, lddwork, stream[1] ); dpanel_to_q(MagmaUpper, ib, a_ref(j,j), lda, work+ib*ib); magma_dsetmatrix_async( rows, ib, a_ref(j,j), lda, ptr, rows, stream[1] ); magma_queue_sync( stream[1] ); magma_dlarfb_gpu( MagmaLeft, MagmaTrans, MagmaForward, MagmaColumnwise, rows, IB, ib, ptr, rows, dwork, lddwork, da_ref(j, 0), ldda, dwork+ib, lddwork); dq_to_panel(MagmaUpper, ib, a_ref(j,j), lda, work+ib*ib); } /* 3. Do a QR on the current part */ if (i<k) magma_dgeqrf2_gpu(m-i, IB, da_ref(i,0), ldda, tau+i, info); /* 4. Copy the current part back to the CPU */ magma_dgetmatrix_async( (m), IB, da_ref(0,0), ldda, a_ref(0,i), lda, stream[0] ); } magma_queue_sync( stream[0] ); magma_queue_destroy( stream[0] ); magma_queue_destroy( stream[1] ); magma_free( da ); return *info; } /* magma_dgeqrf_ooc */
/** Purpose ------- DGEQRF3 computes a QR factorization of a real M-by-N matrix A: A = Q * R. This version stores the triangular dT matrices used in the block QR factorization so that they can be applied directly (i.e., without being recomputed) later. As a result, the application of Q is much faster. Also, the upper triangular matrices for V have 0s in them and the corresponding parts of the upper triangular R are stored separately in dT. Arguments --------- @param[in] m INTEGER The number of rows of the matrix A. M >= 0. @param[in] n INTEGER The number of columns of the matrix A. N >= 0. @param[in,out] dA DOUBLE_PRECISION array on the GPU, dimension (LDDA,N) On entry, the M-by-N matrix A. On exit, the elements on and above the diagonal of the array contain the min(M,N)-by-N upper trapezoidal matrix R (R is upper triangular if m >= n); the elements below the diagonal, with the array TAU, represent the orthogonal matrix Q as a product of min(m,n) elementary reflectors (see Further Details). @param[in] ldda INTEGER The leading dimension of the array dA. LDDA >= max(1,M). To benefit from coalescent memory accesses LDDA must be divisible by 16. @param[out] tau DOUBLE_PRECISION array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details). @param[out] dT (workspace) DOUBLE_PRECISION array on the GPU, dimension (2*MIN(M, N) + (N+31)/32*32 )*NB, where NB can be obtained through magma_get_dgeqrf_nb(M). It starts with MIN(M,N)*NB block that store the triangular T matrices, followed by the MIN(M,N)*NB block of the diagonal matrices for the R matrix. The rest of the array is used as workspace. @param[out] info INTEGER - = 0: successful exit - < 0: if INFO = -i, the i-th argument had an illegal value or another error occured, such as memory allocation failed. Further Details --------------- The matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(k), where k = min(m,n). Each H(i) has the form H(i) = I - tau * v * v' where tau is a real scalar, and v is a real vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), and tau in TAU(i). @ingroup magma_dgeqrf_comp ********************************************************************/ extern "C" magma_int_t magma_dgeqrf3_gpu( magma_int_t m, magma_int_t n, magmaDouble_ptr dA, magma_int_t ldda, double *tau, magmaDouble_ptr dT, magma_int_t *info ) { #define dA(a_1,a_2) (dA + (a_2)*(ldda) + (a_1)) #define dT(a_1) (dT + (a_1)*nb) #define d_ref(a_1) (dT + ( minmn+(a_1))*nb) #define dd_ref(a_1) (dT + (2*minmn+(a_1))*nb) #define work(a_1) (work + (a_1)) #define hwork (work + (nb)*(m)) magma_int_t i, k, minmn, old_i, old_ib, rows, cols; magma_int_t ib, nb; magma_int_t ldwork, lddwork, lwork, lhwork; double *work, *ut; /* check arguments */ *info = 0; if (m < 0) { *info = -1; } else if (n < 0) { *info = -2; } else if (ldda < max(1,m)) { *info = -4; } if (*info != 0) { magma_xerbla( __func__, -(*info) ); return *info; } k = minmn = min(m,n); if (k == 0) return *info; nb = magma_get_dgeqrf_nb(m); lwork = (m + n + nb)*nb; lhwork = lwork - m*nb; if (MAGMA_SUCCESS != magma_dmalloc_pinned( &work, lwork )) { *info = MAGMA_ERR_HOST_ALLOC; return *info; } ut = hwork+nb*(n); memset( ut, 0, nb*nb*sizeof(double)); magma_queue_t stream[2]; magma_queue_create( &stream[0] ); magma_queue_create( &stream[1] ); ldwork = m; lddwork= n; if ( (nb > 1) && (nb < k) ) { /* Use blocked code initially */ old_i = 0; old_ib = nb; for (i = 0; i < k-nb; i += nb) { ib = min(k-i, nb); rows = m -i; magma_dgetmatrix_async( rows, ib, dA(i,i), ldda, work(i), ldwork, stream[1] ); if (i > 0) { /* Apply H' to A(i:m,i+2*ib:n) from the left */ cols = n-old_i-2*old_ib; magma_dlarfb_gpu( MagmaLeft, MagmaConjTrans, MagmaForward, MagmaColumnwise, m-old_i, cols, old_ib, dA(old_i, old_i ), ldda, dT(old_i), nb, dA(old_i, old_i+2*old_ib), ldda, dd_ref(0), lddwork); /* store the diagonal */ magma_dsetmatrix_async( old_ib, old_ib, ut, old_ib, d_ref(old_i), old_ib, stream[0] ); } magma_queue_sync( stream[1] ); lapackf77_dgeqrf(&rows, &ib, work(i), &ldwork, tau+i, hwork, &lhwork, info); /* Form the triangular factor of the block reflector H = H(i) H(i+1) . . . H(i+ib-1) */ lapackf77_dlarft( MagmaForwardStr, MagmaColumnwiseStr, &rows, &ib, work(i), &ldwork, tau+i, hwork, &ib); /* Put 0s in the upper triangular part of a panel (and 1s on the diagonal); copy the upper triangular in ut. */ magma_queue_sync( stream[0] ); dsplit_diag_block3(ib, work(i), ldwork, ut); magma_dsetmatrix( rows, ib, work(i), ldwork, dA(i,i), ldda ); if (i + ib < n) { /* Send the triangular factor T to the GPU */ magma_dsetmatrix( ib, ib, hwork, ib, dT(i), nb ); if (i+nb < k-nb) { /* Apply H' to A(i:m,i+ib:i+2*ib) from the left */ magma_dlarfb_gpu( MagmaLeft, MagmaConjTrans, MagmaForward, MagmaColumnwise, rows, ib, ib, dA(i, i ), ldda, dT(i), nb, dA(i, i+ib), ldda, dd_ref(0), lddwork); } else { cols = n-i-ib; magma_dlarfb_gpu( MagmaLeft, MagmaConjTrans, MagmaForward, MagmaColumnwise, rows, cols, ib, dA(i, i ), ldda, dT(i), nb, dA(i, i+ib), ldda, dd_ref(0), lddwork); /* Fix the diagonal block */ magma_dsetmatrix( ib, ib, ut, ib, d_ref(i), ib ); } old_i = i; old_ib = ib; } } } else { i = 0; } /* Use unblocked code to factor the last or only block. */ if (i < k) { ib = n-i; rows = m-i; magma_dgetmatrix( rows, ib, dA(i, i), ldda, work, rows ); lhwork = lwork - rows*ib; lapackf77_dgeqrf(&rows, &ib, work, &rows, tau+i, work+ib*rows, &lhwork, info); magma_dsetmatrix( rows, ib, work, rows, dA(i, i), ldda ); } magma_queue_destroy( stream[0] ); magma_queue_destroy( stream[1] ); magma_free_pinned( work ); return *info; } /* magma_dgeqrf_gpu */
extern "C" magma_int_t magma_dorgqr2(magma_int_t m, magma_int_t n, magma_int_t k, double *A, magma_int_t lda, double *tau, magma_int_t *info) { /* -- MAGMA (version 1.4.0) -- Univ. of Tennessee, Knoxville Univ. of California, Berkeley Univ. of Colorado, Denver August 2013 Purpose ======= DORGQR generates an M-by-N DOUBLE_PRECISION matrix Q with orthonormal columns, which is defined as the first N columns of a product of K elementary reflectors of order M Q = H(1) H(2) . . . H(k) as returned by DGEQRF. This version recomputes the T matrices on the CPU and sends them to the GPU. Arguments ========= M (input) INTEGER The number of rows of the matrix Q. M >= 0. N (input) INTEGER The number of columns of the matrix Q. M >= N >= 0. K (input) INTEGER The number of elementary reflectors whose product defines the matrix Q. N >= K >= 0. A (input/output) DOUBLE_PRECISION array A, dimension (LDDA,N). On entry, the i-th column must contain the vector which defines the elementary reflector H(i), for i = 1,2,...,k, as returned by DGEQRF_GPU in the first k columns of its array argument A. On exit, the M-by-N matrix Q. LDA (input) INTEGER The first dimension of the array A. LDA >= max(1,M). TAU (input) DOUBLE_PRECISION array, dimension (K) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by DGEQRF_GPU. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument has an illegal value ===================================================================== */ #define A(i,j) ( A + (i) + (j)*lda ) #define dA(i,j) (dA + (i) + (j)*ldda) double c_zero = MAGMA_D_ZERO; double c_one = MAGMA_D_ONE; magma_int_t nb = magma_get_dgeqrf_nb(min(m, n)); magma_int_t m_kk, n_kk, k_kk, mi; magma_int_t lwork, ldda; magma_int_t i, ib, ki, kk; //, iinfo; magma_int_t lddwork; double *dA, *dV, *dW, *dT, *T; double *work; *info = 0; if (m < 0) { *info = -1; } else if ((n < 0) || (n > m)) { *info = -2; } else if ((k < 0) || (k > n)) { *info = -3; } else if (lda < max(1,m)) { *info = -5; } if (*info != 0) { magma_xerbla( __func__, -(*info) ); return *info; } if (n <= 0) { return *info; } // first kk columns are handled by blocked method. // ki is start of 2nd-to-last block if ((nb > 1) && (nb < k)) { ki = (k - nb - 1) / nb * nb; kk = min(k, ki + nb); } else { ki = 0; kk = 0; } // Allocate GPU work space // ldda*n for matrix dA // ldda*nb for dV // lddwork*nb for dW larfb workspace ldda = ((m + 31) / 32) * 32; lddwork = ((n + 31) / 32) * 32; if (MAGMA_SUCCESS != magma_dmalloc( &dA, ldda*n + ldda*nb + lddwork*nb + nb*nb)) { *info = MAGMA_ERR_DEVICE_ALLOC; return *info; } dV = dA + ldda*n; dW = dA + ldda*n + ldda*nb; dT = dA + ldda*n + ldda*nb + lddwork*nb; // Allocate CPU work space lwork = (n+m+nb) * nb; magma_dmalloc_cpu( &work, lwork ); T = work; if (work == NULL) { magma_free( dA ); magma_free_cpu( work ); *info = MAGMA_ERR_HOST_ALLOC; return *info; } double *V = work + (n+nb)*nb; magma_queue_t stream; magma_queue_create( &stream ); // Use unblocked code for the last or only block. if (kk < n) { m_kk = m - kk; n_kk = n - kk; k_kk = k - kk; /* lapackf77_dorgqr( &m_kk, &n_kk, &k_kk, A(kk, kk), &lda, &tau[kk], work, &lwork, &iinfo ); */ lapackf77_dlacpy( MagmaUpperLowerStr, &m_kk, &k_kk, A(kk,kk), &lda, V, &m_kk); lapackf77_dlaset( MagmaUpperLowerStr, &m_kk, &n_kk, &c_zero, &c_one, A(kk, kk), &lda ); lapackf77_dlarft( MagmaForwardStr, MagmaColumnwiseStr, &m_kk, &k_kk, V, &m_kk, &tau[kk], work, &k_kk); lapackf77_dlarfb( MagmaLeftStr, MagmaNoTransStr, MagmaForwardStr, MagmaColumnwiseStr, &m_kk, &n_kk, &k_kk, V, &m_kk, work, &k_kk, A(kk, kk), &lda, work+k_kk*k_kk, &n_kk ); if (kk > 0) { magma_dsetmatrix( m_kk, n_kk, A(kk, kk), lda, dA(kk, kk), ldda ); // Set A(1:kk,kk+1:n) to zero. magmablas_dlaset( MagmaUpperLower, kk, n - kk, dA(0, kk), ldda ); } } if (kk > 0) { // Use blocked code // stream: set Aii (V) --> laset --> laset --> larfb --> [next] // CPU has no computation magmablasSetKernelStream( stream ); for (i = ki; i >= 0; i -= nb) { ib = min(nb, k - i); // Send current panel to the GPU mi = m - i; lapackf77_dlaset( "Upper", &ib, &ib, &c_zero, &c_one, A(i, i), &lda ); magma_dsetmatrix_async( mi, ib, A(i, i), lda, dV, ldda, stream ); lapackf77_dlarft( MagmaForwardStr, MagmaColumnwiseStr, &mi, &ib, A(i,i), &lda, &tau[i], T, &nb); magma_dsetmatrix_async( ib, ib, T, nb, dT , nb, stream ); // set panel to identity magmablas_dlaset( MagmaUpperLower, i, ib, dA(0, i), ldda ); magmablas_dlaset_identity( mi, ib, dA(i, i), ldda ); magma_queue_sync( stream ); if (i < n) { // Apply H to A(i:m,i:n) from the left magma_dlarfb_gpu( MagmaLeft, MagmaNoTrans, MagmaForward, MagmaColumnwise, mi, n-i, ib, dV, ldda, dT, nb, dA(i, i), ldda, dW, lddwork ); } } // copy result back to CPU magma_dgetmatrix( m, n, dA(0, 0), ldda, A(0, 0), lda); } magmablasSetKernelStream( NULL ); magma_queue_destroy( stream ); magma_free( dA ); magma_free_cpu( work ); return *info; } /* magma_dorgqr */
/** Purpose ------- DSYTRD_HE2HB reduces a real symmetric matrix A to real symmetric band-diagonal form T by an orthogonal similarity transformation: Q**H * A * Q = T. This version stores the triangular matrices T used in the accumulated Householder transformations (I - V T V'). Arguments --------- @param[in] uplo magma_uplo_t - = MagmaUpper: Upper triangle of A is stored; - = MagmaLower: Lower triangle of A is stored. @param[in] n INTEGER The order of the matrix A. N >= 0. @param[in,out] A DOUBLE_PRECISION array, dimension (LDA,N) On entry, the symmetric matrix A. If UPLO = MagmaUpper, the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = MagmaLower, the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit, if UPLO = MagmaUpper, the Upper band-diagonal of A is overwritten by the corresponding elements of the band-diagonal matrix T, and the elements above the band diagonal, with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors; if UPLO = MagmaLower, the the Lower band-diagonal of A is overwritten by the corresponding elements of the band-diagonal matrix T, and the elements below the band-diagonal, with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors. See Further Details. @param[in] lda INTEGER The leading dimension of the array A. LDA >= max(1,N). @param[out] tau DOUBLE_PRECISION array, dimension (N-1) The scalar factors of the elementary reflectors (see Further Details). @param[out] work (workspace) DOUBLE_PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK[0] returns the optimal LWORK. @param[in] lwork INTEGER The dimension of the array WORK. LWORK >= 1. For optimum performance LWORK >= N*NB, where NB is the optimal blocksize. \n If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. @param[out] dT DOUBLE_PRECISION array on the GPU, dimension N*NB, where NB is the optimal blocksize. On exit dT holds the upper triangular matrices T from the accumulated Householder transformations (I - V T V') used in the factorization. The nb x nb matrices T are ordered consecutively in memory one after another. @param[out] info INTEGER - = 0: successful exit - < 0: if INFO = -i, the i-th argument had an illegal value Further Details --------------- If UPLO = MagmaUpper, the matrix Q is represented as a product of elementary reflectors Q = H(n-1) . . . H(2) H(1). Each H(i) has the form H(i) = I - tau * v * v' where tau is a real scalar, and v is a real vector with v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in A(1:i-1,i+1), and tau in TAU(i). If UPLO = MagmaLower, the matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(n-1). Each H(i) has the form H(i) = I - tau * v * v' where tau is a real scalar, and v is a real vector with