Esempio n. 1
0
/*-------------------------------------------------------------------
 * Check the orthogonality of Q
 */
static magma_int_t check_orthogonality(magma_int_t M, magma_int_t N, float *Q, magma_int_t LDQ, float eps)
{
    float  done  =  1.0;
    float  mdone = -1.0;
    float c_zero    = MAGMA_S_ZERO;
    float c_one     = MAGMA_S_ONE;
    float  normQ, result;
    magma_int_t     info_ortho;
    magma_int_t     minMN = min(M, N);
    float *work = (float *)malloc(minMN*sizeof(float));

    /* Build the idendity matrix */
    float *Id = (float *) malloc(minMN*minMN*sizeof(float));
    lapackf77_slaset("A", &minMN, &minMN, &c_zero, &c_one, Id, &minMN);

    /* Perform Id - Q'Q */
    if (M >= N)
        blasf77_ssyrk("U", "C", &N, &M, &done, Q, &LDQ, &mdone, Id, &N);
    else
        blasf77_ssyrk("U", "N", &M, &N, &done, Q, &LDQ, &mdone, Id, &M);

    normQ = lapackf77_slansy("I", "U", &minMN, Id, &minMN, work);

    result = normQ / (minMN * eps);
    printf(" ======================================================\n");
    printf(" ||Id-Q'*Q||_oo / (minMN*eps)          : %15.3E \n",  result );
    printf(" ======================================================\n");

    if ( isnan(result) || isinf(result) || (result > 60.0) ) {
        printf("-- Orthogonality is suspicious ! \n");
        info_ortho=1;
    }
    else {
        printf("-- Orthogonality is CORRECT ! \n");
        info_ortho=0;
    }
    free(work); free(Id);
    return info_ortho;
}
Esempio n. 2
0
extern "C" magma_int_t
magma_sorgqr(magma_int_t m, magma_int_t n, magma_int_t k,
             float *A, magma_int_t lda,
             float *tau,
             float *dT, magma_int_t nb,
             magma_int_t *info)
{
/*  -- MAGMA (version 1.4.1) --
       Univ. of Tennessee, Knoxville
       Univ. of California, Berkeley
       Univ. of Colorado, Denver
       December 2013

    Purpose
    =======
    SORGQR generates an M-by-N REAL matrix Q with orthonormal columns,
    which is defined as the first N columns of a product of K elementary
    reflectors of order M

          Q  =  H(1) H(2) . . . H(k)

    as returned by SGEQRF.

    Arguments
    =========
    M       (input) INTEGER
            The number of rows of the matrix Q. M >= 0.

    N       (input) INTEGER
            The number of columns of the matrix Q. M >= N >= 0.

    K       (input) INTEGER
            The number of elementary reflectors whose product defines the
            matrix Q. N >= K >= 0.

    A       (input/output) REAL array A, dimension (LDDA,N).
            On entry, the i-th column must contain the vector
            which defines the elementary reflector H(i), for
            i = 1,2,...,k, as returned by SGEQRF_GPU in the
            first k columns of its array argument A.
            On exit, the M-by-N matrix Q.

    LDA     (input) INTEGER
            The first dimension of the array A. LDA >= max(1,M).

    TAU     (input) REAL array, dimension (K)
            TAU(i) must contain the scalar factor of the elementary
            reflector H(i), as returned by SGEQRF_GPU.

    DT      (input) REAL array on the GPU device.
            DT contains the T matrices used in blocking the elementary
            reflectors H(i), e.g., this can be the 6th argument of
            magma_sgeqrf_gpu.

    NB      (input) INTEGER
            This is the block size used in SGEQRF_GPU, and correspondingly
            the size of the T matrices, used in the factorization, and
            stored in DT.

    INFO    (output) INTEGER
            = 0:  successful exit
            < 0:  if INFO = -i, the i-th argument has an illegal value
    =====================================================================    */

#define  A(i,j) ( A + (i) + (j)*lda )
#define dA(i,j) (dA + (i) + (j)*ldda)
#define dT(j)   (dT + (j)*nb)

    float c_zero = MAGMA_S_ZERO;
    float c_one  = MAGMA_S_ONE;

    magma_int_t  m_kk, n_kk, k_kk, mi;
    magma_int_t lwork, ldda;
    magma_int_t i, ib, ki, kk;  //, iinfo;
    magma_int_t lddwork;
    float *dA, *dV, *dW;
    float *work;

    *info = 0;
    if (m < 0) {
        *info = -1;
    } else if ((n < 0) || (n > m)) {
        *info = -2;
    } else if ((k < 0) || (k > n)) {
        *info = -3;
    } else if (lda < max(1,m)) {
        *info = -5;
    }
    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }

    if (n <= 0) {
        return *info;
    }

    // first kk columns are handled by blocked method.
    // ki is start of 2nd-to-last block
    if ((nb > 1) && (nb < k)) {
        ki = (k - nb - 1) / nb * nb;
        kk = min(k, ki + nb);
    } else {
        ki = 0;
        kk = 0;
    }

    // Allocate GPU work space
    // ldda*n     for matrix dA
    // ldda*nb    for dV
    // lddwork*nb for dW larfb workspace
    ldda    = ((m + 31) / 32) * 32;
    lddwork = ((n + 31) / 32) * 32;
    if (MAGMA_SUCCESS != magma_smalloc( &dA, ldda*n + ldda*nb + lddwork*nb )) {
        *info = MAGMA_ERR_DEVICE_ALLOC;
        return *info;
    }
    dV = dA + ldda*n;
    dW = dA + ldda*n + ldda*nb;

    // Allocate CPU work space
    lwork = (n+m+nb) * nb;
    magma_smalloc_cpu( &work, lwork );
    if (work == NULL) {
        magma_free( dA );
        *info = MAGMA_ERR_HOST_ALLOC;
        return *info;
    }
    float *V = work + (n+nb)*nb;

    magma_queue_t stream;
    magma_queue_create( &stream );

    // Use unblocked code for the last or only block.
    if (kk < n) {
        m_kk = m - kk;
        n_kk = n - kk;
        k_kk = k - kk;
        /*
            // Replacing this with the following 4 routines works but sorgqr is slow for
            // k smaller than the sorgqr's blocking size (new version can be up to 60x faster) 
            lapackf77_sorgqr( &m_kk, &n_kk, &k_kk,
                              A(kk, kk), &lda,
                              &tau[kk], work, &lwork, &iinfo );
        */
        lapackf77_slacpy( MagmaUpperLowerStr, &m_kk, &k_kk, A(kk,kk), &lda, V, &m_kk);
        lapackf77_slaset( MagmaUpperLowerStr, &m_kk, &n_kk, &c_zero, &c_one, A(kk, kk), &lda );

        lapackf77_slarft( MagmaForwardStr, MagmaColumnwiseStr,
                          &m_kk, &k_kk,
                          V, &m_kk, &tau[kk], work, &k_kk);
        lapackf77_slarfb( MagmaLeftStr, MagmaNoTransStr, MagmaForwardStr, MagmaColumnwiseStr,
                          &m_kk, &n_kk, &k_kk,
                          V, &m_kk, work, &k_kk, A(kk, kk), &lda, work+k_kk*k_kk, &n_kk );
        
        if (kk > 0) {
            magma_ssetmatrix( m_kk, n_kk,
                              A(kk, kk),  lda,
                              dA(kk, kk), ldda );
        
            // Set A(1:kk,kk+1:n) to zero.
            magmablas_slaset( MagmaUpperLower, kk, n - kk, dA(0, kk), ldda );
        }
    }

    if (kk > 0) {
        // Use blocked code
        // stream: set Aii (V) --> laset --> laset --> larfb --> [next]
        // CPU has no computation
        magmablasSetKernelStream( stream );
        
        for (i = ki; i >= 0; i -= nb) {
            ib = min(nb, k - i);

            // Send current panel to the GPU
            mi = m - i;
            lapackf77_slaset( "Upper", &ib, &ib, &c_zero, &c_one, A(i, i), &lda );
            magma_ssetmatrix_async( mi, ib,
                                    A(i, i), lda,
                                    dV,      ldda, stream );

            // set panel to identity
            magmablas_slaset( MagmaUpperLower, i, ib, dA(0, i), ldda );
            magmablas_slaset_identity( mi, ib, dA(i, i), ldda );
            
            if (i < n) {
                // Apply H to A(i:m,i:n) from the left
                magma_slarfb_gpu( MagmaLeft, MagmaNoTrans, MagmaForward, MagmaColumnwise,
                                  mi, n-i, ib,
                                  dV,       ldda, dT(i), nb,
                                  dA(i, i), ldda, dW, lddwork );
            }
        }
    
        // copy result back to CPU
        magma_sgetmatrix( m, n,
                          dA(0, 0), ldda, A(0, 0), lda);
    }

    magmablasSetKernelStream( NULL );
    magma_queue_destroy( stream );
    magma_free( dA );
    magma_free_cpu( work );

    return *info;
} /* magma_sorgqr */
Esempio n. 3
0
/**
    Purpose
    -------
    SORGQR generates an M-by-N REAL matrix Q with orthonormal columns,
    which is defined as the first N columns of a product of K elementary
    reflectors of order M

        Q  =  H(1) H(2) . . . H(k)

    as returned by SGEQRF.

    Arguments
    ---------
    @param[in]
    m       INTEGER
            The number of rows of the matrix Q. M >= 0.

    @param[in]
    n       INTEGER
            The number of columns of the matrix Q. M >= N >= 0.

    @param[in]
    k       INTEGER
            The number of elementary reflectors whose product defines the
            matrix Q. N >= K >= 0.

    @param[in,out]
    A       REAL array A, dimension (LDDA,N).
            On entry, the i-th column must contain the vector
            which defines the elementary reflector H(i), for
            i = 1,2,...,k, as returned by SGEQRF_GPU in the
            first k columns of its array argument A.
            On exit, the M-by-N matrix Q.

    @param[in]
    lda     INTEGER
            The first dimension of the array A. LDA >= max(1,M).

    @param[in]
    tau     REAL array, dimension (K)
            TAU(i) must contain the scalar factor of the elementary
            reflector H(i), as returned by SGEQRF_GPU.

    @param[in]
    T       REAL array, dimension (NB, min(M,N)).
            T contains the T matrices used in blocking the elementary
            reflectors H(i), e.g., this can be the 6th argument of
            magma_sgeqrf_gpu (except stored on the CPU, not the GPU).

    @param[in]
    nb      INTEGER
            This is the block size used in SGEQRF_GPU, and correspondingly
            the size of the T matrices, used in the factorization, and
            stored in T.

    @param[out]
    info    INTEGER
      -     = 0:  successful exit
      -     < 0:  if INFO = -i, the i-th argument had an illegal value

    @ingroup magma_sgeqrf_comp
    ********************************************************************/
extern "C" magma_int_t
magma_sorgqr_m(
    magma_int_t m, magma_int_t n, magma_int_t k,
    float *A, magma_int_t lda,
    float *tau,
    float *T, magma_int_t nb,
    magma_int_t *info)
{
#define  A(i,j)   ( A    + (i) + (j)*lda )
#define dA(d,i,j) (dA[d] + (i) + (j)*ldda)
#define dT(d,i,j) (dT[d] + (i) + (j)*nb)

    float c_zero = MAGMA_S_ZERO;
    float c_one  = MAGMA_S_ONE;

    magma_int_t m_kk, n_kk, k_kk, mi;
    magma_int_t lwork, ldwork;
    magma_int_t d, i, ib, j, jb, ki, kk;
    float *work=NULL;

    *info = 0;
    if (m < 0) {
        *info = -1;
    } else if ((n < 0) || (n > m)) {
        *info = -2;
    } else if ((k < 0) || (k > n)) {
        *info = -3;
    } else if (lda < max(1,m)) {
        *info = -5;
    }
    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }

    if (n <= 0) {
        return *info;
    }
    
    magma_int_t di, dn;
    magma_int_t dpanel;

    magma_int_t ngpu = magma_num_gpus();
    
    magma_device_t orig_dev;
    magma_getdevice( &orig_dev );
    
    // Allocate memory on GPUs for A and workspaces
    magma_int_t ldda    = magma_roundup( m, 32 );
    magma_int_t lddwork = magma_roundup( n, 32 );
    magma_int_t min_lblocks = (n / nb) / ngpu;  // min. blocks per gpu
    magma_int_t last_dev    = (n / nb) % ngpu;  // device with last block
    
    magma_int_t  nlocal[ MagmaMaxGPUs ] = { 0 };
    float *dA[ MagmaMaxGPUs ] = { NULL };
    float *dT[ MagmaMaxGPUs ] = { NULL };
    float *dV[ MagmaMaxGPUs ] = { NULL };
    float *dW[ MagmaMaxGPUs ] = { NULL };
    magma_queue_t queues[ MagmaMaxGPUs ] = { NULL };
    
    for( d = 0; d < ngpu; ++d ) {
        // example with n = 75, nb = 10, ngpu = 3
        // min_lblocks = 2
        // last_dev    = 1
        // gpu 0: 2  blocks, cols:  0- 9, 30-39, 60-69
        // gpu 1: 1+ blocks, cols: 10-19, 40-49, 70-74 (partial)
        // gpu 2: 1  block,  cols: 20-29, 50-59
        magma_setdevice( d );
        nlocal[d] = min_lblocks*nb;
        if ( d < last_dev ) {
            nlocal[d] += nb;
        }
        else if ( d == last_dev ) {
            nlocal[d] += (n % nb);
        }
        
        ldwork = nlocal[d]*ldda  // dA
               + nb*m            // dT
               + nb*ldda         // dV
               + nb*lddwork;     // dW
        if ( MAGMA_SUCCESS != magma_smalloc( &dA[d], ldwork )) {
            *info = MAGMA_ERR_DEVICE_ALLOC;
            goto cleanup;
        }
        dT[d] = dA[d] + nlocal[d]*ldda;
        dV[d] = dT[d] + nb*m;
        dW[d] = dV[d] + nb*ldda;
        
        magma_queue_create( d, &queues[d] );
    }
    
    trace_init( 1, ngpu, 1, queues );
    
    // first kk columns are handled by blocked method.
    // ki is start of 2nd-to-last block
    if ((nb > 1) && (nb < k)) {
        ki = (k - nb - 1) / nb * nb;
        kk = min(k, ki + nb);
    } else {
        ki = 0;
        kk = 0;
    }

    // Allocate CPU work space
    // n*nb  for larfb work
    // m*nb  for V
    // nb*nb for T
    lwork = (n + m + nb) * nb;
    magma_smalloc_cpu( &work, lwork );
    if (work == NULL) {
        *info = MAGMA_ERR_HOST_ALLOC;
        goto cleanup;
    }
    float *work_T, *work_V;
    work_T = work + n*nb;
    work_V = work + n*nb + nb*nb;

    // Use unblocked code for the last or only block.
    if (kk < n) {
        trace_cpu_start( 0, "ungqr", "ungqr last block" );
        m_kk = m - kk;
        n_kk = n - kk;
        k_kk = k - kk;
        
        // sorgqr requires less workspace (n*nb), but is slow if k < sorgqr's block size.
        // replacing it with the 4 routines below is much faster (e.g., 60x).
        //magma_int_t iinfo;
        //lapackf77_sorgqr( &m_kk, &n_kk, &k_kk,
        //                  A(kk, kk), &lda,
        //                  &tau[kk], work, &lwork, &iinfo );
        
        lapackf77_slacpy( MagmaFullStr, &m_kk, &k_kk, A(kk,kk), &lda, work_V, &m_kk);
        lapackf77_slaset( MagmaFullStr, &m_kk, &n_kk, &c_zero, &c_one, A(kk, kk), &lda );
        
        lapackf77_slarft( MagmaForwardStr, MagmaColumnwiseStr,
                          &m_kk, &k_kk,
                          work_V, &m_kk, &tau[kk], work_T, &k_kk);
        lapackf77_slarfb( MagmaLeftStr, MagmaNoTransStr, MagmaForwardStr, MagmaColumnwiseStr,
                          &m_kk, &n_kk, &k_kk,
                          work_V, &m_kk, work_T, &k_kk, A(kk, kk), &lda, work, &n_kk );
        
        if (kk > 0) {
            for( j=kk; j < n; j += nb ) {
                jb = min( n-j, nb );
                d  =  (j / nb) % ngpu;
                di = ((j / nb) / ngpu) * nb;
                magma_setdevice( d );
                magma_ssetmatrix( m_kk, jb,
                                  A(kk, j),  lda,
                                  dA(d, kk, di), ldda, queues[d] );
                
                // Set A(1:kk,kk+1:n) to zero.
                magmablas_slaset( MagmaFull, kk, jb, c_zero, c_zero, dA(d, 0, di), ldda, queues[d] );
            }
        }
        trace_cpu_end( 0 );
    }

    if (kk > 0) {
        // Use blocked code
        // send T to all GPUs
        for( d = 0; d < ngpu; ++d ) {
            magma_setdevice( d );
            trace_gpu_start( d, 0, "set", "set T" );
            magma_ssetmatrix_async( nb, min(m,n), T, nb, dT[d], nb, queues[d] );
            trace_gpu_end( d, 0 );
        }
        
        // queue: set Aii (V) --> laset --> laset --> larfb --> [next]
        // CPU has no computation
        for( i = ki; i >= 0; i -= nb ) {
            ib = min(nb, k - i);
            mi = m - i;
            dpanel =  (i / nb) % ngpu;
            di     = ((i / nb) / ngpu) * nb;

            // Send current panel to dV on the GPUs
            lapackf77_slaset( "Upper", &ib, &ib, &c_zero, &c_one, A(i, i), &lda );
            for( d = 0; d < ngpu; ++d ) {
                magma_setdevice( d );
                trace_gpu_start( d, 0, "set", "set V" );
                magma_ssetmatrix_async( mi, ib,
                                        A(i, i), lda,
                                        dV[d],   ldda, queues[d] );
                trace_gpu_end( d, 0 );
            }
            
            // set panel to identity
            magma_setdevice( dpanel );
            trace_gpu_start( dpanel, 0, "laset", "laset" );
            magmablas_slaset( MagmaFull, i,  ib, c_zero, c_zero, dA(dpanel, 0, di), ldda, queues[dpanel] );
            magmablas_slaset( MagmaFull, mi, ib, c_zero, c_one,  dA(dpanel, i, di), ldda, queues[dpanel] );
            trace_gpu_end( dpanel, 0 );
            
            if (i < n) {
                // Apply H to A(i:m,i:n) from the left
                for( d = 0; d < ngpu; ++d ) {
                    magma_setdevice( d );
                    magma_indices_1D_bcyclic( nb, ngpu, d, i, n, &di, &dn );
                    trace_gpu_start( d, 0, "larfb", "larfb" );
                    magma_slarfb_gpu( MagmaLeft, MagmaNoTrans, MagmaForward, MagmaColumnwise,
                                      mi, dn-di, ib,
                                      dV[d],        ldda, dT(d,0,i), nb,
                                      dA(d, i, di), ldda, dW[d], lddwork, queues[d] );
                    trace_gpu_end( d, 0 );
                }
            }
        }
        
        // copy result back to CPU
        trace_cpu_start( 0, "get", "get A" );
        magma_sgetmatrix_1D_col_bcyclic( m, n, dA, ldda, A, lda, ngpu, nb, queues );
        trace_cpu_end( 0 );
    }
    
    #ifdef TRACING
    char name[80];
    snprintf( name, sizeof(name), "sorgqr-n%d-ngpu%d.svg", m, ngpu );
    trace_finalize( name, "trace.css" );
    #endif
    
cleanup:
    for( d = 0; d < ngpu; ++d ) {
        magma_setdevice( d );
        magma_free( dA[d] );
        magma_queue_destroy( queues[d] );
    }
    magma_free_cpu( work );
    magma_setdevice( orig_dev );
    
    return *info;
} /* magma_sorgqr */
Esempio n. 4
0
/**
    Purpose
    -------
    SSTEDX computes some eigenvalues and, optionally, eigenvectors of a
    symmetric tridiagonal matrix using the divide and conquer method.

    This code makes very mild assumptions about floating point
    arithmetic. It will work on machines with a guard digit in
    add/subtract, or on those binary machines without guard digits
    which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
    It could conceivably fail on hexadecimal or decimal machines
    without guard digits, but we know of none.  See SLAEX3 for details.

    Arguments
    ---------
    @param[in]
    range   magma_range_t
      -     = MagmaRangeAll: all eigenvalues will be found.
      -     = MagmaRangeV:   all eigenvalues in the half-open interval (VL,VU]
                             will be found.
      -     = MagmaRangeI:   the IL-th through IU-th eigenvalues will be found.

    @param[in]
    n       INTEGER
            The dimension of the symmetric tridiagonal matrix.  N >= 0.

    @param[in]
    vl      REAL
    @param[in]
    vu      REAL
            If RANGE=MagmaRangeV, the lower and upper bounds of the interval to
            be searched for eigenvalues. VL < VU.
            Not referenced if RANGE = MagmaRangeAll or MagmaRangeI.

    @param[in]
    il      INTEGER
    @param[in]
    iu      INTEGER
            If RANGE=MagmaRangeI, the indices (in ascending order) of the
            smallest and largest eigenvalues to be returned.
            1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
            Not referenced if RANGE = MagmaRangeAll or MagmaRangeV.

    @param[in,out]
    d       REAL array, dimension (N)
            On entry, the diagonal elements of the tridiagonal matrix.
            On exit, if INFO = 0, the eigenvalues in ascending order.

    @param[in,out]
    e       REAL array, dimension (N-1)
            On entry, the subdiagonal elements of the tridiagonal matrix.
            On exit, E has been destroyed.

    @param[in,out]
    Z       REAL array, dimension (LDZ,N)
            On exit, if INFO = 0, Z contains the orthonormal eigenvectors
            of the symmetric tridiagonal matrix.

    @param[in]
    ldz     INTEGER
            The leading dimension of the array Z. LDZ >= max(1,N).

    @param[out]
    work    (workspace) REAL array, dimension (LWORK)
            On exit, if INFO = 0, WORK[0] returns the optimal LWORK.

    @param[in]
    lwork   INTEGER
            The dimension of the array WORK.
            If N > 1 then LWORK >= ( 1 + 4*N + N**2 ).
            Note that  if N is less than or
            equal to the minimum divide size, usually 25, then LWORK need
            only be max(1,2*(N-1)).
    \n
            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal size of the WORK array, returns
            this value as the first entry of the WORK array, and no error
            message related to LWORK is issued by XERBLA.

    @param[out]
    iwork   (workspace) INTEGER array, dimension (MAX(1,LIWORK))
            On exit, if INFO = 0, IWORK[0] returns the optimal LIWORK.

    @param[in]
    liwork  INTEGER
            The dimension of the array IWORK.
            LIWORK >= ( 3 + 5*N ).
            Note that if N is less than or
            equal to the minimum divide size, usually 25, then LIWORK
            need only be 1.
    \n
            If LIWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal size of the IWORK array,
            returns this value as the first entry of the IWORK array, and
            no error message related to LIWORK is issued by XERBLA.

    @param
    dwork  (workspace) REAL array, dimension (3*N*N/2+3*N)

    @param[out]
    info    INTEGER
      -     = 0:  successful exit.
      -     < 0:  if INFO = -i, the i-th argument had an illegal value.
      -     > 0:  The algorithm failed to compute an eigenvalue while
                  working on the submatrix lying in rows and columns
                  INFO/(N+1) through mod(INFO,N+1).

    Further Details
    ---------------
    Based on contributions by
       Jeff Rutter, Computer Science Division, University of California
       at Berkeley, USA
    Modified by Francoise Tisseur, University of Tennessee.