v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i), and tau in TAU(i). The contents of A on exit are illustrated by the following examples with n = 5: if UPLO = MagmaUpper: if UPLO = MagmaLower: ( d e v2 v3 v4 ) ( d ) ( d e v3 v4 ) ( e d ) ( d e v4 ) ( v1 e d ) ( d e ) ( v1 v2 e d ) ( d ) ( v1 v2 v3 e d ) where d and e denote diagonal and off-diagonal elements of T, and vi denotes an element of the vector defining H(i). @ingroup magma_dsyev_2stage ********************************************************************/ extern "C" magma_int_t magma_dsytrd_sy2sb( magma_uplo_t uplo, magma_int_t n, magma_int_t nb, double *A, magma_int_t lda, double *tau, double *work, magma_int_t lwork, double *dT, magma_int_t *info) { #define A(a_1,a_2) ( A + ((a_2)-1)*( lda) + (a_1)-1) #define dA(a_1,a_2) (dA + ((a_2)-1)*(ldda) + (a_1)-1) #define tau_ref(a_1) (tau + (a_1)-1) #define dT(a_1) (dT + ((a_1)-1)*(lddt)) int ldda = ((n+31)/32)*32; int lddt = nb; double c_neg_one = MAGMA_D_NEG_ONE; double c_neg_half = MAGMA_D_NEG_HALF; double c_one = MAGMA_D_ONE; double c_zero = MAGMA_D_ZERO; double d_one = MAGMA_D_ONE; magma_int_t pm, pn, indi, indj, pk; magma_int_t pm_old=0, pn_old=0, indi_old=0, indj_old=0; int i; int lwkopt; int lquery; *info = 0; int upper = (uplo == MagmaUpper); lquery = (lwork == -1); if (! upper && uplo != MagmaLower) { *info = -1; } else if (n < 0) { *info = -2; } else if (lda < max(1,n)) { *info = -4; } else if (lwork < 1 && ! lquery) { *info = -9; } /* Determine the block size. */ lwkopt = n * nb; if (*info == 0) { work[0] = MAGMA_D_MAKE( lwkopt, 0 ); } if (*info != 0) return *info; else if (lquery) return *info; /* Quick return if possible */ if (n == 0) { work[0] = c_one; return *info; } magma_queue_t orig_stream; magmablasGetKernelStream( &orig_stream ); double *dA; if (MAGMA_SUCCESS != magma_dmalloc( &dA, (n + 2*nb)*ldda )) { *info = MAGMA_ERR_DEVICE_ALLOC; return *info; } // limit to 16 threads magma_int_t orig_threads = magma_get_lapack_numthreads(); magma_set_lapack_numthreads( min(orig_threads,16) ); /* Use the first panel of dA as work space */ double *dwork = dA + n*ldda; double *dW = dwork + nb*ldda; #ifdef TRACING char buf[80]; #endif magma_queue_t stream[3]; magma_queue_create( &stream[0] ); magma_queue_create( &stream[1] ); stream[2] = 0; // default stream trace_init( 1, 1, 3, stream ); double *hT = work + lwork - nb*nb; lwork -= nb*nb; memset( hT, 0, nb*nb*sizeof(double)); magmablasSetKernelStream( stream[0] ); magma_event_t Pupdate_event; cudaEventCreateWithFlags(&Pupdate_event,cudaEventDisableTiming); //magma_event_create(&Pupdate_event); if (upper) { printf("DSYTRD_HE2HB is not yet implemented for upper matrix storage. Exit.\n"); exit(1); } else { /* Copy the matrix to the GPU */ if (1 <= n-nb) { trace_gpu_start( 0, 0, "set", "set A" ); magma_dsetmatrix_async( (n-nb), (n-nb), A(nb+1, nb+1), lda, dA(nb+1, nb+1), ldda, stream[0] ); trace_gpu_end( 0, 0 ); } /* Reduce the lower triangle of A */ for (i = 1; i <= n-nb; i += nb) { indi = i+nb; indj = i; pm = n - i - nb + 1; //pn = min(i+nb-1, n-nb) -i + 1; pn = nb; /* Get the current panel (no need for the 1st iteration) */ if (i > 1 ) { // dpanel_to_q copy the upper oof diagonal part of // the matrix to work to be restored later. acctually // the zero's and one's putted are not used this is only // because we don't have a function that copy only the // upper part of A to be restored after copying the // lookahead panel that has been computted from GPU to CPU. dpanel_to_q(MagmaUpper, pn-1, A(i, i+1), lda, work); trace_gpu_start( 0, 1, "get", "get panel" ); //magma_queue_sync( stream[0] ); magma_queue_wait_event(stream[1], Pupdate_event); //, 0); magma_dgetmatrix_async( (pm+pn), pn, dA( i, i), ldda, A ( i, i), lda, stream[1] ); trace_gpu_end( 0, 1 ); trace_gpu_start( 0, 2, "her2k", "her2k" ); magma_dsyr2k(MagmaLower, MagmaNoTrans, pm_old-pn_old, pn_old, c_neg_one, dA(indi_old+pn_old, indj_old), ldda, dW + pn_old, pm_old, d_one, dA(indi_old+pn_old, indi_old+pn_old), ldda); trace_gpu_end( 0, 2 ); trace_cpu_start( 0, "sync", "sync on 1" ); magma_queue_sync( stream[1] ); trace_cpu_end( 0 ); dq_to_panel(MagmaUpper, pn-1, A(i, i+1), lda, work); } /* ========================================================== QR factorization on a panel starting nb off of the diagonal. Prepare the V and T matrices. ========================================================== */ #ifdef TRACING snprintf( buf, sizeof(buf), "panel %d", i ); #endif trace_cpu_start( 0, "geqrf", buf ); lapackf77_dgeqrf(&pm, &pn, A(indi, indj), &lda, tau_ref(i), work, &lwork, info); /* Form the matrix T */ pk=min(pm,pn); lapackf77_dlarft( MagmaForwardStr, MagmaColumnwiseStr, &pm, &pk, A(indi, indj), &lda, tau_ref(i), hT, &nb); /* Prepare V - put 0s in the upper triangular part of the panel (and 1s on the diagonal), temporaly storing the original in work */ dpanel_to_q(MagmaUpper, pk, A(indi, indj), lda, work); trace_cpu_end( 0 ); /* Send V from the CPU to the GPU */ trace_gpu_start( 0, 0, "set", "set V and T" ); magma_dsetmatrix_async( pm, pk, A(indi, indj), lda, dA(indi, indj), ldda, stream[0] ); /* Send the triangular factor T to the GPU */ magma_dsetmatrix_async( pk, pk, hT, nb, dT(i), lddt, stream[0] ); trace_gpu_end( 0, 0 ); /* ========================================================== Compute W: 1. X = A (V T) 2. W = X - 0.5* V * (T' * (V' * X)) ========================================================== */ /* dwork = V T */ trace_cpu_start( 0, "sync", "sync on 0" ); // this sync is done here to be sure that the copy has been finished // because below we made a restore dq_to_panel and this restore need // to ensure that the copy has been finished. we did it here to allow // overlapp of restore with next gemm and symm. magma_queue_sync( stream[0] ); trace_cpu_end( 0 ); trace_gpu_start( 0, 2, "gemm", "work = V*T" ); magma_dgemm(MagmaNoTrans, MagmaNoTrans, pm, pk, pk, c_one, dA(indi, indj), ldda, dT(i), lddt, c_zero, dwork, pm); trace_gpu_end( 0, 2 ); /* dW = X = A*V*T. dW = A*dwork */ trace_gpu_start( 0, 2, "hemm", "X = A*work" ); magma_dsymm(MagmaLeft, uplo, pm, pk, c_one, dA(indi, indi), ldda, dwork, pm, c_zero, dW, pm); trace_gpu_end( 0, 2 ); /* restore the panel */ dq_to_panel(MagmaUpper, pk, A(indi, indj), lda, work); /* dwork = V*T already ==> dwork' = T'*V' * compute T'*V'*X ==> dwork'*W ==> * dwork + pm*nb = ((T' * V') * X) = dwork' * X = dwork' * W */ trace_gpu_start( 0, 2, "gemm", "work = T'*V'*X" ); magma_dgemm(MagmaConjTrans, MagmaNoTrans, pk, pk, pm, c_one, dwork, pm, dW, pm, c_zero, dwork + pm*nb, nb); trace_gpu_end( 0, 2 ); /* W = X - 0.5 * V * T'*V'*X * = X - 0.5 * V * (dwork + pm*nb) = W - 0.5 * V * (dwork + pm*nb) */ trace_gpu_start( 0, 2, "gemm", "W = X - 0.5*V*(T'*V'*X)" ); magma_dgemm(MagmaNoTrans, MagmaNoTrans, pm, pk, pk, c_neg_half, dA(indi, indj), ldda, dwork + pm*nb, nb, c_one, dW, pm); trace_gpu_end( 0, 2 ); /* ========================================================== Update the unreduced submatrix A(i+ib:n,i+ib:n), using an update of the form: A := A - V*W' - W*V' ========================================================== */ if (i + nb <= n-nb) { /* There would be next iteration; do lookahead - update the next panel */ trace_gpu_start( 0, 2, "gemm", "gemm 4 next panel left" ); magma_dgemm(MagmaNoTrans, MagmaConjTrans, pm, pn, pn, c_neg_one, dA(indi, indj), ldda, dW, pm, c_one, dA(indi, indi), ldda); trace_gpu_end( 0, 2 ); trace_gpu_start( 0, 2, "gemm", "gemm 5 next panel right" ); magma_dgemm(MagmaNoTrans, MagmaConjTrans, pm, pn, pn, c_neg_one, dW, pm, dA(indi, indj), ldda, c_one, dA(indi, indi), ldda); trace_gpu_end( 0, 2 ); magma_event_record(Pupdate_event, stream[0]); } else { /* no look-ahead as this is last iteration */ trace_gpu_start( 0, 2, "her2k", "her2k last iteration" ); magma_dsyr2k(MagmaLower, MagmaNoTrans, pk, pk, c_neg_one, dA(indi, indj), ldda, dW, pm, d_one, dA(indi, indi), ldda); trace_gpu_end( 0, 2 ); } indi_old = indi; indj_old = indj; pm_old = pm; pn_old = pn; } // end loop for (i) /* Send the last block to the CPU */ pk = min(pm,pn); if (1 <= n-nb) { dpanel_to_q(MagmaUpper, pk-1, A(n-pk+1, n-pk+2), lda, work); trace_gpu_start( 0, 2, "get", "get last block" ); magma_dgetmatrix( pk, pk, dA(n-pk+1, n-pk+1), ldda, A(n-pk+1, n-pk+1), lda ); trace_gpu_end( 0, 2 ); dq_to_panel(MagmaUpper, pk-1, A(n-pk+1, n-pk+2), lda, work); } }// end of LOWER trace_finalize( "dsytrd_sy2sb.svg", "trace.css" ); magma_event_destroy( Pupdate_event ); magma_queue_destroy( stream[0] ); magma_queue_destroy( stream[1] ); magma_free( dA ); work[0] = MAGMA_D_MAKE( lwkopt, 0 ); magmablasSetKernelStream( orig_stream ); magma_set_lapack_numthreads( orig_threads ); return *info; } /* magma_dsytrd_sy2sb */
/** Purpose ------- DORMQR overwrites the general real M-by-N matrix C with @verbatim SIDE = MagmaLeft SIDE = MagmaRight TRANS = MagmaNoTrans: Q * C C * Q TRANS = MagmaTrans: Q**H * C C * Q**H @endverbatim where Q is a real unitary matrix defined as the product of k elementary reflectors Q = H(1) H(2) . . . H(k) as returned by DGEQRF. Q is of order M if SIDE = MagmaLeft and of order N if SIDE = MagmaRight. Arguments --------- @param[in] side magma_side_t - = MagmaLeft: apply Q or Q**H from the Left; - = MagmaRight: apply Q or Q**H from the Right. @param[in] trans magma_trans_t - = MagmaNoTrans: No transpose, apply Q; - = MagmaTrans: Conjugate transpose, apply Q**H. @param[in] m INTEGER The number of rows of the matrix C. M >= 0. @param[in] n INTEGER The number of columns of the matrix C. N >= 0. @param[in] k INTEGER The number of elementary reflectors whose product defines the matrix Q. If SIDE = MagmaLeft, M >= K >= 0; if SIDE = MagmaRight, N >= K >= 0. @param[in] dA DOUBLE_PRECISION array, dimension (LDA,K) The i-th column must contain the vector which defines the elementary reflector H(i), for i = 1,2,...,k, as returned by DGEQRF in the first k columns of its array argument A. The diagonal and the upper part are destroyed, the reflectors are not modified. @param[in] ldda INTEGER The leading dimension of the array DA. LDDA >= max(1,M) if SIDE = MagmaLeft; LDDA >= max(1,N) if SIDE = MagmaRight. @param[in] tau DOUBLE_PRECISION array, dimension (K) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by DGEQRF. @param[in,out] dC DOUBLE_PRECISION array, dimension (LDDC,N) On entry, the M-by-N matrix C. On exit, C is overwritten by (Q*C) or (Q**H * C) or (C * Q**H) or (C*Q). @param[in] lddc INTEGER The leading dimension of the array C. LDDC >= max(1,M). @param[in] wA (workspace) DOUBLE_PRECISION array, dimension (LDWA,M) if SIDE = MagmaLeft (LDWA,N) if SIDE = MagmaRight The vectors which define the elementary reflectors, as returned by DSYTRD_GPU. @param[in] ldwa INTEGER The leading dimension of the array wA. LDWA >= max(1,M) if SIDE = MagmaLeft; LDWA >= max(1,N) if SIDE = MagmaRight. @param[out] info INTEGER - = 0: successful exit - < 0: if INFO = -i, the i-th argument had an illegal value @ingroup magma_dgeqrf_comp ********************************************************************/ extern "C" magma_int_t magma_dormqr2_gpu(magma_side_t side, magma_trans_t trans, magma_int_t m, magma_int_t n, magma_int_t k, double *dA, magma_int_t ldda, double *tau, double *dC, magma_int_t lddc, double *wA, magma_int_t ldwa, magma_int_t *info) { #define dA(i_,j_) (dA + (i_) + (j_)*ldda) #define dC(i_,j_) (dC + (i_) + (j_)*lddc) #define wA(i_,j_) (wA + (i_) + (j_)*ldwa) /* Allocate work space on the GPU */ double *dwork; double c_zero = MAGMA_D_ZERO; double c_one = MAGMA_D_ONE; magma_int_t i, i__4, lddwork; double T[2*4160] /* was [65][64] */; magma_int_t i1, i2, step, ib, ic, jc, nb, mi, ni, nq, nw; int left, notran; wA -= 1 + ldwa; dC -= 1 + lddc; --tau; *info = 0; left = (side == MagmaLeft); notran = (trans == MagmaNoTrans); /* NQ is the order of Q and NW is the minimum dimension of WORK */ if (left) { nq = m; nw = n; magma_dmalloc( &dwork, (n + 64)*64 ); // TODO after checking args, else memory leak! } else { nq = n; nw = m; magma_dmalloc( &dwork, (m + 64)*64 ); // TODO after checking args, else memory leak! } if (! left && side != MagmaRight) { *info = -1; } else if (! notran && trans != MagmaTrans) { *info = -2; } else if (m < 0) { *info = -3; } else if (n < 0) { *info = -4; } else if (k < 0 || k > nq) { *info = -5; } else if (ldda < max(1,nq)) { *info = -7; } else if (lddc < max(1,m)) { *info = -10; } else if (ldwa < max(1,nq)) { *info = -12; } // size of the block nb = 64; if (*info != 0) { magma_xerbla( __func__, -(*info) ); return *info; } /* Quick return if possible */ if (m == 0 || n == 0 || k == 0) { return *info; } /* Use hybrid CPU-GPU code */ if ( ( left && (! notran) ) || ( (! left) && notran ) ) { i1 = 1; i2 = k; step = nb; } else { i1 = ((k - 1)/nb)*nb + 1; i2 = 1; step = -nb; } // silence "uninitialized" warnings mi = 0; ni = 0; if (left) { ni = n; jc = 1; } else { mi = m; ic = 1; } // set nb-1 super-diagonals to 0, and diagonal to 1. // This way we can copy V directly to the GPU, // with the upper triangle parts already set to identity. magmablas_dlaset_band( MagmaUpper, k, k, nb, c_zero, c_one, dA, ldda ); // for i=i1 to i2 by step for (i = i1; (step < 0 ? i >= i2 : i <= i2); i += step) { ib = min(nb, k - i + 1); /* Form the triangular factor of the block reflector H = H(i) H(i+1) . . . H(i+ib-1) */ i__4 = nq - i + 1; lapackf77_dlarft("Forward", "Columnwise", &i__4, &ib, wA(i,i), &ldwa, &tau[i], T, &ib); if (left) { /* H or H' is applied to C(i:m,1:n) */ mi = m - i + 1; ic = i; } else { /* H or H' is applied to C(1:m,i:n) */ ni = n - i + 1; jc = i; } if (left) lddwork = ni; else lddwork = mi; /* Apply H or H'; First copy T to the GPU */ magma_dsetmatrix( ib, ib, T, ib, dwork, ib ); magma_dlarfb_gpu( side, trans, MagmaForward, MagmaColumnwise, mi, ni, ib, dA(i-1,i-1), ldda, dwork, ib, // dA using 0-based indices here dC(ic,jc), lddc, dwork + ib*ib, lddwork); } magma_free( dwork ); return *info; } /* magma_dormqr */