    @ingroup magma_ssyev_comp
    ********************************************************************/
extern "C" magma_int_t
magma_sstedx(
    magma_range_t range, magma_int_t n, float vl, float vu,
    magma_int_t il, magma_int_t iu, float *d, float *e,
    float *Z, magma_int_t ldz,
    float *work, magma_int_t lwork,
    magma_int_t *iwork, magma_int_t liwork,
    magmaFloat_ptr dwork,
    magma_int_t *info)
{
#define Z(i_,j_) (Z + (i_) + (j_)*ldz)

    float d_zero = 0.;
    float d_one  = 1.;
    magma_int_t izero = 0;
    magma_int_t ione = 1;


    magma_int_t alleig, indeig, valeig, lquery;
    magma_int_t i, j, k, m;
    magma_int_t liwmin, lwmin;
    magma_int_t start, end, smlsiz;
    float eps, orgnrm, p, tiny;

    // Test the input parameters.

    alleig = (range == MagmaRangeAll);
    valeig = (range == MagmaRangeV);
    indeig = (range == MagmaRangeI);
    lquery = (lwork == -1 || liwork == -1);

    *info = 0;

    if (! (alleig || valeig || indeig)) {
        *info = -1;
    } else if (n < 0) {
        *info = -2;
    } else if (ldz < max(1,n)) {
        *info = -10;
    } else {
        if (valeig) {
            if (n > 0 && vu <= vl) {
                *info = -4;
            }
        } else if (indeig) {
            if (il < 1 || il > max(1,n)) {
                *info = -5;
            } else if (iu < min(n,il) || iu > n) {
                *info = -6;
            }
        }
    }

    if (*info == 0) {
        // Compute the workspace requirements

        smlsiz = magma_get_smlsize_divideconquer();
        if ( n <= 1 ) {
            lwmin = 1;
            liwmin = 1;
        } else {
            lwmin = 1 + 4*n + n*n;
            liwmin = 3 + 5*n;
        }

        work[0] = magma_smake_lwork( lwmin );
        iwork[0] = liwmin;

        if (lwork < lwmin && ! lquery) {
            *info = -12;
        } else if (liwork < liwmin && ! lquery) {
            *info = -14;
        }
    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info));
        return *info;
    } else if (lquery) {
        return *info;
    }

    // Quick return if possible
    if (n == 0)
        return *info;
    if (n == 1) {
        *Z = 1.;
        return *info;
    }

    /* determine the number of threads *///not needed here to be checked Azzam
    //magma_int_t threads = magma_get_parallel_numthreads();
    //magma_int_t mklth   = magma_get_lapack_numthreads();
    //magma_set_lapack_numthreads(mklth);

#ifdef ENABLE_DEBUG
    //printf("  D&C is using %d threads\n", threads);
#endif

    // If N is smaller than the minimum divide size (SMLSIZ+1), then
    // solve the problem with another solver.

    if (n < smlsiz) {
        lapackf77_ssteqr("I", &n, d, e, Z, &ldz, work, info);
    } else {
        lapackf77_slaset("F", &n, &n, &d_zero, &d_one, Z, &ldz);

        //Scale.
        orgnrm = lapackf77_slanst("M", &n, d, e);

        if (orgnrm == 0) {
            work[0]  = magma_smake_lwork( lwmin );
            iwork[0] = liwmin;
            return *info;
        }

        eps = lapackf77_slamch( "Epsilon" );

        if (alleig) {
            start = 0;
            while ( start < n ) {
                // Let FINISH be the position of the next subdiagonal entry
                // such that E( END ) <= TINY or FINISH = N if no such
                // subdiagonal exists.  The matrix identified by the elements
                // between START and END constitutes an independent
                // sub-problem.

                for (end = start+1; end < n; ++end) {
                    tiny = eps * sqrt( MAGMA_S_ABS(d[end-1]*d[end]));
                    if (MAGMA_S_ABS(e[end-1]) <= tiny)
                        break;
                }

                // (Sub) Problem determined.  Compute its size and solve it.

                m = end - start;
                if (m == 1) {
                    start = end;
                    continue;
                }
                if (m > smlsiz) {
                    // Scale
                    orgnrm = lapackf77_slanst("M", &m, &d[start], &e[start]);
                    lapackf77_slascl("G", &izero, &izero, &orgnrm, &d_one, &m, &ione, &d[start], &m, info);
                    magma_int_t mm = m-1;
                    lapackf77_slascl("G", &izero, &izero, &orgnrm, &d_one, &mm, &ione, &e[start], &mm, info);

                    magma_slaex0( m, &d[start], &e[start], Z(start, start), ldz, work, iwork, dwork, MagmaRangeAll, vl, vu, il, iu, info);

                    if ( *info != 0) {
                        return *info;
                    }

                    // Scale Back
                    lapackf77_slascl("G", &izero, &izero, &d_one, &orgnrm, &m, &ione, &d[start], &m, info);
                } else {
                    lapackf77_ssteqr( "I", &m, &d[start], &e[start], Z(start, start), &ldz, work, info);
                    if (*info != 0) {
                        *info = (start+1) *(n+1) + end;
                    }
                }

                start = end;
            }


            // If the problem split any number of times, then the eigenvalues
            // will not be properly ordered.  Here we permute the eigenvalues
            // (and the associated eigenvectors) into ascending order.

            if (m < n) {
                // Use Selection Sort to minimize swaps of eigenvectors
                for (i = 1; i < n; ++i) {
                    k = i-1;
                    p = d[i-1];
                    for (j = i; j < n; ++j) {
                        if (d[j] < p) {
                            k = j;
                            p = d[j];
                        }
                    }
                    if (k != i-1) {
                        d[k] = d[i-1];
                        d[i-1] = p;
                        blasf77_sswap(&n, Z(0,i-1), &ione, Z(0,k), &ione);
                    }
                }
            }
        } else {
            // Scale
            lapackf77_slascl("G", &izero, &izero, &orgnrm, &d_one, &n, &ione, d, &n, info);
            magma_int_t nm = n-1;
            lapackf77_slascl("G", &izero, &izero, &orgnrm, &d_one, &nm, &ione, e, &nm, info);

            magma_slaex0( n, d, e, Z, ldz, work, iwork, dwork, range, vl, vu, il, iu, info);

            if ( *info != 0) {
                return *info;
            }

            // Scale Back
            lapackf77_slascl("G", &izero, &izero, &d_one, &orgnrm, &n, &ione, d, &n, info);
        }
    }

    work[0]  = magma_smake_lwork( lwmin );
    iwork[0] = liwmin;

    return *info;
} /* magma_sstedx */
Esempio n. 5
0
/* ////////////////////////////////////////////////////////////////////////////
   -- Testing slaset
   Code is very similar to testing_slacpy.cpp
*/
int main( int argc, char** argv)
{
    TESTING_INIT();

    real_Double_t    gbytes, gpu_perf, gpu_time, cpu_perf, cpu_time;
    float           error, work[1];
    float  c_neg_one = MAGMA_S_NEG_ONE;
    float *h_A, *h_R;
    magmaFloat_ptr d_A;
    float offdiag, diag;
    magma_int_t M, N, size, lda, ldda;
    magma_int_t ione     = 1;
    magma_int_t status = 0;
    
    magma_opts opts;
    opts.parse_opts( argc, argv );

    magma_uplo_t uplo[] = { MagmaLower, MagmaUpper, MagmaFull };

    printf("%% uplo    M     N    offdiag    diag    CPU GByte/s (ms)    GPU GByte/s (ms)   check\n");
    printf("%%===================================================================================\n");
    for( int iuplo = 0; iuplo < 3; ++iuplo ) {
      for( int itest = 0; itest < opts.ntest; ++itest ) {
        for( int iter = 0; iter < opts.niter; ++iter ) {
          for( int ival = 0; ival < 4; ++ival ) {
            // test combinations of zero & non-zero:
            // ival  offdiag  diag
            // 0     0        0
            // 1     0        3.14
            // 2     1.23     0
            // 3     1.23     3.14
            offdiag = MAGMA_S_MAKE( 1.2345, 6.7890 ) * (ival / 2);
            diag    = MAGMA_S_MAKE( 3.1415, 2.7183 ) * (ival % 2);
            
            M = opts.msize[itest];
            N = opts.nsize[itest];
            //M += 2;  // space for insets
            //N += 2;
            lda    = M;
            ldda   = magma_roundup( M, opts.align );
            size   = lda*N;
            if ( uplo[iuplo] == MagmaLower ) {
                // save lower trapezoid (with diagonal)
                if ( M > N ) {
                    gbytes = sizeof(float) * (1.*M*N - 0.5*N*(N-1)) / 1e9;
                } else {
                    gbytes = sizeof(float) * 0.5*M*(M+1) / 1e9;
                }
            }
            else if ( uplo[iuplo] == MagmaUpper ) {
                // save upper trapezoid (with diagonal)
                if ( N > M ) {
                    gbytes = sizeof(float) * (1.*M*N - 0.5*M*(M-1)) / 1e9;
                } else {
                    gbytes = sizeof(float) * 0.5*N*(N+1) / 1e9;
                }
            }
            else {
                // save entire matrix
                gbytes = sizeof(float) * 1.*M*N / 1e9;
            }
    
            TESTING_MALLOC_CPU( h_A, float, size   );
            TESTING_MALLOC_CPU( h_R, float, size   );
            
            TESTING_MALLOC_DEV( d_A, float, ldda*N );
            
            /* Initialize the matrix */
            for( int j = 0; j < N; ++j ) {
                for( int i = 0; i < M; ++i ) {
                    h_A[i + j*lda] = MAGMA_S_MAKE( i + j/10000., j );
                }
            }
            
            /* ====================================================================
               Performs operation using MAGMA
               =================================================================== */
            magma_ssetmatrix( M, N, h_A, lda, d_A, ldda, opts.queue );
            
            gpu_time = magma_sync_wtime( opts.queue );
            //magmablas_slaset( uplo[iuplo], M-2, N-2, offdiag, diag, d_A+1+ldda, ldda, opts.queue );  // inset by 1 row & col
            magmablas_slaset( uplo[iuplo], M, N, offdiag, diag, d_A, ldda, opts.queue );
            gpu_time = magma_sync_wtime( opts.queue ) - gpu_time;
            gpu_perf = gbytes / gpu_time;
            
            /* =====================================================================
               Performs operation using LAPACK
               =================================================================== */
            cpu_time = magma_wtime();
            //magma_int_t M2 = M-2;  // inset by 1 row & col
            //magma_int_t N2 = N-2;
            //lapackf77_slaset( lapack_uplo_const( uplo[iuplo] ), &M2, &N2, &offdiag, &diag, h_A+1+lda, &lda );
            lapackf77_slaset( lapack_uplo_const( uplo[iuplo] ), &M, &N, &offdiag, &diag, h_A, &lda );
            cpu_time = magma_wtime() - cpu_time;
            cpu_perf = gbytes / cpu_time;
            
            if ( opts.verbose ) {
                printf( "A= " );  magma_sprint(     M, N, h_A, lda );
                printf( "dA=" );  magma_sprint_gpu( M, N, d_A, ldda );
            }
            
            /* =====================================================================
               Check the result
               =================================================================== */
            magma_sgetmatrix( M, N, d_A, ldda, h_R, lda, opts.queue );
            
            blasf77_saxpy(&size, &c_neg_one, h_A, &ione, h_R, &ione);
            error = lapackf77_slange("f", &M, &N, h_R, &lda, work);

            bool okay = (error == 0);
            status += ! okay;
            printf("%5s %5d %5d  %9.4f  %6.4f   %7.2f (%7.2f)   %7.2f (%7.2f)   %s\n",
                   lapack_uplo_const( uplo[iuplo] ), (int) M, (int) N,
                   real(offdiag), real(diag),
                   cpu_perf, cpu_time*1000., gpu_perf, gpu_time*1000.,
                   (okay ? "ok" : "failed") );
            
            TESTING_FREE_CPU( h_A );
            TESTING_FREE_CPU( h_R );
            
            TESTING_FREE_DEV( d_A );
            fflush( stdout );
          }
        }
        if ( opts.niter > 1 ) {
            printf( "\n" );
        }
      }
      printf( "\n" );
    }

    opts.cleanup();
    TESTING_FINALIZE();
    return status;
}
Esempio n. 6
0
/**
    Purpose
    -------
    SLAEX3 finds the roots of the secular equation, as defined by the
    values in D, W, and RHO, between 1 and K.  It makes the
    appropriate calls to SLAED4 and then updates the eigenvectors by
    multiplying the matrix of eigenvectors of the pair of eigensystems
    being combined by the matrix of eigenvectors of the K-by-K system
    which is solved here.

    It is used in the last step when only a part of the eigenvectors
    is required.
    It compute only the required part of the eigenvectors and the rest
    is not used.

    This code makes very mild assumptions about floating point
    arithmetic. It will work on machines with a guard digit in
    add/subtract, or on those binary machines without guard digits
    which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
    It could conceivably fail on hexadecimal or decimal machines
    without guard digits, but we know of none.

    Arguments
    ---------
    @param[in]
    k       INTEGER
            The number of terms in the rational function to be solved by
            SLAED4.  K >= 0.

    @param[in]
    n       INTEGER
            The number of rows and columns in the Q matrix.
            N >= K (deflation may result in N > K).

    @param[in]
    n1      INTEGER
            The location of the last eigenvalue in the leading submatrix.
            min(1,N) <= N1 <= N/2.

    @param[out]
    d       REAL array, dimension (N)
            D(I) contains the updated eigenvalues for
            1 <= I <= K.

    @param[out]
    Q       REAL array, dimension (LDQ,N)
            Initially the first K columns are used as workspace.
            On output the columns ??? to ??? contain
            the updated eigenvectors.

    @param[in]
    ldq     INTEGER
            The leading dimension of the array Q.  LDQ >= max(1,N).

    @param[in]
    rho     REAL
            The value of the parameter in the rank one update equation.
            RHO >= 0 required.

    @param[in,out]
    dlamda  REAL array, dimension (K)
            The first K elements of this array contain the old roots
            of the deflated updating problem.  These are the poles
            of the secular equation. May be changed on output by
            having lowest order bit set to zero on Cray X-MP, Cray Y-MP,
            Cray-2, or Cray C-90, as described above.