/** Purpose ------- DSYTRD_HE2HB reduces a real symmetric matrix A to real symmetric band-diagonal form T by an orthogonal similarity transformation: Q**H * A * Q = T. This version stores the triangular matrices T used in the accumulated Householder transformations (I - V T V'). Arguments --------- @param[in] uplo magma_uplo_t - = MagmaUpper: Upper triangle of A is stored; - = MagmaLower: Lower triangle of A is stored. @param[in] n INTEGER The order of the matrix A. N >= 0. @param[in,out] A DOUBLE_PRECISION array, dimension (LDA,N) On entry, the symmetric matrix A. If UPLO = MagmaUpper, the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = MagmaLower, the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit, if UPLO = MagmaUpper, the Upper band-diagonal of A is overwritten by the corresponding elements of the band-diagonal matrix T, and the elements above the band diagonal, with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors; if UPLO = MagmaLower, the the Lower band-diagonal of A is overwritten by the corresponding elements of the band-diagonal matrix T, and the elements below the band-diagonal, with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors. See Further Details. @param[in] lda INTEGER The leading dimension of the array A. LDA >= max(1,N). @param[out] tau DOUBLE_PRECISION array, dimension (N-1) The scalar factors of the elementary reflectors (see Further Details). @param[out] work (workspace) DOUBLE_PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK[0] returns the optimal LWORK. @param[in] lwork INTEGER The dimension of the array WORK. LWORK >= 1. For optimum performance LWORK >= N*NB, where NB is the optimal blocksize. \n If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. @param[out] dT DOUBLE_PRECISION array on the GPU, dimension N*NB, where NB is the optimal blocksize. On exit dT holds the upper triangular matrices T from the accumulated Householder transformations (I - V T V') used in the factorization. The nb x nb matrices T are ordered consecutively in memory one after another. @param[out] info INTEGER - = 0: successful exit - < 0: if INFO = -i, the i-th argument had an illegal value Further Details --------------- If UPLO = MagmaUpper, the matrix Q is represented as a product of elementary reflectors Q = H(n-1) . . . H(2) H(1). Each H(i) has the form H(i) = I - tau * v * v' where tau is a real scalar, and v is a real vector with v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in A(1:i-1,i+1), and tau in TAU(i). If UPLO = MagmaLower, the matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(n-1). Each H(i) has the form H(i) = I - tau * v * v' where tau is a real scalar, and v is a real vector with v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i), and tau in TAU(i). The contents of A on exit are illustrated by the following examples with n = 5: if UPLO = MagmaUpper: if UPLO = MagmaLower: ( d e v2 v3 v4 ) ( d ) ( d e v3 v4 ) ( e d ) ( d e v4 ) ( v1 e d ) ( d e ) ( v1 v2 e d ) ( d ) ( v1 v2 v3 e d ) where d and e denote diagonal and off-diagonal elements of T, and vi denotes an element of the vector defining H(i). @ingroup magma_dsyev_2stage ********************************************************************/ extern "C" magma_int_t magma_dsytrd_sy2sb_mgpu( magma_uplo_t uplo, magma_int_t n, magma_int_t nb, double *A, magma_int_t lda, double *tau, double *work, magma_int_t lwork, magmaDouble_ptr dAmgpu[], magma_int_t ldda, magmaDouble_ptr dTmgpu[], magma_int_t lddt, magma_int_t ngpu, magma_int_t distblk, magma_queue_t queues[][20], magma_int_t nqueue, magma_int_t *info) { #define A(a_1,a_2) ( A + ((a_2)-1)*( lda) + (a_1)-1) #define tau_ref(a_1) (tau + (a_1)-1) #define dT(a_0, a_1, a_2) (dTmgpu[a_0] + ((a_2)-1)*(lddt) + (a_1)-1) #define dA(a_0, a_1, a_2) (dAmgpu[a_0] + ((a_2)-1)*(ldda) + (a_1)-1) double c_neg_one = MAGMA_D_NEG_ONE; double c_neg_half = MAGMA_D_NEG_HALF; double c_one = MAGMA_D_ONE; double c_zero = MAGMA_D_ZERO; double d_one = MAGMA_D_ONE; magma_int_t pm, pn, indi, indj, pk; magma_int_t pm_old=0, pn_old=0, indi_old=0, flipV=-1; magma_int_t iblock, idev, di; int i; int lwkopt; int lquery; assert (nqueue >= 3); assert (nqueue >= (ngpu+1)); *info = 0; int upper = (uplo == MagmaUpper); lquery = (lwork == -1); if (! upper && uplo != MagmaLower) { *info = -1; } else if (n < 0) { *info = -2; } else if (lda < max(1,n)) { *info = -4; } else if (lwork < 1 && ! lquery) { *info = -9; } /* Determine the block size. */ lwkopt = n * nb; if (*info == 0) { work[0] = MAGMA_D_MAKE( lwkopt, 0 ); } if (*info != 0) return *info; else if (lquery) return *info; /* Quick return if possible */ if (n == 0) { work[0] = c_one; return *info; } magma_device_t orig_dev; magma_getdevice( &orig_dev ); magma_queue_t orig_stream; magmablasGetKernelStream( &orig_stream ); // limit to 16 threads magma_int_t orig_threads = magma_get_lapack_numthreads(); magma_set_lapack_numthreads( min(orig_threads,16) ); magma_int_t gnode[MagmaMaxGPUs][MagmaMaxGPUs+2]; magma_int_t nbcmplx=0; magma_buildconnection_mgpu(gnode, &nbcmplx, ngpu); #ifdef ENABLE_DEBUG printf(" Initializing communication pattern.... GPU-ncmplx %d\n\n", nbcmplx); #endif double *dspace[MagmaMaxGPUs]; double *dwork[MagmaMaxGPUs], *dworkbis[MagmaMaxGPUs]; double *dvall[MagmaMaxGPUs], *dv[MagmaMaxGPUs], *dw[MagmaMaxGPUs]; double *workngpu[MagmaMaxGPUs+1]; magma_event_t redevents[MagmaMaxGPUs][MagmaMaxGPUs*MagmaMaxGPUs+10]; magma_int_t nbevents = MagmaMaxGPUs*MagmaMaxGPUs; magma_int_t lddv = ldda; magma_int_t lddw = lddv; magma_int_t dwrk2siz = ldda*nb*(ngpu+1); magma_int_t worksiz = n*nb; magma_int_t devworksiz = 2*nb*lddv + nb*lddw + nb*ldda + dwrk2siz; // 2*dv(dv0+dv1) + dw + dwork +dworkbis // local allocation and stream creation // TODO check malloc for( magma_int_t dev = 0; dev < ngpu; ++dev ) { magma_setdevice( dev ); magma_dmalloc( &dspace[dev], devworksiz ); magma_dmalloc_pinned ( &workngpu[dev], worksiz); dvall[dev] = dspace[dev]; dw[dev] = dvall[dev] + 2*nb*lddv; dwork[dev] = dw[dev] + nb*lddw; dworkbis[dev] = dwork[dev] + nb*ldda; magmablasSetKernelStream( queues[ dev ][ 0 ] ); for( magma_int_t i = 0; i < nbevents; ++i ) { cudaEventCreateWithFlags(&redevents[dev][i],cudaEventDisableTiming); } } magma_dmalloc_pinned ( &workngpu[ngpu], worksiz); double *worktest = NULL; //magma_dmalloc_cpu( &worktest, n*nb ); // not used // ====================== double *hT = work + lwork - nb*nb; lwork -= nb*nb; memset( hT, 0, nb*nb*sizeof(double)); if (upper) { printf("DSYTRD_HE2HB is not yet implemented for upper matrix storage. Exit.\n"); exit(1); } else { /* Reduce the lower triangle of A */ for (i = 1; i <= n-nb; i += nb) { indi = i+nb; indj = i; pm = n - i - nb + 1; //pn = min(i+nb-1, n-nb) -i + 1; pn = nb; /* Get the current panel (no need for the 1st iteration) */ if (i > 1 ) { // dpanel_to_q copy the upper oof diagonal part of // the matrix to work to be restored later. acctually // the zero's and one's putted are not used this is only // because we don't have a function that copy only the // upper part of A to be restored after copying the // lookahead panel that has been computted from GPU to CPU. dpanel_to_q(MagmaUpper, pn-1, A(i, i+1), lda, work); // find the device who own the panel then send it to the CPU. // below a -1 was added and then a -1 was done on di because of the fortran indexing iblock = ((i-1) / distblk) / ngpu; // local block id di = iblock*distblk + (i-1)%distblk; // local index in parent matrix idev = ((i-1) / distblk) % ngpu; // device with this block //printf("Receiving panel ofsize %d %d from idev %d A(%d,%d) \n",(pm+pn), pn,idev,i-1,di); magma_setdevice( idev ); //magma_device_sync(); magma_dgetmatrix_async( (pm+pn), pn, dA(idev, i, di+1), ldda, A( i, i), lda, queues[ idev ][ nqueue-1 ] ); //magma_setdevice( 0 ); //printf("updating dsyr2k on A(%d,%d) of size %d %d \n",indi_old+pn_old-1,indi_old+pn_old-1,pm_old-pn_old,pn_old); // compute DSYR2K_MGPU magmablas_dsyr2k_mgpu2( MagmaLower, MagmaNoTrans, pm_old-pn_old, pn_old, c_neg_one, dv, pm_old, pn_old, dw, pm_old, pn_old, d_one, dAmgpu, ldda, indi_old+pn_old-1, ngpu, distblk, queues, 2 ); //magma_setdevice( 0 ); magma_setdevice( idev ); magma_queue_sync( queues[idev][ nqueue-1 ] ); //magma_setdevice( 0 ); dq_to_panel(MagmaUpper, pn-1, A(i, i+1), lda, work); } /* ========================================================== QR factorization on a panel starting nb off of the diagonal. Prepare the V and T matrices. ========================================================== */ lapackf77_dgeqrf(&pm, &pn, A(indi, indj), &lda, tau_ref(i), work, &lwork, info); /* Form the matrix T */ pk=min(pm,pn); lapackf77_dlarft( MagmaForwardStr, MagmaColumnwiseStr, &pm, &pk, A(indi, indj), &lda, tau_ref(i), hT, &nb); /* Prepare V - put 0s in the upper triangular part of the panel (and 1s on the diagonal), temporaly storing the original in work */ dpanel_to_q(MagmaUpper, pk, A(indi, indj), lda, work); /* Send V and T from the CPU to the GPU */ // To be able to overlap the GET with the DSYR2K // it should be done on last stream. // TO Avoid a BUG that is overwriting the old_V // used atthis moment by dsyr2k with the new_V // send it now, we decide to have a flipflop // vector of Vs. if step%2=0 use V[0] else use V[nb*n] flipV = ((i-1)/nb)%2; for( magma_int_t dev = 0; dev < ngpu; ++dev ) { dv[dev] = dvall[dev] + flipV*nb*lddv; } for( magma_int_t dev = 0; dev < ngpu; ++dev ) { magma_setdevice( dev ); // send V magma_dsetmatrix_async( pm, pk, A(indi, indj), lda, dv[dev], pm, queues[dev][nqueue-1] ); // Send the triangular factor T to the GPU magma_dsetmatrix_async( pk, pk, hT, nb, dT(dev, 1, i), lddt, queues[dev][nqueue-1] ); } /* ========================================================== Compute W: 1. X = A (V T) 2. W = X - 0.5* V * (T' * (V' * X)) ========================================================== */ for( magma_int_t dev = 0; dev < ngpu; ++dev ) { // dwork = V T magma_setdevice( dev ); magmablasSetKernelStream( queues[ dev ][ nqueue-1 ] ); magma_queue_sync( queues[dev][nqueue-1] ); magma_dgemm(MagmaNoTrans, MagmaNoTrans, pm, pk, pk, c_one, dv[dev], pm, dT(dev, 1, i), lddt, c_zero, dwork[dev], pm); } // =============================================== // SYNC TO BE SURE THAT BOTH V AND T WERE // RECEIVED AND VT IS COMPUTED and SYR2K is done // =============================================== for( magma_int_t dev = 0; dev < ngpu; ++dev ) { magma_setdevice( dev ); for( magma_int_t s = 0; s < nqueue; ++s ) magma_queue_sync( queues[dev][s] ); } // compute DSYMM_MGPU // The broadcast of the result done inside this function // should be done in stream [0] because i am assuming this // for the GEMMs below otherwise I have to SYNC over the // Broadcasting stream. if (ngpu == 1) { magmablasSetKernelStream( queues[ 0 ][ 0 ] ); magma_dsymm(MagmaLeft, uplo, pm, pk, c_one, dAmgpu[0]+(indi-1)*ldda+(indi-1), ldda, dwork[0], pm, c_zero, dw[0], pm); } else { magmablas_dsymm_mgpu_com( MagmaLeft, uplo, pm, pk, c_one, dAmgpu, ldda, indi-1, dwork, pm, c_zero, dw, pm, dworkbis, dwrk2siz, worktest, pm, workngpu, worksiz, ngpu, distblk, queues, nqueue-1, redevents, nbevents, gnode, nbcmplx); } /* dwork = V*T already ==> dwork' = T'*V' * compute T'*V'*X ==> dwork'*W ==> * dwork + pm*nb = ((T' * V') * X) = dwork' * X = dwork' * W */ for( magma_int_t dev = 0; dev < ngpu; ++dev ) { // Here we have to wait until the broadcast of DSYMM has been done. // Note that the broadcast should be done on stream[0] so in a way // we can continue here on the same stream and avoid a sync magma_setdevice( dev ); magmablasSetKernelStream( queues[ dev ][ 0 ] ); // magma_queue_sync( queues[dev][0] ); magma_dgemm(MagmaConjTrans, MagmaNoTrans, pk, pk, pm, c_one, dwork[dev], pm, dw[dev], pm, c_zero, dworkbis[dev], nb); /* W = X - 0.5 * V * T'*V'*X * = X - 0.5 * V * (dwork + pm*nb) = W - 0.5 * V * (dwork + pm*nb) */ magma_dgemm(MagmaNoTrans, MagmaNoTrans, pm, pk, pk, c_neg_half, dv[dev], pm, dworkbis[dev], nb, c_one, dw[dev], pm); } /* restore the panel it is put here to overlap with the previous GEMM*/ dq_to_panel(MagmaUpper, pk, A(indi, indj), lda, work); // =============================================== // SYNC TO BE SURE THAT BOTH V AND W ARE DONE // =============================================== // Synchronise to be sure that W has been computed // because next DSYR2K use streaming and may happen // that lunch a gemm on stream 2 while stream 0 // which compute those 2 GEMM above has not been // computed and also used for the same reason in // the panel update below and also for the last HER2K for( magma_int_t dev = 0; dev < ngpu; ++dev ) { magma_setdevice( dev ); magma_queue_sync( queues[dev][0] ); } /* ========================================================== Update the unreduced submatrix A(i+ib:n,i+ib:n), using an update of the form: A := A - V*W' - W*V' ========================================================== */ if (i + nb <= n-nb) { /* There would be next iteration; do lookahead - update the next panel */ // below a -1 was added and then a -1 was done on di because of the fortran indexing iblock = ((indi-1) / distblk) / ngpu; // local block id di = iblock*distblk + (indi-1)%distblk; // local index in parent matrix idev = ((indi-1) / distblk) % ngpu; // device with this block magma_setdevice( idev ); magmablasSetKernelStream( queues[ idev ][ nqueue-1 ] ); //magma_queue_sync( queues[idev][0] ); removed because the sync has been done in the loop above magma_dgemm(MagmaNoTrans, MagmaConjTrans, pm, pn, pn, c_neg_one, dv[idev], pm, dw[idev], pm, c_one, dA(idev, indi, di+1), ldda); magma_dgemm(MagmaNoTrans, MagmaConjTrans, pm, pn, pn, c_neg_one, dw[idev], pm, dv[idev], pm, c_one, dA(idev, indi, di+1), ldda); //printf("updating next panel distblk %d idev %d on A(%d,%d) of size %d %d %d \n",distblk,idev,indi-1,di,pm,pn,pn); } else { /* no look-ahead as this is last iteration */ // below a -1 was added and then a -1 was done on di because of the fortran indexing iblock = ((indi-1) / distblk) / ngpu; // local block id di = iblock*distblk + (indi-1)%distblk; // local index in parent matrix idev = ((indi-1) / distblk) % ngpu; // device with this block magma_setdevice( idev ); magmablasSetKernelStream( queues[ idev ][ 0 ] ); //printf("LAST DSYR2K idev %d on A(%d,%d) of size %d \n",idev, indi-1,di,pk); magma_dsyr2k(MagmaLower, MagmaNoTrans, pk, pk, c_neg_one, dv[idev], pm, dw[idev], pm, d_one, dA(idev, indi, di+1), ldda); /* Send the last block to the CPU */ dpanel_to_q(MagmaUpper, pk-1, A(n-pk+1, n-pk+2), lda, work); magma_dgetmatrix( pk, pk, dA(idev, indi, di+1), ldda, A(n-pk+1, n-pk+1), lda ); dq_to_panel(MagmaUpper, pk-1, A(n-pk+1, n-pk+2), lda, work); } indi_old = indi; //indj_old = indj; pm_old = pm; pn_old = pn; } // end loop for (i) }// end of LOWER //magma_setdevice( 0 ); for( magma_int_t dev = 0; dev < ngpu; ++dev ) { magma_setdevice( dev ); magma_free( dspace[dev]); magma_free_pinned(workngpu[dev]); for( magma_int_t e = 0; e < nbevents; ++e ) { magma_event_destroy( redevents[dev][e] ); } } magma_free_pinned(workngpu[ngpu]); magma_free_cpu(worktest); magma_setdevice( orig_dev ); magmablasSetKernelStream( orig_stream ); magma_set_lapack_numthreads( orig_threads ); work[0] = MAGMA_D_MAKE( lwkopt, 0 ); return *info; } /* magma_dsytrd_sy2sb_mgpu */