    @param[in]
    Q2      REAL array, dimension (LDQ2, N)
            The first K columns of this matrix contain the non-deflated
            eigenvectors for the split problem.
            TODO what is LDQ2?

    @param[in]
    indx    INTEGER array, dimension (N)
            The permutation used to arrange the columns of the deflated
            Q matrix into three groups (see SLAED2).
            The rows of the eigenvectors found by SLAED4 must be likewise
            permuted before the matrix multiply can take place.

    @param[in]
    ctot    INTEGER array, dimension (4)
            A count of the total number of the various types of columns
            in Q, as described in INDX.  The fourth column type is any
            column which has been deflated.

    @param[in,out]
    w       REAL array, dimension (K)
            The first K elements of this array contain the components
            of the deflation-adjusted updating vector. Destroyed on
            output.

    @param
    s       (workspace) REAL array, dimension (N1 + 1)*K
            Will contain the eigenvectors of the repaired matrix which
            will be multiplied by the previously accumulated eigenvectors
            to update the system.

    @param[out]
    indxq   INTEGER array, dimension (N)
            On exit, the permutation which will reintegrate the
            subproblems back into sorted order,
            i.e. D( INDXQ( I = 1, N ) ) will be in ascending order.

    @param
    dwork   (workspace) REAL array, dimension (3*N*N/2+3*N)

    @param[in]
    range   magma_range_t
      -     = MagmaRangeAll: all eigenvalues will be found.
      -     = MagmaRangeV:   all eigenvalues in the half-open interval (VL,VU]
                             will be found.
      -     = MagmaRangeI:   the IL-th through IU-th eigenvalues will be found.
            TODO verify range, vl, vu, il, iu -- copied from slaex1.

    @param[in]
    vl      REAL
    @param[in]
    vu      REAL
            if RANGE=MagmaRangeV, the lower and upper bounds of the interval to
            be searched for eigenvalues. VL < VU.
            Not referenced if RANGE = MagmaRangeAll or MagmaRangeI.

    @param[in]
    il      INTEGER
    @param[in]
    iu      INTEGER
            if RANGE=MagmaRangeI, the indices (in ascending order) of the
            smallest and largest eigenvalues to be returned.
            1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
            Not referenced if RANGE = MagmaRangeAll or MagmaRangeV.

    @param[out]
    info    INTEGER
      -     = 0:  successful exit.
      -     < 0:  if INFO = -i, the i-th argument had an illegal value.
      -     > 0:  if INFO = 1, an eigenvalue did not converge

    Further Details
    ---------------
    Based on contributions by
    Jeff Rutter, Computer Science Division, University of California
    at Berkeley, USA
    Modified by Francoise Tisseur, University of Tennessee.

    @ingroup magma_ssyev_aux
    ********************************************************************/
extern "C" magma_int_t
magma_slaex3(magma_int_t k, magma_int_t n, magma_int_t n1, float* d,
             float* Q, magma_int_t ldq, float rho,
             float* dlamda, float* Q2, magma_int_t* indx,
             magma_int_t* ctot, float* w, float* s, magma_int_t* indxq,
             float* dwork,
             magma_range_t range, float vl, float vu, magma_int_t il, magma_int_t iu,
             magma_int_t* info )
{
#define Q(i_,j_) (Q + (i_) + (j_)*ldq)

    float d_one  = 1.;
    float d_zero = 0.;
    magma_int_t ione = 1;
    magma_int_t ineg_one = -1;

    magma_int_t iil, iiu, rk;

    float* dq2= dwork;
    float* ds = dq2  + n*(n/2+1);
    float* dq = ds   + n*(n/2+1);
    magma_int_t lddq = n/2 + 1;

    magma_int_t i, iq2, j, n12, n2, n23, tmp, lq2;
    float temp;
    magma_int_t alleig, valeig, indeig;

    alleig = (range == MagmaRangeAll);
    valeig = (range == MagmaRangeV);
    indeig = (range == MagmaRangeI);

    *info = 0;

    if (k < 0)
        *info=-1;
    else if (n < k)
        *info=-2;
    else if (ldq < max(1,n))
        *info=-6;
    else if (! (alleig || valeig || indeig))
        *info = -15;
    else {
        if (valeig) {
            if (n > 0 && vu <= vl)
                *info = -17;
        }
        else if (indeig) {
            if (il < 1 || il > max(1,n))
                *info = -18;
            else if (iu < min(n,il) || iu > n)
                *info = -19;
        }
    }


    if (*info != 0) {
        magma_xerbla(__func__, -(*info));
        return *info;
    }

    // Quick return if possible
    if (k == 0)
        return *info;
    /*
     Modify values DLAMDA(i) to make sure all DLAMDA(i)-DLAMDA(j) can
     be computed with high relative accuracy (barring over/underflow).
     This is a problem on machines without a guard digit in
     add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).
     The following code replaces DLAMDA(I) by 2*DLAMDA(I)-DLAMDA(I),
     which on any of these machines zeros out the bottommost
     bit of DLAMDA(I) if it is 1; this makes the subsequent
     subtractions DLAMDA(I)-DLAMDA(J) unproblematic when cancellation
     occurs. On binary machines with a guard digit (almost all
     machines) it does not change DLAMDA(I) at all. On hexadecimal
     and decimal machines with a guard digit, it slightly
     changes the bottommost bits of DLAMDA(I). It does not account
     for hexadecimal or decimal machines without guard digits
     (we know of none). We use a subroutine call to compute
     2*DLAMBDA(I) to prevent optimizing compilers from eliminating
     this code.*/

    n2 = n - n1;

    n12 = ctot[0] + ctot[1];
    n23 = ctot[1] + ctot[2];

    iq2 = n1 * n12;
    lq2 = iq2 + n2 * n23;

    magma_ssetvector_async( lq2, Q2, 1, dq2, 1, NULL );

#ifdef _OPENMP
    /////////////////////////////////////////////////////////////////////////////////
    //openmp implementation
    /////////////////////////////////////////////////////////////////////////////////
    magma_timer_t time=0;
    timer_start( time );

#pragma omp parallel private(i, j, tmp, temp)
    {
        magma_int_t id = omp_get_thread_num();
        magma_int_t tot = omp_get_num_threads();

        magma_int_t ib = (  id   * k) / tot; //start index of local loop
        magma_int_t ie = ((id+1) * k) / tot; //end index of local loop
        magma_int_t ik = ie - ib;           //number of local indices

        for (i = ib; i < ie; ++i)
            dlamda[i]=lapackf77_slamc3(&dlamda[i], &dlamda[i]) - dlamda[i];

        for (j = ib; j < ie; ++j) {
            magma_int_t tmpp=j+1;
            magma_int_t iinfo = 0;
            lapackf77_slaed4(&k, &tmpp, dlamda, w, Q(0,j), &rho, &d[j], &iinfo);
            // If the zero finder fails, the computation is terminated.
            if (iinfo != 0) {
#pragma omp critical (info)
                *info=iinfo;
                break;
            }
        }

#pragma omp barrier

        if (*info == 0) {
#pragma omp single
            {
                //Prepare the INDXQ sorting permutation.
                magma_int_t nk = n - k;
                lapackf77_slamrg( &k, &nk, d, &ione, &ineg_one, indxq);

                //compute the lower and upper bound of the non-deflated eigenvectors
                if (valeig)
                    magma_svrange(k, d, &iil, &iiu, vl, vu);
                else if (indeig)
                    magma_sirange(k, indxq, &iil, &iiu, il, iu);
                else {
                    iil = 1;
                    iiu = k;
                }
                rk = iiu - iil + 1;
            }

            if (k == 2) {
#pragma omp single
                {
                    for (j = 0; j < k; ++j) {
                        w[0] = *Q(0,j);
                        w[1] = *Q(1,j);

                        i = indx[0] - 1;
                        *Q(0,j) = w[i];
                        i = indx[1] - 1;
                        *Q(1,j) = w[i];
                    }
                }
            }
            else if (k != 1) {
                // Compute updated W.
                blasf77_scopy( &ik, &w[ib], &ione, &s[ib], &ione);

                // Initialize W(I) = Q(I,I)
                tmp = ldq + 1;
                blasf77_scopy( &ik, Q(ib,ib), &tmp, &w[ib], &ione);

                for (j = 0; j < k; ++j) {
                    magma_int_t i_tmp = min(j, ie);
                    for (i = ib; i < i_tmp; ++i)
                        w[i] = w[i] * ( *Q(i, j) / ( dlamda[i] - dlamda[j] ) );
                    i_tmp = max(j+1, ib);
                    for (i = i_tmp; i < ie; ++i)
                        w[i] = w[i] * ( *Q(i, j) / ( dlamda[i] - dlamda[j] ) );
                }

                for (i = ib; i < ie; ++i)
                    w[i] = copysign( sqrt( -w[i] ), s[i]);

#pragma omp barrier

                //reduce the number of used threads to have enough S workspace
                tot = min(n1, omp_get_num_threads());

                if (id < tot) {
                    ib = (  id   * rk) / tot + iil - 1;
                    ie = ((id+1) * rk) / tot + iil - 1;
                    ik = ie - ib;
                }
                else {
                    ib = -1;
                    ie = -1;
                    ik = -1;
                }

                // Compute eigenvectors of the modified rank-1 modification.
                for (j = ib; j < ie; ++j) {
                    for (i = 0; i < k; ++i)
                        s[id*k + i] = w[i] / *Q(i,j);
                    temp = magma_cblas_snrm2( k, s+id*k, 1 );
                    for (i = 0; i < k; ++i) {
                        magma_int_t iii = indx[i] - 1;
                        *Q(i,j) = s[id*k + iii] / temp;
                    }
                }
            }
        }
    }
    if (*info != 0)
        return *info;

    timer_stop( time );
    timer_printf( "eigenvalues/vector D+zzT = %6.2f\n", time );

#else
    /////////////////////////////////////////////////////////////////////////////////
    // Non openmp implementation
    /////////////////////////////////////////////////////////////////////////////////
    magma_timer_t time=0;
    timer_start( time );

    for (i = 0; i < k; ++i)
        dlamda[i]=lapackf77_slamc3(&dlamda[i], &dlamda[i]) - dlamda[i];

    for (j = 0; j < k; ++j) {
        magma_int_t tmpp=j+1;
        magma_int_t iinfo = 0;
        lapackf77_slaed4(&k, &tmpp, dlamda, w, Q(0,j), &rho, &d[j], &iinfo);
        // If the zero finder fails, the computation is terminated.
        if (iinfo != 0)
            *info=iinfo;
    }
    if (*info != 0)
        return *info;

    //Prepare the INDXQ sorting permutation.
    magma_int_t nk = n - k;
    lapackf77_slamrg( &k, &nk, d, &ione, &ineg_one, indxq);

    //compute the lower and upper bound of the non-deflated eigenvectors
    if (valeig)
        magma_svrange(k, d, &iil, &iiu, vl, vu);
    else if (indeig)
        magma_sirange(k, indxq, &iil, &iiu, il, iu);
    else {
        iil = 1;
        iiu = k;
    }
    rk = iiu - iil + 1;

    if (k == 2) {
        for (j = 0; j < k; ++j) {
            w[0] = *Q(0,j);
            w[1] = *Q(1,j);

            i = indx[0] - 1;
            *Q(0,j) = w[i];
            i = indx[1] - 1;
            *Q(1,j) = w[i];
        }
    }
    else if (k != 1) {
        // Compute updated W.
        blasf77_scopy( &k, w, &ione, s, &ione);

        // Initialize W(I) = Q(I,I)
        tmp = ldq + 1;
        blasf77_scopy( &k, Q, &tmp, w, &ione);

        for (j = 0; j < k; ++j) {
            for (i = 0; i < j; ++i)
                w[i] = w[i] * ( *Q(i, j) / ( dlamda[i] - dlamda[j] ) );
            for (i = j+1; i < k; ++i)
                w[i] = w[i] * ( *Q(i, j) / ( dlamda[i] - dlamda[j] ) );
        }

        for (i = 0; i < k; ++i)
            w[i] = copysign( sqrt( -w[i] ), s[i]);

        // Compute eigenvectors of the modified rank-1 modification.
        for (j = iil-1; j < iiu; ++j) {
            for (i = 0; i < k; ++i)
                s[i] = w[i] / *Q(i,j);
            temp = magma_cblas_snrm2( k, s, 1 );
            for (i = 0; i < k; ++i) {
                magma_int_t iii = indx[i] - 1;
                *Q(i,j) = s[iii] / temp;
            }
        }
    }

    timer_stop( time );
    timer_printf( "eigenvalues/vector D+zzT = %6.2f\n", time );

#endif //_OPENMP
    // Compute the updated eigenvectors.

    timer_start( time );
    magma_queue_sync( NULL );

    if (rk != 0) {
        if ( n23 != 0 ) {
            if (rk < magma_get_slaed3_k()) {
                lapackf77_slacpy("A", &n23, &rk, Q(ctot[0],iil-1), &ldq, s, &n23);
                blasf77_sgemm("N", "N", &n2, &rk, &n23, &d_one, &Q2[iq2], &n2,
                              s, &n23, &d_zero, Q(n1,iil-1), &ldq );
            } else {
                magma_ssetmatrix( n23, rk, Q(ctot[0],iil-1), ldq, ds, n23 );
                magma_sgemm( MagmaNoTrans, MagmaNoTrans, n2, rk, n23, d_one, &dq2[iq2], n2, ds, n23, d_zero, dq, lddq);
                magma_sgetmatrix( n2, rk, dq, lddq, Q(n1,iil-1), ldq );
            }
        } else
            lapackf77_slaset("A", &n2, &rk, &d_zero, &d_zero, Q(n1,iil-1), &ldq);

        if ( n12 != 0 ) {
            if (rk < magma_get_slaed3_k()) {
                lapackf77_slacpy("A", &n12, &rk, Q(0,iil-1), &ldq, s, &n12);
                blasf77_sgemm("N", "N", &n1, &rk, &n12, &d_one, Q2, &n1,
                              s, &n12, &d_zero, Q(0,iil-1), &ldq);
            } else {
                magma_ssetmatrix( n12, rk, Q(0,iil-1), ldq, ds, n12 );
                magma_sgemm( MagmaNoTrans, MagmaNoTrans, n1, rk, n12, d_one, dq2, n1, ds, n12, d_zero, dq, lddq);
                magma_sgetmatrix( n1, rk, dq, lddq, Q(0,iil-1), ldq );
            }
        } else
            lapackf77_slaset("A", &n1, &rk, &d_zero, &d_zero, Q(0,iil-1), &ldq);
    }
    timer_stop( time );
    timer_printf( "gemms = %6.2f\n", time );

    return *info;
} /* magma_slaex3 */
Esempio n. 7
0
magma_int_t magma_strevc3(
    magma_side_t side, magma_vec_t howmany,
    magma_int_t *select,  // logical in fortran
    magma_int_t n,
    float *T,  magma_int_t ldt,
    float *VL, magma_int_t ldvl,
    float *VR, magma_int_t ldvr,
    magma_int_t mm, magma_int_t *mout,
    float *work, magma_int_t lwork,
    #ifdef COMPLEX
    float *rwork,
    #endif
    magma_int_t *info )
{
#define T(i,j)  (T  + (i) + (j)*ldt)
#define VL(i,j) (VL + (i) + (j)*ldvl)
#define VR(i,j) (VR + (i) + (j)*ldvr)
#define X(i,j)  (X  + (i)-1 + ((j)-1)*2)  // still as 1-based indices
#define work(i,j) (work + (i) + (j)*n)

    // constants
    const magma_int_t ione = 1;
    const float c_zero = 0;
    const float c_one  = 1;
    const magma_int_t nbmin = 16, nbmax = 256;

    // .. Local Scalars ..
    magma_int_t allv, bothv, leftv, over, pair, rightv, somev;
    magma_int_t i, ierr, ii, ip, is, j, k, ki, ki2,
                iv, n2, nb, nb2, version;
    float emax, remax;
    
    // .. Local Arrays ..
    // since iv is a 1-based index, allocate one extra here
    magma_int_t iscomplex[ nbmax+1 ];

    // Decode and test the input parameters
    bothv  = (side == MagmaBothSides);
    rightv = (side == MagmaRight) || bothv;
    leftv  = (side == MagmaLeft ) || bothv;

    allv  = (howmany == MagmaAllVec);
    over  = (howmany == MagmaBacktransVec);
    somev = (howmany == MagmaSomeVec);

    *info = 0;
    if ( ! rightv && ! leftv )
        *info = -1;
    else if ( ! allv && ! over && ! somev )
        *info = -2;
    else if ( n < 0 )
        *info = -4;
    else if ( ldt < max( 1, n ) )
        *info = -6;
    else if ( ldvl < 1 || ( leftv && ldvl < n ) )
        *info = -8;
    else if ( ldvr < 1 || ( rightv && ldvr < n ) )
        *info = -10;
    else if ( lwork < max( 1, 3*n ) )
        *info = -14;
    else {
        // Set mout to the number of columns required to store the selected
        // eigenvectors, standardize the array select if necessary, and
        // test mm.
        if ( somev ) {
            *mout = 0;
            pair = false;
            for( j=0; j < n; ++j ) {
                if ( pair ) {
                    pair = false;
                    select[j] = false;
                }
                else {
                    if ( j < n-1 ) {
                        if ( *T(j+1,j) == c_zero ) {
                            if ( select[j] ) {
                                *mout += 1;
                            }
                        }
                        else {
                            pair = true;
                            if ( select[j] || select[j+1] ) {
                                select[j] = true;
                                *mout += 2;
                            }
                        }
                    }
                    else if ( select[n-1] ) {
                        *mout += 1;
                    }
                }
            }
        }
        else {
            *mout = n;
        }
        if ( mm < *mout ) {
            *info = -11;
        }
    }
    
    if ( *info != 0 ) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }

    // Quick return if possible.
    if ( n == 0 ) {
        return *info;
    }
    
    // Use blocked version (2) if sufficient workspace.
    // Requires 1 vector for 1-norms, and 2*nb vectors for x and Q*x.
    // Zero-out the workspace to avoid potential NaN propagation.
    nb = 2;
    if ( lwork >= n + 2*n*nbmin ) {
        version = 2;
        nb = (lwork - n) / (2*n);
        nb = min( nb, nbmax );
        nb2 = 1 + 2*nb;
        lapackf77_slaset( "F", &n, &nb2, &c_zero, &c_zero, work, &n );
    }
    else {
        version = 1;
    }

    // Compute 1-norm of each column of strictly upper triangular
    // part of T to control overflow in triangular solver.
    *work(0,0) = c_zero;
    for( j=1; j < n; ++j ) {
        *work(j,0) = c_zero;
        for( i=0; i < j; ++i ) {
            *work(j,0) += fabsf( *T(i,j) );
        }
    }

    magma_timer_t time_total=0, time_trsv=0, time_gemm=0, time_gemv=0, time_trsv_sum=0, time_gemm_sum=0, time_gemv_sum=0;
    timer_start( time_total );

    // Index ip is used to specify the real or complex eigenvalue:
    // ip =  0, real eigenvalue (wr),
    //    =  1, first  of conjugate complex pair: (wr,wi)
    //    = -1, second of conjugate complex pair: (wr,wi)
    // iscomplex array stores ip for each column in current block.
    if ( rightv ) {
        // ============================================================
        // Compute right eigenvectors.
        // iv is index of column in current block (1-based).
        // For complex right vector, uses iv-1 for real part and iv for complex part.
        // Non-blocked version always uses iv=2;
        // blocked     version starts with iv=nb, goes down to 1 or 2.
        // (Note the "0-th" column is used for 1-norms computed above.)
        iv = 2;
        if ( version == 2 ) {
            iv = nb;
        }

        timer_start( time_trsv );
        ip = 0;
        is = *mout - 1;
        for( ki=n-1; ki >= 0; --ki ) {
            if ( ip == -1 ) {
                // previous iteration (ki+1) was second of conjugate pair,
                // so this ki is first of conjugate pair; skip to end of loop
                ip = 1;
                continue;
            }
            else if ( ki == 0 ) {
                // last column, so this ki must be real eigenvalue
                ip = 0;
            }
            else if ( *T(ki,ki-1) == c_zero ) {
                // zero on sub-diagonal, so this ki is real eigenvalue
                ip = 0;
            }
            else {
                // non-zero on sub-diagonal, so this ki is second of conjugate pair
                ip = -1;
            }

            if ( somev ) {
                if ( ip == 0 ) {
                    if ( ! select[ki] ) {
                        continue;
                    }
                }
                else {
                    if ( ! select[ki-1] ) {
                        continue;
                    }
                }
            }

            if ( ip == 0 ) {
                // ------------------------------------------------------------
                // Real right eigenvector
                // Solve upper quasi-triangular system:
                // [ T(0:ki-1,0:ki-1) - wr ]*X = -T(0:ki-1,ki)
                magma_slaqtrsd( MagmaNoTrans, ki+1, T(0,0), ldt,
                                work(0,iv), n, work(0,0), &ierr );
                
                // Copy the vector x or Q*x to VR and normalize.
                if ( ! over ) {
                    // ------------------------------
                    // no back-transform: copy x to VR and normalize.
                    n2 = ki+1;
                    blasf77_scopy( &n2, work(0,iv), &ione, VR(0,is), &ione );

                    ii = blasf77_isamax( &n2, VR(0,is), &ione ) - 1;  // subtract 1; ii is 0-based
                    remax = c_one / fabsf( *VR(ii,is) );
                    blasf77_sscal( &n2, &remax, VR(0,is), &ione );

                    for( k=ki + 1; k < n; ++k ) {
                        *VR(k,is) = c_zero;
                    }
                }
                else if ( version == 1 ) {
                    // ------------------------------
                    // version 1: back-transform each vector with GEMV, Q*x.
                    time_trsv_sum += timer_stop( time_trsv );
                    timer_start( time_gemv );
                    if ( ki > 0 ) {
                        n2 = ki;
                        blasf77_sgemv( "n", &n, &n2, &c_one,
                                       VR, &ldvr,
                                       work(0, iv), &ione,
                                       work(ki,iv), VR(0,ki), &ione );
                    }
                    time_gemv_sum += timer_stop( time_gemv );
                    ii = blasf77_isamax( &n, VR(0,ki), &ione ) - 1;  // subtract 1; ii is 0-based
                    remax = c_one / fabsf( *VR(ii,ki) );
                    blasf77_sscal( &n, &remax, VR(0,ki), &ione );
                    timer_start( time_trsv );
                }
                else if ( version == 2 ) {
                    // ------------------------------
                    // version 2: back-transform block of vectors with GEMM
                    // zero out below vector
                    for( k=ki + 1; k < n; ++k ) {
                        *work(k,iv) = c_zero;
                    }
                    iscomplex[ iv ] = ip;
                    // back-transform and normalization is done below
                }
            }  // end real eigenvector
            else {
                // ------------------------------------------------------------
                // Complex right eigenvector
                // Solve upper quasi-triangular system:
                // [ T(0:ki-2,0:ki-2) - (wr+i*wi) ]*x = u
                magma_slaqtrsd( MagmaNoTrans, ki+1, T(0,0), ldt,
                                work(0,iv-1), n, work(0,0), &ierr );

                // Copy the vector x or Q*x to VR and normalize.
                if ( ! over ) {
                    // ------------------------------
                    // no back-transform: copy x to VR and normalize.
                    n2 = ki+1;
                    blasf77_scopy( &n2, work(0,iv-1), &ione, VR(0,is-1), &ione );
                    blasf77_scopy( &n2, work(0,iv  ), &ione, VR(0,is  ), &ione );

                    emax = c_zero;
                    for( k=0; k <= ki; ++k ) {
                        emax = max( emax, fabsf(*VR(k,is-1)) + fabsf(*VR(k,is)) );
                    }
                    remax = c_one / emax;
                    blasf77_sscal( &n2, &remax, VR(0,is-1), &ione );
                    blasf77_sscal( &n2, &remax, VR(0,is  ), &ione );

                    for( k=ki + 1; k < n; ++k ) {
                        *VR(k,is-1) = c_zero;
                        *VR(k,is  ) = c_zero;
                    }
                }
                else if ( version == 1 ) {
                    // ------------------------------
                    // version 1: back-transform each vector with GEMV, Q*x.
                    time_trsv_sum += timer_stop( time_trsv );
                    timer_start( time_gemv );
                    if ( ki > 1 ) {
                        n2 = ki-1;
                        blasf77_sgemv( "n", &n, &n2, &c_one,
                                       VR, &ldvr,
                                       work(0,   iv-1), &ione,
                                       work(ki-1,iv-1), VR(0,ki-1), &ione );
                        blasf77_sgemv( "n", &n, &n2, &c_one,
                                       VR, &ldvr,
                                       work(0, iv), &ione,
                                       work(ki,iv), VR(0,ki), &ione );
                    }
                    else {
                        blasf77_sscal( &n, work(ki-1,iv-1), VR(0,ki-1), &ione );
                        blasf77_sscal( &n, work(ki,  iv  ), VR(0,ki  ), &ione );
                    }
                    time_gemv_sum += timer_stop( time_gemv );

                    emax = c_zero;
                    for( k=0; k < n; ++k ) {
                        emax = max( emax, fabsf(*VR(k,ki-1)) + fabsf(*VR(k,ki)) );
                    }
                    remax = c_one / emax;
                    blasf77_sscal( &n, &remax, VR(0,ki-1), &ione );
                    blasf77_sscal( &n, &remax, VR(0,ki  ), &ione );
                    timer_start( time_trsv );
                }
                else if ( version == 2 ) {
                    // ------------------------------
                    // version 2: back-transform block of vectors with GEMM
                    // zero out below vector
                    for( k=ki + 1; k < n; ++k ) {
                        *work(k,iv-1) = c_zero;
                        *work(k,iv  ) = c_zero;
                    }
                    iscomplex[ iv-1 ] = -ip;
                    iscomplex[ iv   ] =  ip;
                    iv -= 1;
                    // back-transform and normalization is done below
                }
            }  // end real or complex vector

            if ( version == 2 ) {
                // ------------------------------------------------------------
                // Blocked version of back-transform
                // For complex case, ki2 includes both vectors (ki-1 and ki)
                if ( ip == 0 ) {
                    ki2 = ki;
                }
                else {
                    ki2 = ki - 1;
                }