magma_err_t magma_dgeqrf2_2q_gpu( magma_int_t m, magma_int_t n, magmaDouble_ptr dA, size_t dA_offset, magma_int_t ldda, double *tau, magma_err_t *info, magma_queue_t* queues) { /* -- clMAGMA (version 1.1.0) -- Univ. of Tennessee, Knoxville Univ. of California, Berkeley Univ. of Colorado, Denver @date January 2014 Purpose ======= DGEQRF computes a QR factorization of a real M-by-N matrix A: A = Q * R. Arguments ========= M (input) INTEGER The number of rows of the matrix A. M >= 0. N (input) INTEGER The number of columns of the matrix A. N >= 0. dA (input/output) DOUBLE_PRECISION array on the GPU, dimension (LDDA,N) On entry, the M-by-N matrix dA. On exit, the elements on and above the diagonal of the array contain the min(M,N)-by-N upper trapezoidal matrix R (R is upper triangular if m >= n); the elements below the diagonal, with the array TAU, represent the orthogonal matrix Q as a product of min(m,n) elementary reflectors (see Further Details). LDDA (input) INTEGER The leading dimension of the array dA. LDDA >= max(1,M). To benefit from coalescent memory accesses LDDA must be dividable by 16. TAU (output) DOUBLE_PRECISION array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details). INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value if INFO = -9, internal GPU memory allocation failed. Further Details =============== The matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(k), where k = min(m,n). Each H(i) has the form H(i) = I - tau * v * v' where tau is a real scalar, and v is a real vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), and tau in TAU(i). ===================================================================== */ #define dA(a_1,a_2) dA, (dA_offset + (a_1) + (a_2)*(ldda)) #define work_ref(a_1) ( work + (a_1)) #define hwork ( work + (nb)*(m)) magmaDouble_ptr dwork; double *work; magma_int_t i, k, ldwork, lddwork, old_i, old_ib, rows; magma_int_t nbmin, nx, ib, nb; magma_int_t lhwork, lwork; *info = 0; if (m < 0) { *info = -1; } else if (n < 0) { *info = -2; } else if (ldda < max(1,m)) { *info = -4; } if (*info != 0) { magma_xerbla( __func__, -(*info) ); return *info; } k = min(m,n); if (k == 0) return MAGMA_SUCCESS; nb = magma_get_dgeqrf_nb(m); lwork = (m+n) * nb; lhwork = lwork - (m)*nb; if ( MAGMA_SUCCESS != magma_dmalloc( &dwork, n*nb )) { *info = MAGMA_ERR_DEVICE_ALLOC; return *info; } /* if ( MAGMA_SUCCESS != magma_dmalloc_cpu( &work, lwork ) ) { *info = MAGMA_ERR_HOST_ALLOC; magma_free( dwork ); return *info; } */ cl_mem buffer = clCreateBuffer(gContext, CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR, sizeof(double)*lwork, NULL, NULL); work = (double*)clEnqueueMapBuffer(queues[0], buffer, CL_TRUE, CL_MAP_READ | CL_MAP_WRITE, 0, lwork*sizeof(double), 0, NULL, NULL, NULL); nbmin = 2; nx = 2*nb; ldwork = m; lddwork= n; if (nb >= nbmin && nb < k && nx < k) { /* Use blocked code initially */ old_i = 0; old_ib = nb; for (i = 0; i < k-nx; i += nb) { ib = min(k-i, nb); rows = m -i; magma_dgetmatrix_async(rows, ib, dA(i, i), ldda, work_ref(i), 0, ldwork, queues[0], NULL); clFlush(queues[0]); if (i>0){ /* Apply H' to A(i:m,i+2*ib:n) from the left */ magma_dlarfb_gpu( MagmaLeft, MagmaTrans, MagmaForward, MagmaColumnwise, m-old_i, n-old_i-2*old_ib, old_ib, dA(old_i, old_i ), ldda, dwork,0, lddwork, dA(old_i, old_i+2*old_ib), ldda, dwork,old_ib, lddwork, queues[1]); magma_dsetmatrix_async( old_ib, old_ib, work_ref(old_i), 0, ldwork, dA(old_i, old_i), ldda, queues[1], NULL); clFlush(queues[1]); } magma_queue_sync(queues[0]); lapackf77_dgeqrf(&rows, &ib, work_ref(i), &ldwork, tau+i, hwork, &lhwork, info); /* Form the triangular factor of the block reflector H = H(i) H(i+1) . . . H(i+ib-1) */ lapackf77_dlarft( MagmaForwardStr, MagmaColumnwiseStr, &rows, &ib, work_ref(i), &ldwork, tau+i, hwork, &ib); dpanel_to_q( MagmaUpper, ib, work_ref(i), ldwork, hwork+ib*ib ); magma_dsetmatrix(rows, ib, work_ref(i), 0, ldwork, dA(i,i), ldda, queues[0]); dq_to_panel( MagmaUpper, ib, work_ref(i), ldwork, hwork+ib*ib ); if (i + ib < n) { magma_dsetmatrix(ib, ib, hwork, 0, ib, dwork, 0, lddwork, queues[1]); if (i+nb < k-nx){ /* Apply H' to A(i:m,i+ib:i+2*ib) from the left */ magma_dlarfb_gpu( MagmaLeft, MagmaTrans, MagmaForward, MagmaColumnwise, rows, ib, ib, dA(i, i ), ldda, dwork,0, lddwork, dA(i, i+ib), ldda, dwork,ib, lddwork, queues[1]); magma_queue_sync(queues[1]); }else { magma_dlarfb_gpu( MagmaLeft, MagmaTrans, MagmaForward, MagmaColumnwise, rows, n-i-ib, ib, dA(i, i ), ldda, dwork,0, lddwork, dA(i, i+ib), ldda, dwork,ib, lddwork, queues[1]); magma_dsetmatrix(ib, ib, work_ref(i), 0, ldwork, dA(i,i), ldda, queues[1]); clFlush(queues[1]); } old_i = i; old_ib = ib; } } } else { i = 0; } magma_free(dwork); /* Use unblocked code to factor the last or only block. */ if (i < k) { ib = n-i; rows = m-i; magma_dgetmatrix(rows, ib, dA(i, i), ldda, work, 0, rows, queues[0]); lhwork = lwork - rows*ib; lapackf77_dgeqrf(&rows, &ib, work, &rows, tau+i, work+ib*rows, &lhwork, info); magma_dsetmatrix(rows, ib, work, 0, rows, dA(i, i), ldda, queues[0]); } clEnqueueUnmapMemObject(queues[0], buffer, work, 0, NULL, NULL); clReleaseMemObject(buffer); // magma_free_cpu(work); return *info; } /* magma_dgeqrf2_gpu */
/** Purpose ------- DORMLQ overwrites the general real M-by-N matrix C with @verbatim SIDE = MagmaLeft SIDE = MagmaRight TRANS = MagmaNoTrans: Q * C C * Q TRANS = MagmaTrans: Q**H * C C * Q**H @endverbatim where Q is a realunitary matrix defined as the product of k elementary reflectors Q = H(k)**H . . . H(2)**H H(1)**H as returned by DGELQF. Q is of order M if SIDE = MagmaLeft and of order N if SIDE = MagmaRight. Arguments --------- @param[in] side magma_side_t - = MagmaLeft: apply Q or Q**H from the Left; - = MagmaRight: apply Q or Q**H from the Right. @param[in] trans magma_trans_t - = MagmaNoTrans: No transpose, apply Q; - = MagmaTrans: Conjugate transpose, apply Q**H. @param[in] m INTEGER The number of rows of the matrix C. M >= 0. @param[in] n INTEGER The number of columns of the matrix C. N >= 0. @param[in] k INTEGER The number of elementary reflectors whose product defines the matrix Q. If SIDE = MagmaLeft, M >= K >= 0; if SIDE = MagmaRight, N >= K >= 0. @param[in] A DOUBLE_PRECISION array, dimension (LDA,M) if SIDE = MagmaLeft, (LDA,N) if SIDE = MagmaRight. The i-th row must contain the vector which defines the elementary reflector H(i), for i = 1,2,...,k, as returned by DGELQF in the first k rows of its array argument A. A is modified by the routine but restored on exit. @param[in] lda INTEGER The leading dimension of the array A. LDA >= max(1,K). @param[in] tau DOUBLE_PRECISION array, dimension (K) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by DGELQF. @param[in,out] C DOUBLE_PRECISION array, dimension (LDC,N) On entry, the M-by-N matrix C. On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q. @param[in] ldc INTEGER The leading dimension of the array C. LDC >= max(1,M). @param[out] work (workspace) DOUBLE_PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK[0] returns the optimal LWORK. @param[in] lwork INTEGER The dimension of the array WORK. If SIDE = MagmaLeft, LWORK >= max(1,N); if SIDE = MagmaRight, LWORK >= max(1,M). For optimum performance if SIDE = MagmaLeft, LWORK >= N*NB; if SIDE = MagmaRight, LWORK >= M*NB, where NB is the optimal blocksize. \n If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. @param[out] info INTEGER - = 0: successful exit - < 0: if INFO = -i, the i-th argument had an illegal value @ingroup magma_dgelqf_comp ********************************************************************/ extern "C" magma_int_t magma_dormlq( magma_side_t side, magma_trans_t trans, magma_int_t m, magma_int_t n, magma_int_t k, double *A, magma_int_t lda, double *tau, double *C, magma_int_t ldc, double *work, magma_int_t lwork, magma_int_t *info) { #define A(i_,j_) ( A + (i_) + (j_)*lda) #define dC(i_,j_) (dC + (i_) + (j_)*lddc) double *T, *T2; magma_int_t i, i1, i2, ib, ic, jc, nb, mi, ni, nq, nq_i, nw, step; magma_int_t iinfo, ldwork, lwkopt; magma_int_t left, notran, lquery; magma_trans_t transt; *info = 0; left = (side == MagmaLeft); notran = (trans == MagmaNoTrans); lquery = (lwork == -1); /* NQ is the order of Q and NW is the minimum dimension of WORK */ if (left) { nq = m; nw = n; } else { nq = n; nw = m; } /* Test the input arguments */ if (! left && side != MagmaRight) { *info = -1; } else if (! notran && trans != MagmaTrans) { *info = -2; } else if (m < 0) { *info = -3; } else if (n < 0) { *info = -4; } else if (k < 0 || k > nq) { *info = -5; } else if (lda < max(1,k)) { *info = -7; } else if (ldc < max(1,m)) { *info = -10; } else if (lwork < max(1,nw) && ! lquery) { *info = -12; } if (*info == 0) { nb = magma_get_dgelqf_nb( min( m, n )); lwkopt = max(1,nw)*nb; work[0] = MAGMA_D_MAKE( lwkopt, 0 ); } if (*info != 0) { magma_xerbla( __func__, -(*info) ); return *info; } else if (lquery) { return *info; } /* Quick return if possible */ if (m == 0 || n == 0 || k == 0) { work[0] = MAGMA_D_ONE; return *info; } ldwork = nw; if (nb >= k) { /* Use CPU code */ lapackf77_dormlq( lapack_side_const(side), lapack_trans_const(trans), &m, &n, &k, A, &lda, tau, C, &ldc, work, &lwork, &iinfo); } else { /* Use hybrid CPU-GPU code */ /* Allocate work space on the GPU. * nw*nb for dwork (m or n) by nb * nq*nb for dV (n or m) by nb * nb*nb for dT * lddc*n for dC. */ magma_int_t lddc = ((m+31)/32)*32; double *dwork, *dV, *dT, *dC; magma_dmalloc( &dwork, (nw + nq + nb)*nb + lddc*n ); if ( dwork == NULL ) { *info = MAGMA_ERR_DEVICE_ALLOC; return *info; } dV = dwork + nw*nb; dT = dV + nq*nb; dC = dT + nb*nb; /* work space on CPU. * nb*nb for T * nb*nb for T2, used to save and restore diagonal block of panel */ magma_dmalloc_cpu( &T, 2*nb*nb ); if ( T == NULL ) { magma_free( dwork ); *info = MAGMA_ERR_HOST_ALLOC; return *info; } T2 = T + nb*nb; /* Copy matrix C from the CPU to the GPU */ magma_dsetmatrix( m, n, C, ldc, dC, lddc ); if ( (left && notran) || (! left && ! notran) ) { i1 = 0; i2 = k; step = nb; } else { i1 = ((k - 1) / nb)*nb; i2 = 0; step = -nb; } // silence "uninitialized" warnings mi = 0; ni = 0; if (left) { ni = n; jc = 0; } else { mi = m; ic = 0; } if (notran) { transt = MagmaTrans; } else { transt = MagmaNoTrans; } for (i = i1; (step < 0 ? i >= i2 : i < i2); i += step) { ib = min(nb, k - i); /* Form the triangular factor of the block reflector H = H(i) H(i + 1) . . . H(i + ib-1) */ nq_i = nq - i; lapackf77_dlarft("Forward", "Rowwise", &nq_i, &ib, A(i,i), &lda, &tau[i], T, &ib); /* 1) set upper triangle of panel in A to identity, 2) copy the panel from A to the GPU, and 3) restore A */ dpanel_to_q( MagmaLower, ib, A(i,i), lda, T2 ); magma_dsetmatrix( ib, nq_i, A(i,i), lda, dV, ib ); dq_to_panel( MagmaLower, ib, A(i,i), lda, T2 ); if (left) { /* H or H**H is applied to C(i:m,1:n) */ mi = m - i; ic = i; } else { /* H or H**H is applied to C(1:m,i:n) */ ni = n - i; jc = i; } /* Apply H or H**H; First copy T to the GPU */ magma_dsetmatrix( ib, ib, T, ib, dT, ib ); magma_dlarfb_gpu( side, transt, MagmaForward, MagmaRowwise, mi, ni, ib, dV, ib, dT, ib, dC(ic,jc), lddc, dwork, ldwork ); } magma_dgetmatrix( m, n, dC, lddc, C, ldc ); magma_free( dwork ); magma_free_cpu( T ); } work[0] = MAGMA_D_MAKE( lwkopt, 0 ); return *info; } /* magma_dormlq */