                // Columns iv:nb of work are valid vectors.
                // When the number of vectors stored reaches nb-1 or nb,
                // or if this was last vector, do the GEMM
                if ( (iv <= 2) || (ki2 == 0) ) {
                    time_trsv_sum += timer_stop( time_trsv );
                    timer_start( time_gemm );
                    nb2 = nb-iv+1;
                    n2  = ki2+nb-iv+1;
                    blasf77_sgemm( "n", "n", &n, &nb2, &n2, &c_one,
                                   VR, &ldvr,
                                   work(0,iv), &n,
                                   &c_zero,
                                   work(0,nb+iv), &n );
                    time_gemm_sum += timer_stop( time_gemm );
                    
                    // normalize vectors
                    // TODO if somev, should copy vectors individually to correct location.
                    for( k=iv; k <= nb; ++k ) {
                        if ( iscomplex[k] == 0 ) {
                            // real eigenvector
                            ii = blasf77_isamax( &n, work(0,nb+k), &ione ) - 1;  // subtract 1; ii is 0-based
                            remax = c_one / fabsf( *work(ii,nb+k) );
                        }
                        else if ( iscomplex[k] == 1 ) {
                            // first eigenvector of conjugate pair
                            emax = c_zero;
                            for( ii=0; ii < n; ++ii ) {
                                emax = max( emax, fabsf( *work(ii,nb+k  ) )
                                                + fabsf( *work(ii,nb+k+1) ) );
                            }
                            remax = c_one / emax;
                        // else if iscomplex[k] == -1
                        //     second eigenvector of conjugate pair
                        //     reuse same remax as previous k
                        }
                        blasf77_sscal( &n, &remax, work(0,nb+k), &ione );
                    }
                    nb2 = nb-iv+1;
                    lapackf77_slacpy( "F", &n, &nb2,
                                      work(0,nb+iv), &n,
                                      VR(0,ki2), &ldvr );
                    iv = nb;
                    timer_start( time_trsv );
                }
                else {
                    iv -= 1;
                }
            }  // end blocked back-transform

            is -= 1;
            if ( ip != 0 ) {
                is -= 1;
            }
        }
    }
    timer_stop( time_trsv );

    timer_stop( time_total );
    timer_printf( "trevc trsv %.4f, gemm %.4f, gemv %.4f, total %.4f\n",
                  time_trsv_sum, time_gemm_sum, time_gemv_sum, time_total );

    if ( leftv ) {
        // ============================================================
        // Compute left eigenvectors.
        // iv is index of column in current block (1-based).
        // For complex left vector, uses iv for real part and iv+1 for complex part.
        // Non-blocked version always uses iv=1;
        // blocked     version starts with iv=1, goes up to nb-1 or nb.
        // (Note the "0-th" column is used for 1-norms computed above.)
        iv = 1;
        ip = 0;
        is = 0;
        for( ki=0; ki < n; ++ki ) {
            if ( ip == 1 ) {
                // previous iteration (ki-1) was first of conjugate pair,
                // so this ki is second of conjugate pair; skip to end of loop
                ip = -1;
                continue;
            }
            else if ( ki == n-1 ) {
                // last column, so this ki must be real eigenvalue
                ip = 0;
            }
            else if ( *T(ki+1,ki) == c_zero ) {
                // zero on sub-diagonal, so this ki is real eigenvalue
                ip = 0;
            }
            else {
                // non-zero on sub-diagonal, so this ki is first of conjugate pair
                ip = 1;
            }

            if ( somev ) {
                if ( ! select[ki] ) {
                    continue;
                }
            }

            if ( ip == 0 ) {
                // ------------------------------------------------------------
                // Real left eigenvector
                // Solve transposed quasi-triangular system:
                // [ T(ki+1:n,ki+1:n) - wr ]**T * X = -T(ki+1:n,ki)
                magma_slaqtrsd( MagmaTrans, n-ki, T(ki,ki), ldt,
                                work(ki,iv), n, work(ki,0), &ierr );

                // Copy the vector x or Q*x to VL and normalize.
                if ( ! over ) {
                    // ------------------------------
                    // no back-transform: copy x to VL and normalize.
                    n2 = n-ki;
                    blasf77_scopy( &n2, work(ki,iv), &ione, VL(ki,is), &ione );

                    ii = blasf77_isamax( &n2, VL(ki,is), &ione ) + ki - 1;  // subtract 1; ii is 0-based
                    remax = c_one / fabsf( *VL(ii,is) );
                    blasf77_sscal( &n2, &remax, VL(ki,is), &ione );

                    for( k=0; k < ki; ++k ) {
                        *VL(k,is) = c_zero;
                    }
                }
                else if ( version == 1 ) {
                    // ------------------------------
                    // version 1: back-transform each vector with GEMV, Q*x.
                    if ( ki < n-1 ) {
                        n2 = n-ki-1;
                        blasf77_sgemv( "n", &n, &n2, &c_one,
                                       VL(0,ki+1), &ldvl,
                                       work(ki+1,iv), &ione,
                                       work(ki,  iv), VL(0,ki), &ione );
                    }
                    ii = blasf77_isamax( &n, VL(0,ki), &ione ) - 1;  // subtract 1; ii is 0-based
                    remax = c_one / fabsf( *VL(ii,ki) );
                    blasf77_sscal( &n, &remax, VL(0,ki), &ione );
                }
                else if ( version == 2 ) {
                    // ------------------------------
                    // version 2: back-transform block of vectors with GEMM
                    // zero out above vector
                    // could go from (ki+1)-NV+1 to ki
                    for( k=0; k < ki; ++k ) {
                        *work(k,iv) = c_zero;
                    }
                    iscomplex[ iv ] = ip;
                    // back-transform and normalization is done below
                }
            }  // end real eigenvector
            else {
                // ------------------------------------------------------------
                // Complex left eigenvector
                // Solve transposed quasi-triangular system:
                // [ T(ki+2:n,ki+2:n)**T - (wr-i*wi) ]*X = V
                magma_slaqtrsd( MagmaTrans, n-ki, T(ki,ki), ldt,
                                work(ki,iv), n, work(ki,0), &ierr );

                // Copy the vector x or Q*x to VL and normalize.
                if ( ! over ) {
                    // ------------------------------
                    // no back-transform: copy x to VL and normalize.
                    n2 = n-ki;
                    blasf77_scopy( &n2, work(ki,iv  ), &ione, VL(ki,is  ), &ione );
                    blasf77_scopy( &n2, work(ki,iv+1), &ione, VL(ki,is+1), &ione );

                    emax = c_zero;
                    for( k=ki; k < n; ++k ) {
                        emax = max( emax, fabsf(*VL(k,is))+ fabsf(*VL(k,is+1)) );
                    }
                    remax = c_one / emax;
                    blasf77_sscal( &n2, &remax, VL(ki,is  ), &ione );
                    blasf77_sscal( &n2, &remax, VL(ki,is+1), &ione );

                    for( k=0; k < ki; ++k ) {
                        *VL(k,is  ) = c_zero;
                        *VL(k,is+1) = c_zero;
                    }
                }
                else if ( version == 1 ) {
                    // ------------------------------
                    // version 1: back-transform each vector with GEMV, Q*x.
                    if ( ki < n-2 ) {
                        n2 = n-ki-2;
                        blasf77_sgemv( "n", &n, &n2, &c_one,
                                       VL(0,ki+2), &ldvl,
                                       work(ki+2,iv), &ione,
                                       work(ki,  iv), VL(0,ki), &ione );
                        blasf77_sgemv( "n", &n, &n2, &c_one,
                                       VL(0,ki+2), &ldvl,
                                       work(ki+2,iv+1), &ione,
                                       work(ki+1,iv+1), VL(0,ki+1), &ione );
                    }
                    else {
                        blasf77_sscal( &n, work(ki,  iv  ), VL(0, ki  ), &ione );
                        blasf77_sscal( &n, work(ki+1,iv+1), VL(0, ki+1), &ione );
                    }

                    emax = c_zero;
                    for( k=0; k < n; ++k ) {
                        emax = max( emax, fabsf(*VL(k,ki))+ fabsf(*VL(k,ki+1)) );
                    }
                    remax = c_one / emax;
                    blasf77_sscal( &n, &remax, VL(0,ki  ), &ione );
                    blasf77_sscal( &n, &remax, VL(0,ki+1), &ione );
                }
                else if ( version == 2 ) {
                    // ------------------------------
                    // version 2: back-transform block of vectors with GEMM
                    // zero out above vector
                    // could go from (ki+1)-NV+1 to ki
                    for( k=0; k < ki; ++k ) {
                        *work(k,iv  ) = c_zero;
                        *work(k,iv+1) = c_zero;
                    }
                    iscomplex[ iv   ] =  ip;
                    iscomplex[ iv+1 ] = -ip;
                    iv += 1;
                    // back-transform and normalization is done below
                }
            }  // end real or complex eigenvector

            if ( version == 2 ) {
                // -------------------------------------------------
                // Blocked version of back-transform
                // For complex case, (ki2+1) includes both vectors (ki+1) and (ki+2)
                if ( ip == 0 ) {
                    ki2 = ki;
                }
                else {
                    ki2 = ki + 1;
                }

                // Columns 1:iv of work are valid vectors.
                // When the number of vectors stored reaches nb-1 or nb,
                // or if this was last vector, do the GEMM
                if ( (iv >= nb-1) || (ki2 == n-1) ) {
                    n2 = n-(ki2+1)+iv;
                    blasf77_sgemm( "n", "n", &n, &iv, &n2, &c_one,
                                   VL(0,ki2-iv+1), &ldvl,
                                   work(ki2-iv+1,1), &n,
                                   &c_zero,
                                   work(0,nb+1), &n );
                    // normalize vectors
                    for( k=1; k <= iv; ++k ) {
                        if ( iscomplex[k] == 0 ) {
                            // real eigenvector
                            ii = blasf77_isamax( &n, work(0,nb+k), &ione ) - 1;  // subtract 1; ii is 0-based
                            remax = c_one / fabsf( *work(ii,nb+k) );
                        }
                        else if ( iscomplex[k] == 1) {
                            // first eigenvector of conjugate pair
                            emax = c_zero;
                            for( ii=0; ii < n; ++ii ) {
                                emax = max( emax, fabsf( *work(ii,nb+k  ) )
                                                + fabsf( *work(ii,nb+k+1) ) );
                            }
                            remax = c_one / emax;
                        // else if iscomplex[k] == -1
                        //     second eigenvector of conjugate pair
                        //     reuse same remax as previous k
                        }
                        blasf77_sscal( &n, &remax, work(0,nb+k), &ione );
                    }
                    lapackf77_slacpy( "F", &n, &iv,
                                      work(0,nb+1), &n,
                                      VL(0,ki2-iv+1), &ldvl );
                    iv = 1;
                }
                else {
                    iv += 1;
                }
            } // blocked back-transform

            is += 1;
            if ( ip != 0 ) {
                is += 1;
            }
        }
    }

    return *info;
}  // end of STREVC3
Esempio n. 8
0
/* ////////////////////////////////////////////////////////////////////////////
   -- Testing sgeqrf
*/
int main( int argc, char** argv)
{
    TESTING_INIT();

    const float             d_neg_one = MAGMA_D_NEG_ONE;
    const float             d_one     = MAGMA_D_ONE;
    const float c_neg_one = MAGMA_S_NEG_ONE;
    const float c_one     = MAGMA_S_ONE;
    const float c_zero    = MAGMA_S_ZERO;
    const magma_int_t        ione      = 1;
    
    real_Double_t    gflops, gpu_perf, gpu_time, cpu_perf=0, cpu_time=0;
    float           Anorm, error=0, error2=0;
    float *h_A, *h_R, *tau, *h_work, tmp[1];
    magmaFloat_ptr d_A, dT;
    magma_int_t M, N, n2, lda, ldda, lwork, info, min_mn, nb, size;
    magma_int_t ISEED[4] = {0,0,0,1};
    
    magma_opts opts;
    opts.parse_opts( argc, argv );
    
    magma_int_t status = 0;
    float tol = opts.tolerance * lapackf77_slamch("E");
    