/* //////////////////////////////////////////////////////////////////////////// -- Testing dgeqrf */ int main( int argc, char** argv) { TESTING_INIT(); real_Double_t gflops, gpu_perf, gpu_time, cpu_perf, cpu_time; double error, error2; double c_zero = MAGMA_D_ZERO; double c_neg_one = MAGMA_D_NEG_ONE; double c_one = MAGMA_D_ONE; double *h_A, *h_T, *h_R, *tau, *h_work, tmp[1]; magmaDouble_ptr d_A, d_T, ddA, dtau; magmaDouble_ptr d_A2, d_T2, ddA2, dtau2; magmaDouble_ptr dwork, dwork2; magma_int_t M, N, lda, ldda, lwork, n2, info, min_mn; magma_int_t ione = 1; magma_int_t ISEED[4] = {0,0,0,1}; magma_int_t status = 0; #define BLOCK_SIZE 64 magma_opts opts; parse_opts( argc, argv, &opts ); double tol = 10. * opts.tolerance * lapackf77_dlamch("E"); magma_queue_t stream[2]; magma_queue_create( &stream[0] ); magma_queue_create( &stream[1] ); printf("version %d\n", (int) opts.version ); printf(" M N CPU GFlop/s (ms) GPU GFlop/s (ms) ||R - Q^H*A|| ||R_T||\n"); printf("=============================================================================\n"); for( int itest = 0; itest < opts.ntest; ++itest ) { for( int iter = 0; iter < opts.niter; ++iter ) { M = opts.msize[itest]; N = opts.nsize[itest]; if (N > 128) { printf("%5d %5d skipping because dgeqr2x requires N <= 128\n", (int) M, (int) N); continue; } if (M < N) { printf("%5d %5d skipping because dgeqr2x requires M >= N\n", (int) M, (int) N); continue; } min_mn = min(M, N); lda = M; n2 = lda*N; ldda = ((M+31)/32)*32; gflops = (FLOPS_DGEQRF( M, N ) + FLOPS_DGEQRT( M, N )) / 1e9; /* Allocate memory for the matrix */ TESTING_MALLOC_CPU( tau, double, min_mn ); TESTING_MALLOC_CPU( h_A, double, n2 ); TESTING_MALLOC_CPU( h_T, double, N*N ); TESTING_MALLOC_PIN( h_R, double, n2 ); TESTING_MALLOC_DEV( d_A, double, ldda*N ); TESTING_MALLOC_DEV( d_T, double, N*N ); TESTING_MALLOC_DEV( ddA, double, N*N ); TESTING_MALLOC_DEV( dtau, double, min_mn ); TESTING_MALLOC_DEV( d_A2, double, ldda*N ); TESTING_MALLOC_DEV( d_T2, double, N*N ); TESTING_MALLOC_DEV( ddA2, double, N*N ); TESTING_MALLOC_DEV( dtau2, double, min_mn ); TESTING_MALLOC_DEV( dwork, double, max(5*min_mn, (BLOCK_SIZE*2+2)*min_mn) ); TESTING_MALLOC_DEV( dwork2, double, max(5*min_mn, (BLOCK_SIZE*2+2)*min_mn) ); // todo replace with magma_dlaset magmablas_dlaset( MagmaFull, N, N, c_zero, c_zero, ddA, N ); magmablas_dlaset( MagmaFull, N, N, c_zero, c_zero, d_T, N ); magmablas_dlaset( MagmaFull, N, N, c_zero, c_zero, ddA2, N ); magmablas_dlaset( MagmaFull, N, N, c_zero, c_zero, d_T2, N ); lwork = -1; lapackf77_dgeqrf(&M, &N, NULL, &M, NULL, tmp, &lwork, &info); lwork = (magma_int_t)MAGMA_D_REAL( tmp[0] ); lwork = max(lwork, N*N); TESTING_MALLOC_CPU( h_work, double, lwork ); /* Initialize the matrix */ lapackf77_dlarnv( &ione, ISEED, &n2, h_A ); lapackf77_dlacpy( MagmaUpperLowerStr, &M, &N, h_A, &lda, h_R, &lda ); magma_dsetmatrix( M, N, h_R, lda, d_A, ldda ); magma_dsetmatrix( M, N, h_R, lda, d_A2, ldda ); /* ==================================================================== Performs operation using MAGMA =================================================================== */ gpu_time = magma_sync_wtime(0); if (opts.version == 1) magma_dgeqr2x_gpu(M, N, d_A, ldda, dtau, d_T, ddA, dwork, &info); else if (opts.version == 2) magma_dgeqr2x2_gpu(M, N, d_A, ldda, dtau, d_T, ddA, dwork, &info); else if (opts.version == 3) magma_dgeqr2x3_gpu(M, N, d_A, ldda, dtau, d_T, ddA, dwork, &info); else { printf( "call magma_dgeqr2x4_gpu\n" ); /* Going through NULL stream is faster Going through any stream is slower Doing two streams in parallel is slower than doing them sequentially Queuing happens on the NULL stream - user defined buffers are smaller? */ magma_dgeqr2x4_gpu(M, N, d_A, ldda, dtau, d_T, ddA, dwork, NULL, &info); //magma_dgeqr2x4_gpu(M, N, d_A, ldda, dtau, d_T, ddA, dwork, &info, stream[1]); //magma_dgeqr2x4_gpu(M, N, d_A2, ldda, dtau2, d_T2, ddA2, dwork2, &info, stream[0]); //magma_dgeqr2x4_gpu(M, N, d_A2, ldda, dtau2, d_T2, ddA2, dwork2, &info, NULL); //gflops *= 2; } gpu_time = magma_sync_wtime(0) - gpu_time; gpu_perf = gflops / gpu_time; if (info != 0) { printf("magma_dgeqr2x_gpu version %d returned error %d: %s.\n", (int) opts.version, (int) info, magma_strerror( info )); } else { if ( opts.check ) { /* ===================================================================== Check the result, following zqrt01 except using the reduced Q. This works for any M,N (square, tall, wide). =================================================================== */ magma_dgetmatrix( M, N, d_A, ldda, h_R, M ); magma_dgetmatrix( N, N, ddA, N, h_T, N ); magma_dgetmatrix( min_mn, 1, dtau, min_mn, tau, min_mn ); // Restore the upper triangular part of A before the check for(int col=0; col < N; col++){ for(int row=0; row <= col; row++) h_R[row + col*M] = h_T[row + col*N]; } magma_int_t ldq = M; magma_int_t ldr = min_mn; double *Q, *R; double *work; TESTING_MALLOC_CPU( Q, double, ldq*min_mn ); // M by K TESTING_MALLOC_CPU( R, double, ldr*N ); // K by N TESTING_MALLOC_CPU( work, double, min_mn ); // generate M by K matrix Q, where K = min(M,N) lapackf77_dlacpy( "Lower", &M, &min_mn, h_R, &M, Q, &ldq ); lapackf77_dorgqr( &M, &min_mn, &min_mn, Q, &ldq, tau, h_work, &lwork, &info ); assert( info == 0 ); // copy K by N matrix R lapackf77_dlaset( "Lower", &min_mn, &N, &c_zero, &c_zero, R, &ldr ); lapackf77_dlacpy( "Upper", &min_mn, &N, h_R, &M, R, &ldr ); // error = || R - Q^H*A || / (N * ||A||) blasf77_dgemm( "Conj", "NoTrans", &min_mn, &N, &M, &c_neg_one, Q, &ldq, h_A, &lda, &c_one, R, &ldr ); double Anorm = lapackf77_dlange( "1", &M, &N, h_A, &lda, work ); error2 = lapackf77_dlange( "1", &min_mn, &N, R, &ldr, work ); if ( N > 0 && Anorm > 0 ) error2 /= (N*Anorm); TESTING_FREE_CPU( Q ); Q = NULL; TESTING_FREE_CPU( R ); R = NULL; TESTING_FREE_CPU( work ); work = NULL; /* ===================================================================== Performs operation using LAPACK =================================================================== */ cpu_time = magma_wtime(); //lapackf77_dgeqrf(&M, &N, h_A, &lda, tau, h_work, &lwork, &info); lapackf77_dlacpy( MagmaUpperLowerStr, &M, &N, h_R, &M, h_A, &lda ); lapackf77_dlarft( MagmaForwardStr, MagmaColumnwiseStr, &M, &N, h_A, &lda, tau, h_work, &N); //magma_dgeqr2(&M, &N, h_A, &lda, tau, h_work, &info); cpu_time = magma_wtime() - cpu_time; cpu_perf = gflops / cpu_time; if (info != 0) printf("lapackf77_dgeqrf returned error %d: %s.\n", (int) info, magma_strerror( info )); /* ===================================================================== Check the result compared to LAPACK =================================================================== */ // Restore the upper triangular part of A before the check for(int col=0; col < N; col++){ for(int row=0; row <= col; row++) h_R[row + col*M] = h_T[row + col*N]; } error = lapackf77_dlange("M", &M, &N, h_A, &lda, work); blasf77_daxpy(&n2, &c_neg_one, h_A, &ione, h_R, &ione); error = lapackf77_dlange("M", &M, &N, h_R, &lda, work) / (N * error); // Check if T is the same magma_dgetmatrix( N, N, d_T, N, h_T, N ); double terr = 0.; for(int col=0; col < N; col++) for(int row=0; row <= col; row++) terr += ( MAGMA_D_ABS(h_work[row + col*N] - h_T[row + col*N])* MAGMA_D_ABS(h_work[row + col*N] - h_T[row + col*N]) ); terr = sqrt( terr ); // If comparison to LAPACK fail, check || R - Q^H*A || / (N * ||A||) // and print fail if both fails, otherwise print ok (*) printf("%5d %5d %7.2f (%7.2f) %7.2f (%7.2f) %8.2e %8.2e %s\n", (int) M, (int) N, cpu_perf, 1000.*cpu_time, gpu_perf, 1000.*gpu_time, error2, terr, (error2 < tol ? "ok" : "failed" )); status += ! (error2 < tol); } else { printf("%5d %5d --- ( --- ) %7.2f (%7.2f) --- \n", (int) M, (int) N, gpu_perf, 1000.*gpu_time); } } TESTING_FREE_CPU( tau ); TESTING_FREE_CPU( h_A ); TESTING_FREE_CPU( h_T ); TESTING_FREE_CPU( h_work ); TESTING_FREE_PIN( h_R ); TESTING_FREE_DEV( d_A ); TESTING_FREE_DEV( d_T ); TESTING_FREE_DEV( ddA ); TESTING_FREE_DEV( dtau ); TESTING_FREE_DEV( dwork ); TESTING_FREE_DEV( d_A2 ); TESTING_FREE_DEV( d_T2 ); TESTING_FREE_DEV( ddA2 ); TESTING_FREE_DEV( dtau2 ); TESTING_FREE_DEV( dwork2 ); fflush( stdout ); } if ( opts.niter > 1 ) { printf( "\n" ); } } magma_queue_destroy( stream[0] ); magma_queue_destroy( stream[1] ); TESTING_FINALIZE(); return status; }
extern "C" magma_int_t magma_dormqr_m(magma_int_t nrgpu, char side, char trans, magma_int_t m, magma_int_t n, magma_int_t k, double *a, magma_int_t lda, double *tau, double *c, magma_int_t ldc, double *work, magma_int_t lwork, magma_int_t *info) { /* -- MAGMA (version 1.4.1) -- Univ. of Tennessee, Knoxville Univ. of California, Berkeley Univ. of Colorado, Denver December 2013 Purpose ======= DORMQR overwrites the general real M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N': Q * C C * Q TRANS = 'T': Q**T * C C * Q**T where Q is a real orthogonal matrix defined as the product of k elementary reflectors Q = H(1) H(2) . . . H(k) as returned by DGEQRF. Q is of order M if SIDE = 'L' and of order N if SIDE = 'R'. Arguments ========= SIDE (input) CHARACTER*1 = 'L': apply Q or Q**T from the Left; = 'R': apply Q or Q**T from the Right. TRANS (input) CHARACTER*1 = 'N': No transpose, apply Q; = 'T': Transpose, apply Q**T. M (input) INTEGER The number of rows of the matrix C. M >= 0. N (input) INTEGER The number of columns of the matrix C. N >= 0. K (input) INTEGER The number of elementary reflectors whose product defines the matrix Q. If SIDE = 'L', M >= K >= 0; if SIDE = 'R', N >= K >= 0. A (input) DOUBLE_PRECISION array, dimension (LDA,K) The i-th column must contain the vector which defines the elementary reflector H(i), for i = 1,2,...,k, as returned by DGEQRF in the first k columns of its array argument A. LDA (input) INTEGER The leading dimension of the array A. If SIDE = 'L', LDA >= max(1,M); if SIDE = 'R', LDA >= max(1,N). TAU (input) DOUBLE_PRECISION array, dimension (K) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by DGEQRF. C (input/output) DOUBLE_PRECISION array, dimension (LDC,N) On entry, the M-by-N matrix C. On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q. LDC (input) INTEGER The leading dimension of the array C. LDC >= max(1,M). WORK (workspace/output) DOUBLE_PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(0) returns the optimal LWORK. LWORK (input) INTEGER The dimension of the array WORK. If SIDE = 'L', LWORK >= max(1,N); if SIDE = 'R', LWORK >= max(1,M). For optimum performance LWORK >= N*NB if SIDE = 'L', and LWORK >= M*NB if SIDE = 'R', where NB is the optimal blocksize. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value ===================================================================== */ double c_one = MAGMA_D_ONE; char side_[2] = {side, 0}; char trans_[2] = {trans, 0}; magma_int_t nb = 128; double *t ; magma_dmalloc_pinned (&t, nb*nb); //printf("calling dormqr_m with nb=%d\n", (int) nb); double* dw[MagmaMaxGPUs]; magma_queue_t stream [MagmaMaxGPUs][2]; magma_event_t event [MagmaMaxGPUs][2]; magma_int_t ind_c; magma_int_t igpu = 0; int gpu_b; magma_getdevice(&gpu_b); *info = 0; magma_int_t left = lapackf77_lsame(side_, "L"); magma_int_t notran = lapackf77_lsame(trans_, "N"); magma_int_t lquery = (lwork == -1); /* NQ is the order of Q and NW is the minimum dimension of WORK */ magma_int_t nq, nw; if (left) { nq = m; nw = n; } else { nq = n; nw = m; } if (! left && ! lapackf77_lsame(side_, "R")) { *info = -1; } else if (! notran && ! lapackf77_lsame(trans_, "T")) { *info = -2; } else if (m < 0) { *info = -3; } else if (n < 0) { *info = -4; } else if (k < 0 || k > nq) { *info = -5; } else if (lda < max(1,nq)) { *info = -7; } else if (ldc < max(1,m)) { *info = -10; } else if (lwork < max(1,nw) && ! lquery) { *info = -12; } magma_int_t lwkopt = max(1,nw) * nb; if (*info == 0) { work[0] = MAGMA_D_MAKE( lwkopt, 0 ); } if (*info != 0) { magma_xerbla( __func__, -(*info) ); return *info; } else if (lquery) { return *info; } /* Quick return if possible */ if (m == 0 || n == 0 || k == 0) { work[0] = c_one; return *info; } if (nb >= k) { /* Use CPU code */ lapackf77_dormqr(side_, trans_, &m, &n, &k, a, &lda, tau, c, &ldc, work, &lwork, info); return *info; } magma_int_t lddc = (m+63)/64*64; magma_int_t lddac = nq; magma_int_t lddar = nb; magma_int_t lddwork = nw; magma_int_t nlocal[ MagmaMaxGPUs ] = { 0 }; magma_int_t nb_l=256; magma_int_t nbl = (n-1)/nb_l+1; // number of blocks magma_int_t maxnlocal = (nbl+nrgpu-1)/nrgpu*nb_l; nrgpu = min(nrgpu, (n+nb_l-1)/nb_l); // Don't use GPU that will not have data. magma_int_t ldw = maxnlocal*lddc // dC + 2*lddac*lddar // 2*dA + 2*(nb + 1 + lddwork)*nb; // 2*(dT and dwork) for (igpu = 0; igpu < nrgpu; ++igpu){ magma_setdevice(igpu); if (MAGMA_SUCCESS != magma_dmalloc( &dw[igpu], ldw)) { magma_xerbla( __func__, -(*info) ); *info = MAGMA_ERR_DEVICE_ALLOC; return *info; } magma_queue_create( &stream[igpu][0] ); magma_queue_create( &stream[igpu][1] ); magma_event_create( &event[igpu][0] ); magma_event_create( &event[igpu][1] ); } /* Use hybrid CPU-MGPU code */ if (left) { //copy C to mgpus for (magma_int_t i = 0; i < nbl; ++i){ magma_int_t igpu = i%nrgpu; magma_setdevice(igpu); magma_int_t kb = min(nb_l, n-i*nb_l); magma_dsetmatrix_async( m, kb, C(0, i*nb_l), ldc, dC(igpu, 0, i/nrgpu*nb_l), lddc, stream[igpu][0] ); nlocal[igpu] += kb; } magma_int_t i1, i2, i3; if ( !notran ) { i1 = 0; i2 = k; i3 = nb; } else { i1 = (k - 1) / nb * nb; i2 = 0; i3 = -nb; } ind_c = 0; for (magma_int_t i = i1; (i3 < 0 ? i >= i2 : i < i2); i += i3) { // start the copy of A panel magma_int_t kb = min(nb, k - i); for (igpu = 0; igpu < nrgpu; ++igpu){ magma_setdevice(igpu); magma_event_sync(event[igpu][ind_c]); // check if the new data can be copied magma_dsetmatrix_async(nq-i, kb, A(i, i), lda, dA_c(igpu, ind_c, i, 0), lddac, stream[igpu][0] ); // Put 0s in the upper triangular part of dA; magmablas_dsetdiag1subdiag0_stream('L', kb, kb, dA_c(igpu, ind_c, i, 0), lddac, stream[igpu][0]); } /* Form the triangular factor of the block reflector H = H(i) H(i+1) . . . H(i+ib-1) */ magma_int_t nqi = nq - i; lapackf77_dlarft("F", "C", &nqi, &kb, A(i, i), &lda, &tau[i], t, &kb); /* H or H' is applied to C(1:m,i:n) */ /* Apply H or H'; First copy T to the GPU */ for (igpu = 0; igpu < nrgpu; ++igpu){ magma_setdevice(igpu); magma_dsetmatrix_async(kb, kb, t, kb, dt(igpu, ind_c), kb, stream[igpu][0] ); } for (igpu = 0; igpu < nrgpu; ++igpu){ magma_setdevice(igpu); magma_queue_sync( stream[igpu][0] ); // check if the data was copied magmablasSetKernelStream(stream[igpu][1]); magma_dlarfb_gpu( side, trans, MagmaForward, MagmaColumnwise, m-i, nlocal[igpu], kb, dA_c(igpu, ind_c, i, 0), lddac, dt(igpu, ind_c), kb, dC(igpu, i, 0), lddc, dwork(igpu, ind_c), lddwork); magma_event_record(event[igpu][ind_c], stream[igpu][1] ); } ind_c = (ind_c+1)%2; } for (igpu = 0; igpu < nrgpu; ++igpu){ magma_setdevice(igpu); magma_queue_sync( stream[igpu][1] ); } //copy C from mgpus for (magma_int_t i = 0; i < nbl; ++i){ magma_int_t igpu = i%nrgpu; magma_setdevice(igpu); magma_int_t kb = min(nb_l, n-i*nb_l); magma_dgetmatrix( m, kb, dC(igpu, 0, i/nrgpu*nb_l), lddc, C(0, i*nb_l), ldc ); // magma_dgetmatrix_async( m, kb, // dC(igpu, 0, i/nrgpu*nb_l), lddc, // C(0, i*nb_l), ldc, stream[igpu][0] ); } } else { fprintf(stderr, "The case (side == right) is not implemented\n"); magma_xerbla( __func__, 1 ); return *info; /* if ( notran ) { i1 = 0; i2 = k; i3 = nb; } else { i1 = (k - 1) / nb * nb; i2 = 0; i3 = -nb; } mi = m; ic = 0; for (i = i1; (i3 < 0 ? i >= i2 : i < i2); i += i3) { ib = min(nb, k - i); // Form the triangular factor of the block reflector // H = H(i) H(i+1) . . . H(i+ib-1) i__4 = nq - i; lapackf77_dlarft("F", "C", &i__4, &ib, A(i, i), &lda, &tau[i], t, &ib); // 1) copy the panel from A to the GPU, and // 2) Put 0s in the upper triangular part of dA; magma_dsetmatrix( i__4, ib, A(i, i), lda, dA(i, 0), ldda ); magmablas_dsetdiag1subdiag0('L', ib, ib, dA(i, 0), ldda); // H or H' is applied to C(1:m,i:n) ni = n - i; jc = i; // Apply H or H'; First copy T to the GPU magma_dsetmatrix( ib, ib, t, ib, dt, ib ); magma_dlarfb_gpu( side, trans, MagmaForward, MagmaColumnwise, mi, ni, ib, dA(i, 0), ldda, dt, ib, dC(ic, jc), lddc, dwork, lddwork); } */ } work[0] = MAGMA_D_MAKE( lwkopt, 0 ); for (igpu = 0; igpu < nrgpu; ++igpu){ magma_setdevice(igpu); magmablasSetKernelStream(NULL); magma_event_destroy( event[igpu][0] ); magma_event_destroy( event[igpu][1] ); magma_queue_destroy( stream[igpu][0] ); magma_queue_destroy( stream[igpu][1] ); magma_free( dw[igpu] ); } magma_setdevice(gpu_b); return *info; } /* magma_dormqr */
extern "C" magma_int_t magma_dormqr(magma_side_t side, magma_trans_t trans, magma_int_t m, magma_int_t n, magma_int_t k, double *a, magma_int_t lda, double *tau, double *c, magma_int_t ldc, double *work, magma_int_t lwork, magma_int_t *info, magma_queue_t queue) { /* -- MAGMA (version 1.0.0) -- Univ. of Tennessee, Knoxville Univ. of California, Berkeley Univ. of Colorado, Denver September 2012 Purpose ======= DORMQR overwrites the general real M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N': Q * C C * Q TRANS = 'T': Q**T * C C * Q**T where Q is a real orthogonal matrix defined as the product of k elementary reflectors Q = H(1) H(2) . . . H(k) as returned by DGEQRF. Q is of order M if SIDE = 'L' and of order N if SIDE = 'R'. Arguments ========= SIDE (input) CHARACTER*1 = 'L': apply Q or Q**T from the Left; = 'R': apply Q or Q**T from the Right. TRANS (input) CHARACTER*1 = 'N': No transpose, apply Q; = 'T': Transpose, apply Q**T. M (input) INTEGER The number of rows of the matrix C. M >= 0. N (input) INTEGER The number of columns of the matrix C. N >= 0. K (input) INTEGER The number of elementary reflectors whose product defines the matrix Q. If SIDE = 'L', M >= K >= 0; if SIDE = 'R', N >= K >= 0. A (input) DOUBLE_PRECISION array, dimension (LDA,K) The i-th column must contain the vector which defines the elementary reflector H(i), for i = 1,2,...,k, as returned by DGEQRF in the first k columns of its array argument A. A is modified by the routine but restored on exit. LDA (input) INTEGER The leading dimension of the array A. If SIDE = 'L', LDA >= max(1,M); if SIDE = 'R', LDA >= max(1,N). TAU (input) DOUBLE_PRECISION array, dimension (K) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by DGEQRF. C (input/output) DOUBLE_PRECISION array, dimension (LDC,N) On entry, the M-by-N matrix C. On exit, C is overwritten by Q*C or Q**T * C or C * Q**T or C*Q. LDC (input) INTEGER The leading dimension of the array C. LDC >= max(1,M). WORK (workspace/output) DOUBLE_PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(0) returns the optimal LWORK. LWORK (input) INTEGER The dimension of the array WORK. If SIDE = 'L', LWORK >= max(1,N); if SIDE = 'R', LWORK >= max(1,M). For optimum performance LWORK >= N*NB if SIDE = 'L', and LWORK >= M*NB if SIDE = 'R', where NB is the optimal blocksize. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value ===================================================================== */ double c_one = MAGMA_D_ONE; magma_side_t side_ = side; magma_trans_t trans_ = trans; /* Allocate work space on the GPU */ magmaDouble_ptr dwork, dc; magma_malloc( &dc, (m)*(n)*sizeof(double) ); magma_malloc( &dwork, (m + n + 64)*64*sizeof(double) ); /* Copy matrix C from the CPU to the GPU */ magma_dsetmatrix( m, n, c, 0, ldc, dc, 0, m, queue ); //dc -= (1 + m); size_t dc_offset = -(1+m); magma_int_t a_offset, c_offset, i__4, lddwork; magma_int_t i__; double t[2*4160] /* was [65][64] */; magma_int_t i1, i2, i3, ib, ic, jc, nb, mi, ni, nq, nw; int left, notran, lquery; magma_int_t iinfo, lwkopt; a_offset = 1 + lda; a -= a_offset; --tau; c_offset = 1 + ldc; c -= c_offset; *info = 0; left = lapackf77_lsame(lapack_const(side_), "L"); notran = lapackf77_lsame(lapack_const(trans_), "N"); lquery = (lwork == -1); /* NQ is the order of Q and NW is the minimum dimension of WORK */ if (left) { nq = m; nw = n; } else { nq = n; nw = m; } if (! left && ! lapackf77_lsame(lapack_const(side_), "R")) { *info = -1; } else if (! notran && ! lapackf77_lsame(lapack_const(trans_), "T")) { *info = -2; } else if (m < 0) { *info = -3; } else if (n < 0) { *info = -4; } else if (k < 0 || k > nq) { *info = -5; } else if (lda < max(1,nq)) { *info = -7; } else if (ldc < max(1,m)) { *info = -10; } else if (lwork < max(1,nw) && ! lquery) { *info = -12; } if (*info == 0) { /* Determine the block size. NB may be at most NBMAX, where NBMAX is used to define the local array T. */ nb = 64; lwkopt = max(1,nw) * nb; MAGMA_D_SET2REAL( work[0], lwkopt ); } if (*info != 0) { magma_xerbla( __func__, -(*info) ); return *info; } else if (lquery) { return *info; } /* Quick return if possible */ if (m == 0 || n == 0 || k == 0) { work[0] = c_one; return *info; } if (nb >= k) { /* Use CPU code */ lapackf77_dormqr(lapack_const(side_), lapack_const(trans_), &m, &n, &k, &a[a_offset], &lda, &tau[1], &c[c_offset], &ldc, work, &lwork, &iinfo); } else { /* Use hybrid CPU-GPU code */ if ( ( left && (! notran) ) || ( (! left) && notran ) ) { i1 = 1; i2 = k; i3 = nb; } else { i1 = (k - 1) / nb * nb + 1; i2 = 1; i3 = -nb; } if (left) { ni = n; jc = 1; } else { mi = m; ic = 1; } for (i__ = i1; i3 < 0 ? i__ >= i2 : i__ <= i2; i__ += i3) { ib = min(nb, k - i__ + 1); /* Form the triangular factor of the block reflector H = H(i) H(i+1) . . . H(i+ib-1) */ i__4 = nq - i__ + 1; lapackf77_dlarft("F", "C", &i__4, &ib, &a[i__ + i__ * lda], &lda, &tau[i__], t, &ib); /* 1) Put 0s in the upper triangular part of A; 2) copy the panel from A to the GPU, and 3) restore A */ dpanel_to_q(MagmaUpper, ib, &a[i__ + i__ * lda], lda, t+ib*ib); magma_dsetmatrix( i__4, ib, &a[i__ + i__ * lda], 0, lda, dwork, 0, i__4, queue ); dq_to_panel(MagmaUpper, ib, &a[i__ + i__ * lda], lda, t+ib*ib); if (left) { /* H or H' is applied to C(i:m,1:n) */ mi = m - i__ + 1; ic = i__; } else { /* H or H' is applied to C(1:m,i:n) */ ni = n - i__ + 1; jc = i__; } if (left) lddwork = ni; else lddwork = mi; /* Apply H or H'; First copy T to the GPU */ magma_dsetmatrix( ib, ib, t, 0, ib, dwork, i__4*ib, ib, queue ); magma_dlarfb_gpu( side, trans, MagmaForward, MagmaColumnwise, mi, ni, ib, dwork, 0, i__4, dwork, i__4*ib, ib, dc, dc_offset+(ic + jc * m), m, dwork, (i__4*ib + ib*ib), lddwork, queue); } magma_dgetmatrix( m, n, dc, dc_offset+(1+m), m, &c[c_offset], 0, ldc, queue ); } MAGMA_D_SET2REAL( work[0], lwkopt ); //dc += (1 + m); magma_free( dc ); magma_free( dwork ); return *info; } /* magma_dormqr */
/** Purpose ------- DORGQR generates an M-by-N DOUBLE_PRECISION matrix Q with orthonormal columns, which is defined as the first N columns of a product of K elementary reflectors of order M Q = H(1) H(2) . . . H(k) as returned by DGEQRF. This version recomputes the T matrices on the CPU and sends them to the GPU. Arguments --------- @param[in] m INTEGER The number of rows of the matrix Q. M >= 0. @param[in] n INTEGER The number of columns of the matrix Q. M >= N >= 0. @param[in] k INTEGER The number of elementary reflectors whose product defines the matrix Q. N >= K >= 0. @param[in,out] A DOUBLE_PRECISION array A, dimension (LDDA,N). On entry, the i-th column must contain the vector which defines the elementary reflector H(i), for i = 1,2,...,k, as returned by DGEQRF_GPU in the first k columns of its array argument A. On exit, the M-by-N matrix Q. @param[in] lda INTEGER The first dimension of the array A. LDA >= max(1,M). @param[in] tau DOUBLE_PRECISION array, dimension (K) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by DGEQRF_GPU. @param[out] info INTEGER - = 0: successful exit - < 0: if INFO = -i, the i-th argument has an illegal value @ingroup magma_dgeqrf_comp ********************************************************************/ extern "C" magma_int_t magma_dorgqr2(magma_int_t m, magma_int_t n, magma_int_t k, double *A, magma_int_t lda, double *tau, magma_int_t *info) { #define A(i,j) ( A + (i) + (j)*lda ) #define dA(i,j) (dA + (i) + (j)*ldda) double c_zero = MAGMA_D_ZERO; double c_one = MAGMA_D_ONE; magma_int_t nb = magma_get_dgeqrf_nb(min(m, n)); magma_int_t m_kk, n_kk, k_kk, mi; magma_int_t lwork, ldda; magma_int_t i, ib, ki, kk; //, iinfo; magma_int_t lddwork; double *dA, *dV, *dW, *dT, *T; double *work; *info = 0; if (m < 0) { *info = -1; } else if ((n < 0) || (n > m)) { *info = -2; } else if ((k < 0) || (k > n)) { *info = -3; } else if (lda < max(1,m)) { *info = -5; } if (*info != 0) { magma_xerbla( __func__, -(*info) ); return *info; } if (n <= 0) { return *info; } // first kk columns are handled by blocked method. // ki is start of 2nd-to-last block if ((nb > 1) && (nb < k)) { ki = (k - nb - 1) / nb * nb; kk = min(k, ki + nb); } else { ki = 0; kk = 0; } // Allocate GPU work space // ldda*n for matrix dA // ldda*nb for dV // lddwork*nb for dW larfb workspace ldda = ((m + 31) / 32) * 32; lddwork = ((n + 31) / 32) * 32; if (MAGMA_SUCCESS != magma_dmalloc( &dA, ldda*n + ldda*nb + lddwork*nb + nb*nb)) { *info = MAGMA_ERR_DEVICE_ALLOC; return *info; } dV = dA + ldda*n; dW = dA + ldda*n + ldda*nb; dT = dA + ldda*n + ldda*nb + lddwork*nb; // Allocate CPU work space lwork = (n+m+nb) * nb; magma_dmalloc_cpu( &work, lwork ); T = work; if (work == NULL) { magma_free( dA ); magma_free_cpu( work ); *info = MAGMA_ERR_HOST_ALLOC; return *info; } double *V = work + (n+nb)*nb; magma_queue_t stream; magma_queue_create( &stream ); // Use unblocked code for the last or only block. if (kk < n) { m_kk = m - kk; n_kk = n - kk; k_kk = k - kk; /* lapackf77_dorgqr( &m_kk, &n_kk, &k_kk, A(kk, kk), &lda, &tau[kk], work, &lwork, &iinfo ); */ lapackf77_dlacpy( MagmaUpperLowerStr, &m_kk, &k_kk, A(kk,kk), &lda, V, &m_kk); lapackf77_dlaset( MagmaUpperLowerStr, &m_kk, &n_kk, &c_zero, &c_one, A(kk, kk), &lda ); lapackf77_dlarft( MagmaForwardStr, MagmaColumnwiseStr, &m_kk, &k_kk, V, &m_kk, &tau[kk], work, &k_kk); lapackf77_dlarfb( MagmaLeftStr, MagmaNoTransStr, MagmaForwardStr, MagmaColumnwiseStr, &m_kk, &n_kk, &k_kk, V, &m_kk, work, &k_kk, A(kk, kk), &lda, work+k_kk*k_kk, &n_kk ); if (kk > 0) { magma_dsetmatrix( m_kk, n_kk, A(kk, kk), lda, dA(kk, kk), ldda ); // Set A(1:kk,kk+1:n) to zero. magmablas_dlaset( MagmaFull, kk, n - kk, c_zero, c_zero, dA(0, kk), ldda ); } } if (kk > 0) { // Use blocked code // stream: set Aii (V) --> laset --> laset --> larfb --> [next] // CPU has no computation magmablasSetKernelStream( stream ); for (i = ki; i >= 0; i -= nb) { ib = min(nb, k - i); // Send current panel to the GPU mi = m - i; lapackf77_dlaset( "Upper", &ib, &ib, &c_zero, &c_one, A(i, i), &lda ); magma_dsetmatrix_async( mi, ib, A(i, i), lda, dV, ldda, stream ); lapackf77_dlarft( MagmaForwardStr, MagmaColumnwiseStr, &mi, &ib, A(i,i), &lda, &tau[i], T, &nb); magma_dsetmatrix_async( ib, ib, T, nb, dT, nb, stream ); // set panel to identity magmablas_dlaset( MagmaFull, i, ib, c_zero, c_zero, dA(0, i), ldda ); magmablas_dlaset( MagmaFull, mi, ib, c_zero, c_one, dA(i, i), ldda ); magma_queue_sync( stream ); if (i < n) { // Apply H to A(i:m,i:n) from the left magma_dlarfb_gpu( MagmaLeft, MagmaNoTrans, MagmaForward, MagmaColumnwise, mi, n-i, ib, dV, ldda, dT, nb, dA(i, i), ldda, dW, lddwork ); } } // copy result back to CPU magma_dgetmatrix( m, n, dA(0, 0), ldda, A(0, 0), lda); } magmablasSetKernelStream( NULL ); magma_queue_destroy( stream ); magma_free( dA ); magma_free_cpu( work ); return *info; } /* magma_dorgqr */
extern "C" magma_int_t magma_dgeqrf(magma_int_t m, magma_int_t n, double *A, magma_int_t lda, double *tau, double *work, magma_int_t lwork, magma_int_t *info ) { /* -- MAGMA (version 1.4.0) -- Univ. of Tennessee, Knoxville Univ. of California, Berkeley Univ. of Colorado, Denver August 2013 Purpose ======= DGEQRF computes a QR factorization of a DOUBLE_PRECISION M-by-N matrix A: A = Q * R. This version does not require work space on the GPU passed as input. GPU memory is allocated in the routine. If the current stream is NULL, this version replaces it with user defined stream to overlap computation with communication. Arguments ========= M (input) INTEGER The number of rows of the matrix A. M >= 0. N (input) INTEGER The number of columns of the matrix A. N >= 0. A (input/output) DOUBLE_PRECISION array, dimension (LDA,N) On entry, the M-by-N matrix A. On exit, the elements on and above the diagonal of the array contain the min(M,N)-by-N upper trapezoidal matrix R (R is upper triangular if m >= n); the elements below the diagonal, with the array TAU, represent the orthogonal matrix Q as a product of min(m,n) elementary reflectors (see Further Details). Higher performance is achieved if A is in pinned memory, e.g. allocated using magma_malloc_pinned. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,M). TAU (output) DOUBLE_PRECISION array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details). WORK (workspace/output) DOUBLE_PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. Higher performance is achieved if WORK is in pinned memory, e.g. allocated using magma_malloc_pinned. LWORK (input) INTEGER The dimension of the array WORK. LWORK >= max( N*NB, 2*NB*NB ), where NB can be obtained through magma_get_dgeqrf_nb(M). If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value or another error occured, such as memory allocation failed. Further Details =============== The matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(k), where k = min(m,n). Each H(i) has the form H(i) = I - tau * v * v' where tau is a real scalar, and v is a real vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), and tau in TAU(i). ===================================================================== */ #define A(i,j) ( A + (i) + (j)*lda ) #define dA(i,j) (dA + (i) + (j)*ldda) double *dA, *dwork, *dT; double c_one = MAGMA_D_ONE; magma_int_t i, k, lddwork, old_i, old_ib; magma_int_t ib, ldda; /* Function Body */ *info = 0; magma_int_t nb = magma_get_dgeqrf_nb(min(m, n)); // need 2*nb*nb to store T and upper triangle of V simultaneously magma_int_t lwkopt = max(n*nb, 2*nb*nb); work[0] = MAGMA_D_MAKE( (double)lwkopt, 0 ); int lquery = (lwork == -1); if (m < 0) { *info = -1; } else if (n < 0) { *info = -2; } else if (lda < max(1,m)) { *info = -4; } else if (lwork < max(1, lwkopt) && ! lquery) { *info = -7; } if (*info != 0) { magma_xerbla( __func__, -(*info) ); return *info; } else if (lquery) return *info; k = min(m,n); if (k == 0) { work[0] = c_one; return *info; } // largest N for larfb is n-nb (trailing matrix lacks 1st panel) lddwork = ((n+31)/32)*32 - nb; ldda = ((m+31)/32)*32; magma_int_t num_gpus = magma_num_gpus(); if( num_gpus > 1 ) { /* call multiple-GPU interface */ return magma_dgeqrf4(num_gpus, m, n, A, lda, tau, work, lwork, info); } // allocate space for dA, dwork, and dT if (MAGMA_SUCCESS != magma_dmalloc( &dA, n*ldda + nb*lddwork + nb*nb )) { /* Switch to the "out-of-core" (out of GPU-memory) version */ return magma_dgeqrf_ooc(m, n, A, lda, tau, work, lwork, info); } /* Define user stream if current stream is NULL */ magma_queue_t stream[3], current_stream; magmablasGetKernelStream(¤t_stream); magma_queue_create( &stream[0] ); magma_queue_create( &stream[2] ); if (current_stream == NULL) { magma_queue_create( &stream[1] ); magmablasSetKernelStream(stream[1]); } else stream[1] = current_stream; dwork = dA + n*ldda; dT = dA + n*ldda + nb*lddwork; if ( (nb > 1) && (nb < k) ) { /* Use blocked code initially. Asynchronously send the matrix to the GPU except the first panel. */ magma_dsetmatrix_async( m, n-nb, A(0,nb), lda, dA(0,nb), ldda, stream[2] ); old_i = 0; old_ib = nb; for (i = 0; i < k-nb; i += nb) { ib = min(k-i, nb); if (i>0) { /* download i-th panel */ magma_queue_sync( stream[1] ); magma_dgetmatrix_async( m-i, ib, dA(i,i), ldda, A(i,i), lda, stream[0] ); /* Apply H' to A(i:m,i+2*ib:n) from the left */ magma_dlarfb_gpu( MagmaLeft, MagmaTrans, MagmaForward, MagmaColumnwise, m-old_i, n-old_i-2*old_ib, old_ib, dA(old_i, old_i), ldda, dT, nb, dA(old_i, old_i+2*old_ib), ldda, dwork, lddwork); magma_dgetmatrix_async( i, ib, dA(0,i), ldda, A(0,i), lda, stream[2] ); magma_queue_sync( stream[0] ); } magma_int_t rows = m-i; lapackf77_dgeqrf(&rows, &ib, A(i,i), &lda, tau+i, work, &lwork, info); /* Form the triangular factor of the block reflector H = H(i) H(i+1) . . . H(i+ib-1) */ lapackf77_dlarft( MagmaForwardStr, MagmaColumnwiseStr, &rows, &ib, A(i,i), &lda, tau+i, work, &ib); dpanel_to_q(MagmaUpper, ib, A(i,i), lda, work+ib*ib); /* download the i-th V matrix */ magma_dsetmatrix_async( rows, ib, A(i,i), lda, dA(i,i), ldda, stream[0] ); /* download the T matrix */ magma_dsetmatrix_async( ib, ib, work, ib, dT, nb, stream[0] ); magma_queue_sync( stream[0] ); if (i + ib < n) { if (i+ib < k-nb) { /* Apply H' to A(i:m,i+ib:i+2*ib) from the left (look-ahead) */ magma_dlarfb_gpu( MagmaLeft, MagmaTrans, MagmaForward, MagmaColumnwise, rows, ib, ib, dA(i, i ), ldda, dT, nb, dA(i, i+ib), ldda, dwork, lddwork); dq_to_panel(MagmaUpper, ib, A(i,i), lda, work+ib*ib); } else { /* After last panel, update whole trailing matrix. */ /* Apply H' to A(i:m,i+ib:n) from the left */ magma_dlarfb_gpu( MagmaLeft, MagmaTrans, MagmaForward, MagmaColumnwise, rows, n-i-ib, ib, dA(i, i ), ldda, dT, nb, dA(i, i+ib), ldda, dwork, lddwork); dq_to_panel(MagmaUpper, ib, A(i,i), lda, work+ib*ib); } old_i = i; old_ib = ib; } } } else { i = 0; } /* Use unblocked code to factor the last or only block. */ if (i < k) { ib = n-i; if (i != 0) { magma_dgetmatrix( m, ib, dA(0,i), ldda, A(0,i), lda ); } magma_int_t rows = m-i; lapackf77_dgeqrf(&rows, &ib, A(i,i), &lda, tau+i, work, &lwork, info); } magma_queue_destroy( stream[0] ); magma_queue_destroy( stream[2] ); if (current_stream == NULL) { magma_queue_destroy( stream[1] ); magmablasSetKernelStream(NULL); } magma_free( dA ); return *info; } /* magma_dgeqrf */
/** Purpose ------- DORMQR overwrites the general real M-by-N matrix C with @verbatim SIDE = MagmaLeft SIDE = MagmaRight TRANS = MagmaNoTrans: Q * C C * Q TRANS = MagmaTrans: Q**H * C C * Q**H @endverbatim where Q is a real unitary matrix defined as the product of k elementary reflectors Q = H(1) H(2) . . . H(k) as returned by DGEQRF. Q is of order M if SIDE = MagmaLeft and of order N if SIDE = MagmaRight. Arguments --------- @param[in] ngpu INTEGER Number of GPUs to use. ngpu > 0. @param[in] side magma_side_t - = MagmaLeft: apply Q or Q**H from the Left; - = MagmaRight: apply Q or Q**H from the Right. @param[in] trans magma_trans_t - = MagmaNoTrans: No transpose, apply Q; - = MagmaTrans: Conjugate transpose, apply Q**H. @param[in] m INTEGER The number of rows of the matrix C. M >= 0. @param[in] n INTEGER The number of columns of the matrix C. N >= 0. @param[in] k INTEGER The number of elementary reflectors whose product defines the matrix Q. If SIDE = MagmaLeft, M >= K >= 0; if SIDE = MagmaRight, N >= K >= 0. @param[in] A DOUBLE_PRECISION array, dimension (LDA,K) The i-th column must contain the vector which defines the elementary reflector H(i), for i = 1,2,...,k, as returned by DGEQRF in the first k columns of its array argument A. @param[in] lda INTEGER The leading dimension of the array A. If SIDE = MagmaLeft, LDA >= max(1,M); if SIDE = MagmaRight, LDA >= max(1,N). @param[in] tau DOUBLE_PRECISION array, dimension (K) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by DGEQRF. @param[in,out] C DOUBLE_PRECISION array, dimension (LDC,N) On entry, the M-by-N matrix C. On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q. @param[in] ldc INTEGER The leading dimension of the array C. LDC >= max(1,M). @param[out] work (workspace) DOUBLE_PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK[0] returns the optimal LWORK. @param[in] lwork INTEGER The dimension of the array WORK. If SIDE = MagmaLeft, LWORK >= max(1,N); if SIDE = MagmaRight, LWORK >= max(1,M). For optimum performance LWORK >= N*NB if SIDE = MagmaLeft, and LWORK >= M*NB if SIDE = MagmaRight, where NB is the optimal blocksize. \n If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. @param[out] info INTEGER - = 0: successful exit - < 0: if INFO = -i, the i-th argument had an illegal value @ingroup magma_dgeqrf_comp ********************************************************************/ extern "C" magma_int_t magma_dormqr_m( magma_int_t ngpu, magma_side_t side, magma_trans_t trans, magma_int_t m, magma_int_t n, magma_int_t k, double *A, magma_int_t lda, double *tau, double *C, magma_int_t ldc, double *work, magma_int_t lwork, magma_int_t *info) { #define A(i, j) (A + (j)*lda + (i)) #define C(i, j) (C + (j)*ldc + (i)) #define dC(gpui, i, j) (dw[gpui] + (j)*lddc + (i)) #define dA_c(gpui, ind, i, j) (dw[gpui] + maxnlocal*lddc + (ind)*lddar*lddac + (i) + (j)*lddac) #define dA_r(gpui, ind, i, j) (dw[gpui] + maxnlocal*lddc + (ind)*lddar*lddac + (i) + (j)*lddar) #define dT(gpui, ind) (dw[gpui] + maxnlocal*lddc + 2*lddac*lddar + (ind)*((nb+1)*nb)) #define dwork(gpui, ind) (dw[gpui] + maxnlocal*lddc + 2*lddac*lddar + 2*((nb+1)*nb) + (ind)*(lddwork*nb)) double c_zero = MAGMA_D_ZERO; double c_one = MAGMA_D_ONE; const char* side_ = lapack_side_const( side ); const char* trans_ = lapack_trans_const( trans ); // TODO fix memory leak (alloc after argument checks) magma_int_t nb = 128; double *T; magma_dmalloc_pinned(&T, nb*nb); //printf("calling dormqr_m with nb=%d\n", (int) nb); double* dw[MagmaMaxGPUs]; magma_queue_t stream [MagmaMaxGPUs][2]; magma_event_t event [MagmaMaxGPUs][2]; magma_int_t ind_c; magma_device_t igpu; magma_device_t orig_dev; magma_getdevice( &orig_dev ); magma_queue_t orig_stream; magmablasGetKernelStream( &orig_stream ); *info = 0; magma_int_t left = (side == MagmaLeft); magma_int_t notran = (trans == MagmaNoTrans); magma_int_t lquery = (lwork == -1); /* NQ is the order of Q and NW is the minimum dimension of WORK */ magma_int_t nq, nw; if (left) { nq = m; nw = n; } else { nq = n; nw = m; } if (! left && side != MagmaRight) { *info = -1; } else if (! notran && trans != MagmaTrans) { *info = -2; } else if (m < 0) { *info = -3; } else if (n < 0) { *info = -4; } else if (k < 0 || k > nq) { *info = -5; } else if (lda < max(1,nq)) { *info = -7; } else if (ldc < max(1,m)) { *info = -10; } else if (lwork < max(1,nw) && ! lquery) { *info = -12; } magma_int_t lwkopt = max(1,nw) * nb; if (*info == 0) { work[0] = MAGMA_D_MAKE( lwkopt, 0 ); } if (*info != 0) { magma_xerbla( __func__, -(*info) ); return *info; } else if (lquery) { return *info; } /* Quick return if possible */ if (m == 0 || n == 0 || k == 0) { work[0] = c_one; return *info; } if (nb >= k) { /* Use CPU code */ lapackf77_dormqr(side_, trans_, &m, &n, &k, A, &lda, tau, C, &ldc, work, &lwork, info); return *info; } magma_int_t lddc = (m+63)/64*64; magma_int_t lddac = nq; magma_int_t lddar = nb; magma_int_t lddwork = nw; magma_int_t nlocal[ MagmaMaxGPUs ] = { 0 }; magma_int_t nb_l=256; magma_int_t nbl = (n-1)/nb_l+1; // number of blocks magma_int_t maxnlocal = (nbl+ngpu-1)/ngpu*nb_l; ngpu = min(ngpu, (n+nb_l-1)/nb_l); // Don't use GPU that will not have data. magma_int_t ldw = maxnlocal*lddc // dC + 2*lddac*lddar // 2*dA + 2*(nb + 1 + lddwork)*nb; // 2*(dT and dwork) for (igpu = 0; igpu < ngpu; ++igpu) { magma_setdevice(igpu); if (MAGMA_SUCCESS != magma_dmalloc( &dw[igpu], ldw )) { *info = MAGMA_ERR_DEVICE_ALLOC; magma_xerbla( __func__, -(*info) ); return *info; } magma_queue_create( &stream[igpu][0] ); magma_queue_create( &stream[igpu][1] ); magma_event_create( &event[igpu][0] ); magma_event_create( &event[igpu][1] ); } /* Use hybrid CPU-MGPU code */ if (left) { //copy C to mgpus for (magma_int_t i = 0; i < nbl; ++i) { magma_int_t igpu = i%ngpu; magma_setdevice(igpu); magma_int_t kb = min(nb_l, n-i*nb_l); magma_dsetmatrix_async( m, kb, C(0, i*nb_l), ldc, dC(igpu, 0, i/ngpu*nb_l), lddc, stream[igpu][0] ); nlocal[igpu] += kb; } magma_int_t i1, i2, i3; if ( !notran ) { i1 = 0; i2 = k; i3 = nb; } else { i1 = (k - 1) / nb * nb; i2 = 0; i3 = -nb; } ind_c = 0; for (magma_int_t i = i1; (i3 < 0 ? i >= i2 : i < i2); i += i3) { // start the copy of A panel magma_int_t kb = min(nb, k - i); for (igpu = 0; igpu < ngpu; ++igpu) { magma_setdevice(igpu); magma_event_sync(event[igpu][ind_c]); // check if the new data can be copied magma_dsetmatrix_async(nq-i, kb, A(i, i), lda, dA_c(igpu, ind_c, i, 0), lddac, stream[igpu][0] ); // set upper triangular part of dA to identity magmablas_dlaset_band_q( MagmaUpper, kb, kb, kb, c_zero, c_one, dA_c(igpu, ind_c, i, 0), lddac, stream[igpu][0] ); } /* Form the triangular factor of the block reflector H = H(i) H(i+1) . . . H(i+ib-1) */ magma_int_t nqi = nq - i; lapackf77_dlarft("F", "C", &nqi, &kb, A(i, i), &lda, &tau[i], T, &kb); /* H or H' is applied to C(1:m,i:n) */ /* Apply H or H'; First copy T to the GPU */ for (igpu = 0; igpu < ngpu; ++igpu) { magma_setdevice(igpu); magma_dsetmatrix_async(kb, kb, T, kb, dT(igpu, ind_c), kb, stream[igpu][0] ); } for (igpu = 0; igpu < ngpu; ++igpu) { magma_setdevice(igpu); magma_queue_sync( stream[igpu][0] ); // check if the data was copied magmablasSetKernelStream(stream[igpu][1]); magma_dlarfb_gpu( side, trans, MagmaForward, MagmaColumnwise, m-i, nlocal[igpu], kb, dA_c(igpu, ind_c, i, 0), lddac, dT(igpu, ind_c), kb, dC(igpu, i, 0), lddc, dwork(igpu, ind_c), lddwork); magma_event_record(event[igpu][ind_c], stream[igpu][1] ); } ind_c = (ind_c+1)%2; } for (igpu = 0; igpu < ngpu; ++igpu) { magma_setdevice(igpu); magma_queue_sync( stream[igpu][1] ); } //copy C from mgpus for (magma_int_t i = 0; i < nbl; ++i) { magma_int_t igpu = i%ngpu; magma_setdevice(igpu); magma_int_t kb = min(nb_l, n-i*nb_l); magma_dgetmatrix( m, kb, dC(igpu, 0, i/ngpu*nb_l), lddc, C(0, i*nb_l), ldc ); // magma_dgetmatrix_async( m, kb, // dC(igpu, 0, i/ngpu*nb_l), lddc, // C(0, i*nb_l), ldc, stream[igpu][0] ); } } else { // TODO fix memory leak T, dw, event, stream fprintf(stderr, "The case (side == right) is not implemented\n"); *info = MAGMA_ERR_NOT_IMPLEMENTED; magma_xerbla( __func__, -(*info) ); return *info; /* if ( notran ) { i1 = 0; i2 = k; i3 = nb; } else { i1 = (k - 1) / nb * nb; i2 = 0; i3 = -nb; } mi = m; ic = 0; for (i = i1; (i3 < 0 ? i >= i2 : i < i2); i += i3) { ib = min(nb, k - i); // Form the triangular factor of the block reflector // H = H(i) H(i+1) . . . H(i+ib-1) i__4 = nq - i; lapackf77_dlarft("F", "C", &i__4, &ib, A(i, i), &lda, &tau[i], T, &ib); // 1) copy the panel from A to the GPU, and // 2) set upper triangular part of dA to identity magma_dsetmatrix( i__4, ib, A(i, i), lda, dA(i, 0), ldda ); magmablas_dlaset_band( MagmaUpper, ib, ib, ib, c_zero, c_one, dA(i, 0), ldda ); // H or H' is applied to C(1:m,i:n) ni = n - i; jc = i; // Apply H or H'; First copy T to the GPU magma_dsetmatrix( ib, ib, T, ib, dT, ib ); magma_dlarfb_gpu( side, trans, MagmaForward, MagmaColumnwise, mi, ni, ib, dA(i, 0), ldda, dT, ib, dC(ic, jc), lddc, dwork, lddwork); } */ } work[0] = MAGMA_D_MAKE( lwkopt, 0 ); for (igpu = 0; igpu < ngpu; ++igpu) { magma_setdevice(igpu); magma_event_destroy( event[igpu][0] ); magma_event_destroy( event[igpu][1] ); magma_queue_destroy( stream[igpu][0] ); magma_queue_destroy( stream[igpu][1] ); magma_free( dw[igpu] ); } magma_setdevice( orig_dev ); magmablasSetKernelStream( orig_stream ); return *info; } /* magma_dormqr */