    // version 3 can do either check
    if (opts.check == 1 && opts.version == 1) {
        opts.check = 2;
        printf( "%% version 1 requires check 2 (solve A*x=b)\n" );
    }
    if (opts.check == 2 && opts.version == 2) {
        opts.check = 1;
        printf( "%% version 2 requires check 1 (R - Q^H*A)\n" );
    }
    
    printf( "%% version %d\n", (int) opts.version );
    if ( opts.check == 1 ) {
        printf("%%   M     N   CPU Gflop/s (sec)   GPU Gflop/s (sec)   |R - Q^H*A|   |I - Q^H*Q|\n");
        printf("%%==============================================================================\n");
    }
    else {
        printf("%%   M     N   CPU Gflop/s (sec)   GPU Gflop/s (sec)    |b - A*x|\n");
        printf("%%===============================================================\n");
    }
    for( int itest = 0; itest < opts.ntest; ++itest ) {
        for( int iter = 0; iter < opts.niter; ++iter ) {
            M = opts.msize[itest];
            N = opts.nsize[itest];
            min_mn = min( M, N );
            lda    = M;
            n2     = lda*N;
            ldda   = magma_roundup( M, opts.align );  // multiple of 32 by default
            nb     = magma_get_sgeqrf_nb( M, N );
            gflops = FLOPS_SGEQRF( M, N ) / 1e9;
            
            // query for workspace size
            lwork = -1;
            lapackf77_sgeqrf( &M, &N, NULL, &M, NULL, tmp, &lwork, &info );
            lwork = (magma_int_t)MAGMA_S_REAL( tmp[0] );
            
            TESTING_MALLOC_CPU( tau,    float, min_mn );
            TESTING_MALLOC_CPU( h_A,    float, n2     );
            TESTING_MALLOC_CPU( h_work, float, lwork  );
            
            TESTING_MALLOC_PIN( h_R,    float, n2     );
            
            TESTING_MALLOC_DEV( d_A,    float, ldda*N );
            
            if ( opts.version == 1 || opts.version == 3 ) {
                size = (2*min(M, N) + magma_roundup( N, 32 ) )*nb;
                TESTING_MALLOC_DEV( dT, float, size );
                magmablas_slaset( MagmaFull, size, 1, c_zero, c_zero, dT, size );
            }
            
            /* Initialize the matrix */
            lapackf77_slarnv( &ione, ISEED, &n2, h_A );
            lapackf77_slacpy( MagmaFullStr, &M, &N, h_A, &lda, h_R, &lda );
            magma_ssetmatrix( M, N, h_R, lda, d_A, ldda );
            
            /* ====================================================================
               Performs operation using MAGMA
               =================================================================== */
            nb = magma_get_sgeqrf_nb( M, N );
            
            gpu_time = magma_wtime();
            if ( opts.version == 1 ) {
                // stores dT, V blocks have zeros, R blocks inverted & stored in dT
                magma_sgeqrf_gpu( M, N, d_A, ldda, tau, dT, &info );
            }
            else if ( opts.version == 2 ) {
                // LAPACK complaint arguments
                magma_sgeqrf2_gpu( M, N, d_A, ldda, tau, &info );
            }
            #ifdef HAVE_CUBLAS
            else if ( opts.version == 3 ) {
                // stores dT, V blocks have zeros, R blocks stored in dT
                magma_sgeqrf3_gpu( M, N, d_A, ldda, tau, dT, &info );
            }
            #endif
            else {
                printf( "Unknown version %d\n", (int) opts.version );
                return -1;
            }
            gpu_time = magma_wtime() - gpu_time;
            gpu_perf = gflops / gpu_time;
            if (info != 0) {
                printf("magma_sgeqrf returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            }
            
            if ( opts.check == 1 && (opts.version == 2 || opts.version == 3) ) {
                if ( opts.version == 3 ) {
                    // copy diagonal blocks of R back to A
                    for( int i=0; i < min_mn-nb; i += nb ) {
                        magma_int_t ib = min( min_mn-i, nb );
                        magmablas_slacpy( MagmaUpper, ib, ib, &dT[min_mn*nb + i*nb], nb, &d_A[ i + i*ldda ], ldda );
                    }
                }
                
                /* =====================================================================
                   Check the result, following zqrt01 except using the reduced Q.
                   This works for any M,N (square, tall, wide).
                   Only for version 2, which has LAPACK complaint output.
                   Or   for version 3, after restoring diagonal blocks of A above.
                   =================================================================== */
                magma_sgetmatrix( M, N, d_A, ldda, h_R, lda );
                
                magma_int_t ldq = M;
                magma_int_t ldr = min_mn;
                float *Q, *R;
                float *work;
                TESTING_MALLOC_CPU( Q,    float, ldq*min_mn );  // M by K
                TESTING_MALLOC_CPU( R,    float, ldr*N );       // K by N
                TESTING_MALLOC_CPU( work, float,             min_mn );
                
                // generate M by K matrix Q, where K = min(M,N)
                lapackf77_slacpy( "Lower", &M, &min_mn, h_R, &lda, Q, &ldq );
                lapackf77_sorgqr( &M, &min_mn, &min_mn, Q, &ldq, tau, h_work, &lwork, &info );
                assert( info == 0 );
                
                // copy K by N matrix R
                lapackf77_slaset( "Lower", &min_mn, &N, &c_zero, &c_zero, R, &ldr );
                lapackf77_slacpy( "Upper", &min_mn, &N, h_R, &lda,        R, &ldr );
                
                // error = || R - Q^H*A || / (N * ||A||)
                blasf77_sgemm( "Conj", "NoTrans", &min_mn, &N, &M,
                               &c_neg_one, Q, &ldq, h_A, &lda, &c_one, R, &ldr );
                Anorm = lapackf77_slange( "1", &M,      &N, h_A, &lda, work );
                error = lapackf77_slange( "1", &min_mn, &N, R,   &ldr, work );
                if ( N > 0 && Anorm > 0 )
                    error /= (N*Anorm);
                
                // set R = I (K by K identity), then R = I - Q^H*Q
                // error = || I - Q^H*Q || / N
                lapackf77_slaset( "Upper", &min_mn, &min_mn, &c_zero, &c_one, R, &ldr );
                blasf77_ssyrk( "Upper", "Conj", &min_mn, &M, &d_neg_one, Q, &ldq, &d_one, R, &ldr );
                error2 = safe_lapackf77_slansy( "1", "Upper", &min_mn, R, &ldr, work );
                if ( N > 0 )
                    error2 /= N;
                
                TESTING_FREE_CPU( Q    );  Q    = NULL;
                TESTING_FREE_CPU( R    );  R    = NULL;
                TESTING_FREE_CPU( work );  work = NULL;
            }
            else if ( opts.check == 2 && M >= N && (opts.version == 1 || opts.version == 3) ) {
                /* =====================================================================
                   Check the result by solving consistent linear system, A*x = b.
                   Only for versions 1 & 3 with M >= N.
                   =================================================================== */
                magma_int_t lwork2;
                float *x, *b, *hwork;
                magmaFloat_ptr d_B;

                // initialize RHS, b = A*random
                TESTING_MALLOC_CPU( x, float, N );
                TESTING_MALLOC_CPU( b, float, M );
                lapackf77_slarnv( &ione, ISEED, &N, x );
                blasf77_sgemv( "Notrans", &M, &N, &c_one, h_A, &lda, x, &ione, &c_zero, b, &ione );
                // copy to GPU
                TESTING_MALLOC_DEV( d_B, float, M );
                magma_ssetvector( M, b, 1, d_B, 1 );

                if ( opts.version == 1 ) {
                    // allocate hwork
                    magma_sgeqrs_gpu( M, N, 1,
                                      d_A, ldda, tau, dT,
                                      d_B, M, tmp, -1, &info );
                    lwork2 = (magma_int_t)MAGMA_S_REAL( tmp[0] );
                    TESTING_MALLOC_CPU( hwork, float, lwork2 );

                    // solve linear system
                    magma_sgeqrs_gpu( M, N, 1,
                                      d_A, ldda, tau, dT,
                                      d_B, M, hwork, lwork2, &info );
                    if (info != 0) {
                        printf("magma_sgeqrs returned error %d: %s.\n",
                               (int) info, magma_strerror( info ));
                    }
                    TESTING_FREE_CPU( hwork );
                }
                #ifdef HAVE_CUBLAS
                else if ( opts.version == 3 ) {
                    // allocate hwork
                    magma_sgeqrs3_gpu( M, N, 1,
                                       d_A, ldda, tau, dT,
                                       d_B, M, tmp, -1, &info );
                    lwork2 = (magma_int_t)MAGMA_S_REAL( tmp[0] );
                    TESTING_MALLOC_CPU( hwork, float, lwork2 );

                    // solve linear system
                    magma_sgeqrs3_gpu( M, N, 1,
                                       d_A, ldda, tau, dT,
                                       d_B, M, hwork, lwork2, &info );
                    if (info != 0) {
                        printf("magma_sgeqrs3 returned error %d: %s.\n",
                               (int) info, magma_strerror( info ));
                    }
                    TESTING_FREE_CPU( hwork );
                }
                #endif
                else {
                    printf( "Unknown version %d\n", (int) opts.version );
                    return -1;
                }
                magma_sgetvector( N, d_B, 1, x, 1 );

                // compute r = Ax - b, saved in b
                blasf77_sgemv( "Notrans", &M, &N, &c_one, h_A, &lda, x, &ione, &c_neg_one, b, &ione );

                // compute residual |Ax - b| / (max(m,n)*|A|*|x|)
                float norm_x, norm_A, norm_r, work[1];
                norm_A = lapackf77_slange( "F", &M, &N, h_A, &lda, work );
                norm_r = lapackf77_slange( "F", &M, &ione, b, &M, work );
                norm_x = lapackf77_slange( "F", &N, &ione, x, &N, work );

                TESTING_FREE_CPU( x );
                TESTING_FREE_CPU( b );
                TESTING_FREE_DEV( d_B );

                error = norm_r / (max(M,N) * norm_A * norm_x);
            }
            
            /* =====================================================================
               Performs operation using LAPACK
               =================================================================== */
            if ( opts.lapack ) {
                cpu_time = magma_wtime();
                lapackf77_sgeqrf( &M, &N, h_A, &lda, tau, h_work, &lwork, &info );
                cpu_time = magma_wtime() - cpu_time;
                cpu_perf = gflops / cpu_time;
                if (info != 0) {
                    printf("lapackf77_sgeqrf returned error %d: %s.\n",
                           (int) info, magma_strerror( info ));
                }
            }
            
            /* =====================================================================
               Print performance and error.
               =================================================================== */
            printf("%5d %5d   ", (int) M, (int) N );
            if ( opts.lapack ) {
                printf( "%7.2f (%7.2f)", cpu_perf, cpu_time );
            }
            else {
                printf("  ---   (  ---  )" );
            }
            printf( "   %7.2f (%7.2f)   ", gpu_perf, gpu_time );
            if ( opts.check == 1 ) {
                bool okay = (error < tol && error2 < tol);
                status += ! okay;
                printf( "%11.2e   %11.2e   %s\n", error, error2, (okay ? "ok" : "failed") );
            }
            else if ( opts.check == 2 ) {
                if ( M >= N ) {
                    bool okay = (error < tol);
                    status += ! okay;
                    printf( "%10.2e   %s\n", error, (okay ? "ok" : "failed") );
                }
                else {
                    printf( "(error check only for M >= N)\n" );
                }
            }
            else {
                printf( "    ---\n" );
            }
            
            TESTING_FREE_CPU( tau    );
            TESTING_FREE_CPU( h_A    );
            TESTING_FREE_CPU( h_work );
            
            TESTING_FREE_PIN( h_R );
            
            TESTING_FREE_DEV( d_A );
            
            if ( opts.version == 1 || opts.version == 3 ) {
                TESTING_FREE_DEV( dT );
            }
            
            fflush( stdout );
        }
        if ( opts.niter > 1 ) {
            printf( "\n" );
        }
    }
    
    opts.cleanup();
    TESTING_FINALIZE();
    return status;
}
Esempio n. 9
0
/***************************************************************************//**
    Purpose
    -------
    SGEHRD reduces a REAL general matrix A to upper Hessenberg form H by
    an orthogonal similarity transformation:  Q' * A * Q = H . This version
    stores the triangular matrices used in the factorization so that they can
    be applied directly (i.e., without being recomputed) later. As a result,
    the application of Q is much faster.