static void magma_dtile_bulge_computeT_parallel( magma_int_t my_core_id, magma_int_t cores_num, double *V, magma_int_t ldv, double *TAU, double *T, magma_int_t ldt, magma_int_t n, magma_int_t nb, magma_int_t Vblksiz) { //%=========================== //% local variables //%=========================== magma_int_t Vm, Vn, mt, nt; magma_int_t myrow, mycol, blkj, blki, firstrow; magma_int_t blkid, vpos, taupos, tpos; magma_int_t blkpercore, myid; if (n <= 0) return; magma_int_t blkcnt = magma_bulge_get_blkcnt(n, nb, Vblksiz); blkpercore = blkcnt/cores_num; blkpercore = (blkpercore == 0 ? 1 : blkpercore); //magma_int_t nbGblk = magma_ceildiv(n-1, Vblksiz); #ifdef ENABLE_DEBUG if (my_core_id == 0) printf(" COMPUTE T parallel threads %d with n %d nb %d Vblksiz %d \n", cores_num, n, nb, Vblksiz); #endif /*======================================== * compute the T's in parallel. * The Ts are independent so each core pick * a T and compute it. The loop is based on * the version 113 of the applyQ * which go over the losange block_column * by block column. but it is not important * here the order because Ts are independent. * ======================================== */ nt = magma_ceildiv((n-1), Vblksiz); for (blkj=nt-1; blkj >= 0; blkj--) { /* the index of the first row on the top of block (blkj) */ firstrow = blkj * Vblksiz + 1; /*find the number of tile for this block */ if ( blkj == nt-1 ) mt = magma_ceildiv( n - firstrow, nb); else mt = magma_ceildiv( n - (firstrow+1), nb); /*loop over the tiles find the size of the Vs and apply it */ for (blki=mt; blki > 0; blki--) { /*calculate the size of each losange of Vs= (Vm,Vn)*/ myrow = firstrow + (mt-blki)*nb; mycol = blkj*Vblksiz; Vm = min( nb+Vblksiz-1, n-myrow); if ( ( blkj == nt-1 ) && ( blki == mt ) ) { Vn = min (Vblksiz, Vm); } else { Vn = min (Vblksiz, Vm-1); } /*calculate the pointer to the Vs and the Ts. * Note that Vs and Ts have special storage done * by the bulgechasing function*/ magma_bulge_findVTAUTpos(n, nb, Vblksiz, mycol, myrow, ldv, ldt, &vpos, &taupos, &tpos, &blkid); myid = blkid/blkpercore; if ( my_core_id == (myid%cores_num) ) { if ( ( Vm > 0 ) && ( Vn > 0 ) ) { lapackf77_dlarft( "F", "C", &Vm, &Vn, V(vpos), &ldv, TAU(taupos), T(tpos), &ldt); } } } } }
/* //////////////////////////////////////////////////////////////////////////// -- Testing dgeqrf */ int main( int argc, char** argv) { TESTING_INIT(); real_Double_t gflops, gpu_perf, gpu_time, cpu_perf, cpu_time; double error, work[1]; double c_neg_one = MAGMA_D_NEG_ONE; double *h_A, *h_T, *h_R, *tau, *h_work, tmp[1]; double *d_A, *d_T, *ddA, *dtau; double *d_A2, *d_T2, *ddA2, *dtau2; double *dwork, *dwork2; magma_int_t M, N, lda, ldda, lwork, n2, info, min_mn; magma_int_t ione = 1; magma_int_t ISEED[4] = {0,0,0,1}; magma_int_t status = 0; #define BLOCK_SIZE 64 magma_opts opts; parse_opts( argc, argv, &opts ); double tol = 10. * opts.tolerance * lapackf77_dlamch("E"); magma_queue_t stream[2]; magma_queue_create( &stream[0] ); magma_queue_create( &stream[1] ); printf("version %d\n", (int) opts.version ); printf(" M N CPU GFlop/s (ms) GPU GFlop/s (ms) ||R||_F/||A||_F ||R_T||\n"); printf("=============================================================================\n"); for( int itest = 0; itest < opts.ntest; ++itest ) { for( int iter = 0; iter < opts.niter; ++iter ) { M = opts.msize[itest]; N = opts.nsize[itest]; if (N > 128) { printf("%5d %5d skipping because dgeqr2x requires N <= 128\n", (int) M, (int) N); continue; } if (M < N) { printf("%5d %5d skipping because dgeqr2x requires M >= N\n", (int) M, (int) N); continue; } min_mn = min(M, N); lda = M; n2 = lda*N; ldda = ((M+31)/32)*32; gflops = (FLOPS_DGEQRF( M, N ) + FLOPS_DGEQRT( M, N )) / 1e9; /* Allocate memory for the matrix */ TESTING_MALLOC_CPU( tau, double, min_mn ); TESTING_MALLOC_CPU( h_A, double, n2 ); TESTING_MALLOC_CPU( h_T, double, N*N ); TESTING_MALLOC_PIN( h_R, double, n2 ); TESTING_MALLOC_DEV( d_A, double, ldda*N ); TESTING_MALLOC_DEV( d_T, double, N*N ); TESTING_MALLOC_DEV( ddA, double, N*N ); TESTING_MALLOC_DEV( dtau, double, min_mn ); TESTING_MALLOC_DEV( d_A2, double, ldda*N ); TESTING_MALLOC_DEV( d_T2, double, N*N ); TESTING_MALLOC_DEV( ddA2, double, N*N ); TESTING_MALLOC_DEV( dtau2, double, min_mn ); TESTING_MALLOC_DEV( dwork, double, max(5*min_mn, (BLOCK_SIZE*2+2)*min_mn) ); TESTING_MALLOC_DEV( dwork2, double, max(5*min_mn, (BLOCK_SIZE*2+2)*min_mn) ); // todo replace with magma_dlaset cudaMemset(ddA, 0, N*N*sizeof(double)); cudaMemset(d_T, 0, N*N*sizeof(double)); cudaMemset(ddA2, 0, N*N*sizeof(double)); cudaMemset(d_T2, 0, N*N*sizeof(double)); lwork = -1; lapackf77_dgeqrf(&M, &N, NULL, &M, NULL, tmp, &lwork, &info); lwork = (magma_int_t)MAGMA_D_REAL( tmp[0] ); lwork = max(lwork, N*N); TESTING_MALLOC_CPU( h_work, double, lwork ); /* Initialize the matrix */ lapackf77_dlarnv( &ione, ISEED, &n2, h_A ); lapackf77_dlacpy( MagmaUpperLowerStr, &M, &N, h_A, &lda, h_R, &lda ); magma_dsetmatrix( M, N, h_R, lda, d_A, ldda ); magma_dsetmatrix( M, N, h_R, lda, d_A2, ldda ); /* ==================================================================== Performs operation using MAGMA =================================================================== */ gpu_time = magma_sync_wtime(0); if (opts.version == 1) magma_dgeqr2x_gpu(M, N, d_A, ldda, dtau, d_T, ddA, dwork, &info); else if (opts.version == 2) magma_dgeqr2x2_gpu(M, N, d_A, ldda, dtau, d_T, ddA, dwork, &info); else if (opts.version == 3) magma_dgeqr2x3_gpu(M, N, d_A, ldda, dtau, d_T, ddA, dwork, &info); else { printf( "call magma_dgeqr2x4_gpu\n" ); /* Going through NULL stream is faster Going through any stream is slower Doing two streams in parallel is slower than doing them sequentially Queuing happens on the NULL stream - user defined buffers are smaller? */ magma_dgeqr2x4_gpu(M, N, d_A, ldda, dtau, d_T, ddA, dwork, &info, NULL); //magma_dgeqr2x4_gpu(M, N, d_A, ldda, dtau, d_T, ddA, dwork, &info, stream[1]); //magma_dgeqr2x4_gpu(M, N, d_A2, ldda, dtau2, d_T2, ddA2, dwork2, &info, stream[0]); //magma_dgeqr2x4_gpu(M, N, d_A2, ldda, dtau2, d_T2, ddA2, dwork2, &info, NULL); //gflops *= 2; } gpu_time = magma_sync_wtime(0) - gpu_time; gpu_perf = gflops / gpu_time; if (info != 0) { printf("magma_dgeqr2x_gpu version %d returned error %d: %s.\n", (int) opts.version, (int) info, magma_strerror( info )); } else { if ( opts.check ) { /* ===================================================================== Performs operation using LAPACK =================================================================== */ cpu_time = magma_wtime(); lapackf77_dgeqrf(&M, &N, h_A, &lda, tau, h_work, &lwork, &info); lapackf77_dlarft( MagmaForwardStr, MagmaColumnwiseStr, &M, &N, h_A, &lda, tau, h_work, &N); //magma_dgeqr2(&M, &N, h_A, &lda, tau, h_work, &info); cpu_time = magma_wtime() - cpu_time; cpu_perf = gflops / cpu_time; if (info != 0) printf("lapackf77_dgeqrf returned error %d: %s.\n", (int) info, magma_strerror( info )); /* ===================================================================== Check the result compared to LAPACK =================================================================== */ magma_dgetmatrix( M, N, d_A, ldda, h_R, M ); magma_dgetmatrix( N, N, ddA, N, h_T, N ); // Restore the upper triangular part of A before the check for(int col=0; col < N; col++){ for(int row=0; row <= col; row++) h_R[row + col*M] = h_T[row + col*N]; } error = lapackf77_dlange("M", &M, &N, h_A, &lda, work); blasf77_daxpy(&n2, &c_neg_one, h_A, &ione, h_R, &ione); error = lapackf77_dlange("M", &M, &N, h_R, &lda, work) / (N * error); // Check if T is the same magma_dgetmatrix( N, N, d_T, N, h_T, N ); double terr = 0.; for(int col=0; col < N; col++) for(int row=0; row <= col; row++) terr += ( MAGMA_D_ABS(h_work[row + col*N] - h_T[row + col*N])* MAGMA_D_ABS(h_work[row + col*N] - h_T[row + col*N]) ); terr = magma_dsqrt(terr); printf("%5d %5d %7.2f (%7.2f) %7.2f (%7.2f) %8.2e %8.2e %s\n", (int) M, (int) N, cpu_perf, 1000.*cpu_time, gpu_perf, 1000.*gpu_time, error, terr, (error < tol ? "ok" : "failed") ); status += ! (error < tol); } else { printf("%5d %5d --- ( --- ) %7.2f (%7.2f) --- \n", (int) M, (int) N, gpu_perf, 1000.*gpu_time); } } TESTING_FREE_CPU( tau ); TESTING_FREE_CPU( h_A ); TESTING_FREE_CPU( h_T ); TESTING_FREE_CPU( h_work ); TESTING_FREE_PIN( h_R ); TESTING_FREE_DEV( d_A ); TESTING_FREE_DEV( d_T ); TESTING_FREE_DEV( ddA ); TESTING_FREE_DEV( dtau ); TESTING_FREE_DEV( dwork ); TESTING_FREE_DEV( d_A2 ); TESTING_FREE_DEV( d_T2 ); TESTING_FREE_DEV( ddA2 ); TESTING_FREE_DEV( dtau2 ); TESTING_FREE_DEV( dwork2 ); fflush( stdout ); } if ( opts.niter > 1 ) { printf( "\n" ); } } magma_queue_destroy( stream[0] ); magma_queue_destroy( stream[1] ); TESTING_FINALIZE(); return status; }
/***************************************************************************//** Purpose ------- DORMQR overwrites the general real M-by-N matrix C with @verbatim SIDE = MagmaLeft SIDE = MagmaRight TRANS = MagmaNoTrans: Q * C C * Q TRANS = MagmaTrans: Q**H * C C * Q**H @endverbatim where Q is a real orthogonal matrix defined as the product of k elementary reflectors Q = H(1) H(2) . . . H(k) as returned by DGEQRF. Q is of order M if SIDE = MagmaLeft and of order N if SIDE = MagmaRight. Arguments --------- @param[in] side magma_side_t - = MagmaLeft: apply Q or Q**H from the Left; - = MagmaRight: apply Q or Q**H from the Right. @param[in] trans magma_trans_t - = MagmaNoTrans: No transpose, apply Q; - = MagmaTrans: Conjugate transpose, apply Q**H. @param[in] m INTEGER The number of rows of the matrix C. M >= 0. @param[in] n INTEGER The number of columns of the matrix C. N >= 0. @param[in] k INTEGER The number of elementary reflectors whose product defines the matrix Q. If SIDE = MagmaLeft, M >= K >= 0; if SIDE = MagmaRight, N >= K >= 0. @param[in,out] dA DOUBLE PRECISION array on the GPU, dimension (LDDA,K) The i-th column must contain the vector which defines the elementary reflector H(i), for i = 1,2,...,k, as returned by DGEQRF in the first k columns of its array argument dA. The diagonal and the upper part are destroyed, the reflectors are not modified. @param[in] ldda INTEGER The leading dimension of the array dA. If SIDE = MagmaLeft, LDDA >= max(1,M); if SIDE = MagmaRight, LDDA >= max(1,N). @param[in] tau DOUBLE PRECISION array, dimension (K) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by DGEQRF. @param[in,out] dC DOUBLE PRECISION array on the GPU, dimension (LDDC,N) On entry, the M-by-N matrix C. On exit, C is overwritten by (Q*C) or (Q**H * C) or (C * Q**H) or (C*Q). @param[in] lddc INTEGER The leading dimension of the array dC. LDDC >= max(1,M). @param[in] wA DOUBLE PRECISION array, dimension (LDWA,M) if SIDE = MagmaLeft (LDWA,N) if SIDE = MagmaRight The vectors which define the elementary reflectors, as returned by DSYTRD_GPU. (A copy of the upper or lower part of dA, on the host.) @param[in] ldwa INTEGER The leading dimension of the array wA. If SIDE = MagmaLeft, LDWA >= max(1,M); if SIDE = MagmaRight, LDWA >= max(1,N). @param[out] info INTEGER - = 0: successful exit - < 0: if INFO = -i, the i-th argument had an illegal value @ingroup magma_unmqr *******************************************************************************/ extern "C" magma_int_t magma_dormqr2_gpu( magma_side_t side, magma_trans_t trans, magma_int_t m, magma_int_t n, magma_int_t k, magmaDouble_ptr dA, magma_int_t ldda, double *tau, magmaDouble_ptr dC, magma_int_t lddc, const double *wA, magma_int_t ldwa, magma_int_t *info) { #define dA(i_,j_) (dA + (i_) + (j_)*ldda) #define dC(i_,j_) (dC + (i_) + (j_)*lddc) #define wA(i_,j_) (wA + (i_) + (j_)*ldwa) /* Constants */ const double c_zero = MAGMA_D_ZERO; const double c_one = MAGMA_D_ONE; const magma_int_t nbmax = 64; /* Local variables */ magmaDouble_ptr dwork = NULL, dT = NULL; double T[ nbmax*nbmax ]; magma_int_t i, i1, i2, step, ib, ic, jc, lddwork, nb, mi, ni, nq, nq_i, nw; magma_queue_t queue = NULL; // Parameter adjustments for Fortran indexing wA -= 1 + ldwa; dC -= 1 + lddc; --tau; *info = 0; bool left = (side == MagmaLeft); bool notran = (trans == MagmaNoTrans); /* NQ is the order of Q and NW is the minimum dimension of WORK */ if (left) { nq = m; nw = n; } else { nq = n; nw = m; } if (! left && side != MagmaRight) { *info = -1; } else if (! notran && trans != MagmaTrans) { *info = -2; } else if (m < 0) { *info = -3; } else if (n < 0) { *info = -4; } else if (k < 0 || k > nq) { *info = -5; } else if (ldda < max(1,nq)) { *info = -7; } else if (lddc < max(1,m)) { *info = -10; } else if (ldwa < max(1,nq)) { *info = -12; } if (*info != 0) { magma_xerbla( __func__, -(*info) ); return *info; } /* Quick return if possible */ if (m == 0 || n == 0 || k == 0) { return *info; } // size of the block nb = nbmax; lddwork = nw; /* Use hybrid CPU-GPU code */ if ( ( left && ! notran) || (! left && notran) ) { i1 = 1; i2 = k; step = nb; } else { i1 = ((k - 1)/nb)*nb + 1; i2 = 1; step = -nb; } // silence "uninitialized" warnings mi = 0; ni = 0; if (left) { ni = n; jc = 1; } else { mi = m; ic = 1; } // dwork is (n or m) x nb + nb x nb, for left or right respectively if (MAGMA_SUCCESS != magma_dmalloc( &dwork, lddwork*nb + nb*nb )) { *info = MAGMA_ERR_DEVICE_ALLOC; goto cleanup; } dT = dwork + lddwork*nb; magma_device_t cdev; magma_getdevice( &cdev ); magma_queue_create( cdev, &queue ); // set nb-1 super-diagonals to 0, and diagonal to 1. // This way we can copy V directly to the GPU, // with the upper triangle parts already set to identity. magmablas_dlaset_band( MagmaUpper, k, k, nb, c_zero, c_one, dA, ldda, queue ); // for i=i1 to i2 by step for (i = i1; (step < 0 ? i >= i2 : i <= i2); i += step) { ib = min( nb, k - i + 1 ); /* Form the triangular factor of the block reflector H = H(i) H(i+1) . . . H(i+ib-1) */ nq_i = nq - i + 1; lapackf77_dlarft( "Forward", "Columnwise", &nq_i, &ib, wA(i,i), &ldwa, &tau[i], T, &ib ); if (left) { /* H or H^H is applied to C(i:m,1:n) */ mi = m - i + 1; ic = i; } else { /* H or H^H is applied to C(1:m,i:n) */ ni = n - i + 1; jc = i; } /* Apply H or H^H; First copy T to the GPU */ magma_dsetmatrix( ib, ib, T, ib, dT, ib, queue ); magma_dlarfb_gpu( side, trans, MagmaForward, MagmaColumnwise, mi, ni, ib, dA(i-1,i-1), ldda, dT, ib, // dA using 0-based indices here dC(ic,jc), lddc, dwork, lddwork, queue ); } cleanup: magma_queue_destroy( queue ); magma_free( dwork ); return *info; } /* magma_dormqr */