    Arguments
    ---------
    @param[in]
    n       INTEGER
            The order of the matrix A.  N >= 0.

    @param[in]
    ilo     INTEGER
    @param[in]
    ihi     INTEGER
            It is assumed that A is already upper triangular in rows
            and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
            set by a previous call to SGEBAL; otherwise they should be
            set to 1 and N respectively. See Further Details.
            1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.

    @param[in,out]
    A       REAL array, dimension (LDA,N)
            On entry, the N-by-N general matrix to be reduced.
            On exit, the upper triangle and the first subdiagonal of A
            are overwritten with the upper Hessenberg matrix H, and the
            elements below the first subdiagonal, with the array TAU,
            represent the orthogonal matrix Q as a product of elementary
            reflectors. See Further Details.

    @param[in]
    lda     INTEGER
            The leading dimension of the array A.  LDA >= max(1,N).

    @param[out]
    tau     REAL array, dimension (N-1)
            The scalar factors of the elementary reflectors (see Further
            Details). Elements 1:ILO-1 and IHI:N-1 of TAU are set to
            zero.

    @param[out]
    work    (workspace) REAL array, dimension (LWORK)
            On exit, if INFO = 0, WORK[0] returns the optimal LWORK.

    @param[in]
    lwork   INTEGER
            The length of the array WORK.  LWORK >= N*NB.
            where NB is the optimal blocksize.
    \n
            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal size of the WORK array, returns
            this value as the first entry of the WORK array, and no error
            message related to LWORK is issued by XERBLA.

    @param[out]
    T       REAL array, dimension NB*N,
            where NB is the optimal blocksize. It stores the NB*NB blocks
            of the triangular T matrices used in the reduction.

    @param[out]
    info    INTEGER
      -     = 0:  successful exit
      -     < 0:  if INFO = -i, the i-th argument had an illegal value.

    Further Details
    ---------------
    The matrix Q is represented as a product of (ihi-ilo) elementary
    reflectors

        Q = H(ilo) H(ilo+1) . . . H(ihi-1).

    Each H(i) has the form

        H(i) = I - tau * v * v'

    where tau is a real scalar, and v is a real vector with
    v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on
    exit in A(i+2:ihi,i), and tau in TAU(i).

    The contents of A are illustrated by the following example, with
    n = 7, ilo = 2 and ihi = 6:

    @verbatim
    on entry,                        on exit,

    ( a   a   a   a   a   a   a )    (  a   a   h   h   h   h   a )
    (     a   a   a   a   a   a )    (      a   h   h   h   h   a )
    (     a   a   a   a   a   a )    (      h   h   h   h   h   h )
    (     a   a   a   a   a   a )    (      v2  h   h   h   h   h )
    (     a   a   a   a   a   a )    (      v2  v3  h   h   h   h )
    (     a   a   a   a   a   a )    (      v2  v3  v4  h   h   h )
    (                         a )    (                          a )
    @endverbatim

    where a denotes an element of the original matrix A, h denotes a
    modified element of the upper Hessenberg matrix H, and vi denotes an
    element of the vector defining H(i).

    This implementation follows the hybrid algorithm and notations described in

    S. Tomov and J. Dongarra, "Accelerating the reduction to upper Hessenberg
    form through hybrid GPU-based computing," University of Tennessee Computer
    Science Technical Report, UT-CS-09-642 (also LAPACK Working Note 219),
    May 24, 2009.

    This version stores the T matrices, for later use in magma_sorghr.

    @ingroup magma_gehrd
*******************************************************************************/
extern "C" magma_int_t
magma_sgehrd_m(
    magma_int_t n, magma_int_t ilo, magma_int_t ihi,
    float *A, magma_int_t lda,
    float *tau,
    float *work, magma_int_t lwork,
    float *T,
    magma_int_t *info)
{
    #define  A( i, j )      (A + (i) + (j)*lda)
    #define dA( dev, i, j ) (data.dA[dev] + (i) + (j)*ldda)

    float c_one  = MAGMA_S_ONE;
    float c_zero = MAGMA_S_ZERO;

    magma_int_t nb = magma_get_sgehrd_nb(n);

    magma_int_t nh, iws, ldda, min_lblocks, max_lblocks, last_dev, dev;
    magma_int_t dpanel, di, nlocal, i, i2, ib, ldwork;
    magma_int_t iinfo;
    magma_int_t lquery;
    struct sgehrd_data data;

    magma_int_t ngpu = magma_num_gpus();
    
    *info = 0;
    iws = n*(nb + nb*ngpu);
    work[0] = magma_smake_lwork( iws );

    lquery = (lwork == -1);
    if (n < 0) {
        *info = -1;
    } else if (ilo < 1 || ilo > max(1,n)) {
        *info = -2;
    } else if (ihi < min(ilo,n) || ihi > n) {
        *info = -3;
    } else if (lda < max(1,n)) {
        *info = -5;
    } else if (lwork < iws && ! lquery) {
        *info = -8;
    }
    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery)
        return *info;

    // Adjust from 1-based indexing
    ilo -= 1;
    
    // Quick return if possible
    nh = ihi - ilo;
    if (nh <= 1) {
        work[0] = c_one;
        return *info;
    }
    
    magma_device_t orig_dev;
    magma_getdevice( &orig_dev );

    // Set elements 0:ILO-1 and IHI-1:N-2 of TAU to zero
    for (i = 0; i < ilo; ++i)
        tau[i] = c_zero;

    for (i = max(0,ihi-1); i < n-1; ++i)
        tau[i] = c_zero;

    // set T to zero
    lapackf77_slaset( "Full", &nb, &n, &c_zero, &c_zero, T, &nb );

    // set to null, to simplify cleanup code
    for( dev = 0; dev < ngpu; ++dev ) {
        data.dA[dev]     = NULL;
        data.queues[dev] = NULL;
    }
    
    // Now requires lwork >= iws; else dT won't be computed in unblocked code.
    // If not enough workspace, use unblocked code
    //if ( lwork < iws ) {
    //    nb = 1;
    //}
    
    if (nb == 1 || nb >= nh) {
        // Use unblocked code below
        i = ilo;
    }
    else {
        // Use blocked code
        // allocate memory on GPUs for A and workspaces
        ldda = magma_roundup( n, 32 );
        min_lblocks = (n     / nb) / ngpu;
        max_lblocks = ((n-1) / nb) / ngpu + 1;
        last_dev    = (n     / nb) % ngpu;
        
        // V and Vd need to be padded for copying in mslahr2
        data.ngpu = ngpu;
        data.ldda = ldda;
        data.ldv  = nb*max_lblocks*ngpu;
        data.ldvd = nb*max_lblocks;
        
        for( dev = 0; dev < ngpu; ++dev ) {
            magma_setdevice( dev );
            nlocal = min_lblocks*nb;
            if ( dev < last_dev ) {
                nlocal += nb;
            }
            else if ( dev == last_dev ) {
                nlocal += (n % nb);
            }
            
            ldwork = nlocal*ldda   // A
                   + nb*data.ldv   // V
                   + nb*data.ldvd  // Vd
                   + nb*ldda       // Y
                   + nb*ldda       // W
                   + nb*nb;        // Ti
            if ( MAGMA_SUCCESS != magma_smalloc( &data.dA[dev], ldwork )) {
                *info = MAGMA_ERR_DEVICE_ALLOC;
                goto CLEANUP;
            }
            data.dV [dev] = data.dA [dev] + nlocal*ldda;
            data.dVd[dev] = data.dV [dev] + nb*data.ldv;
            data.dY [dev] = data.dVd[dev] + nb*data.ldvd;
            data.dW [dev] = data.dY [dev] + nb*ldda;
            data.dTi[dev] = data.dW [dev] + nb*ldda;
            
            magma_queue_create( dev, &data.queues[dev] );
        }
        
        // Copy the matrix to GPUs
        magma_ssetmatrix_1D_col_bcyclic( ngpu, n, n, nb, A, lda, data.dA, ldda, data.queues );
        
        // round ilo down to block boundary
        ilo = (ilo/nb)*nb;
        for (i = ilo; i < ihi - 1 - nb; i += nb) {
            //   Reduce columns i:i+nb-1 to Hessenberg form, returning the
            //   matrices V and T of the block reflector H = I - V*T*V'
            //   which performs the reduction, and also the matrix Y = A*V*T
            
            //   Get the current panel (no need for the 1st iteration)
            dpanel =  (i / nb) % ngpu;
            di     = ((i / nb) / ngpu) * nb;
            if ( i > ilo ) {
                magma_setdevice( dpanel );
                magma_sgetmatrix( ihi-i, nb,
                                  dA(dpanel, i, di), ldda,
                                  A(i,i),            lda, data.queues[dpanel] );
            }
            
            // add 1 to i for 1-based index
            magma_slahr2_m( ihi, i+1, nb, A(0,i), lda,
                            &tau[i], &T[i*nb], nb, work, n, &data );
            
            magma_slahru_m( n, ihi, i, nb, A, lda, &data );
            
            // copy first i rows above panel to host
            magma_setdevice( dpanel );
            magma_sgetmatrix_async( i, nb,
                                    dA(dpanel, 0, di), ldda,
                                    A(0,i),            lda, data.queues[dpanel] );
        }
        
        // Copy remainder to host, block-by-block
        for( i2 = i; i2 < n; i2 += nb ) {
            ib = min( nb, n-i2 );
            dev = (i2 / nb) % ngpu;
            di  = (i2 / nb) / ngpu * nb;
            magma_setdevice( dev );
            magma_sgetmatrix( n, ib,
                              dA(dev, 0, di), ldda,
                              A(0,i2),        lda, data.queues[dev] );
        }
    }

    // Use unblocked code to reduce the rest of the matrix
    // add 1 to i for 1-based index
    i += 1;
    lapackf77_sgehd2(&n, &i, &ihi, A, &lda, tau, work, &iinfo);
    work[0] = magma_smake_lwork( iws );
    
CLEANUP:
    for( dev = 0; dev < ngpu; ++dev ) {
        magma_setdevice( dev );
        magma_free( data.dA[dev] );
        magma_queue_destroy( data.queues[dev] );
    }
    magma_setdevice( orig_dev );
    
    return *info;
} /* magma_sgehrd */
Esempio n. 10
0
extern "C" magma_int_t
magma_slaex3(magma_int_t k, magma_int_t n, magma_int_t n1, float* d,
             float* q, magma_int_t ldq, float rho,
             float* dlamda, float* q2, magma_int_t* indx,
             magma_int_t* ctot, float* w, float* s, magma_int_t* indxq,
             float* dwork,
             char range, float vl, float vu, magma_int_t il, magma_int_t iu,
             magma_int_t* info )
{
/*
    Purpose
    =======
    SLAEX3 finds the roots of the secular equation, as defined by the
    values in D, W, and RHO, between 1 and K.  It makes the
    appropriate calls to SLAED4 and then updates the eigenvectors by
    multiplying the matrix of eigenvectors of the pair of eigensystems
    being combined by the matrix of eigenvectors of the K-by-K system
    which is solved here.

    It is used in the last step when only a part of the eigenvectors
    is required.
    It compute only the required part of the eigenvectors and the rest
    is not used.

    This code makes very mild assumptions about floating point
    arithmetic. It will work on machines with a guard digit in
    add/subtract, or on those binary machines without guard digits
    which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
    It could conceivably fail on hexadecimal or decimal machines
    without guard digits, but we know of none.

    Arguments
    =========
    K       (input) INTEGER
            The number of terms in the rational function to be solved by
            SLAED4.  K >= 0.

    N       (input) INTEGER
            The number of rows and columns in the Q matrix.
            N >= K (deflation may result in N>K).

    N1      (input) INTEGER
            The location of the last eigenvalue in the leading submatrix.
            min(1,N) <= N1 <= N/2.

    D       (output) REAL array, dimension (N)
            D(I) contains the updated eigenvalues for
            1 <= I <= K.

    Q       (output) REAL array, dimension (LDQ,N)
            Initially the first K columns are used as workspace.
            On output the columns ??? to ??? contain
            the updated eigenvectors.

    LDQ     (input) INTEGER
            The leading dimension of the array Q.  LDQ >= max(1,N).

    RHO     (input) REAL
            The value of the parameter in the rank one update equation.
            RHO >= 0 required.

    DLAMDA  (input/output) REAL array, dimension (K)
            The first K elements of this array contain the old roots
            of the deflated updating problem.  These are the poles
            of the secular equation. May be changed on output by
            having lowest order bit set to zero on Cray X-MP, Cray Y-MP,
            Cray-2, or Cray C-90, as described above.

    Q2      (input) REAL array, dimension (LDQ2, N)
            The first K columns of this matrix contain the non-deflated
            eigenvectors for the split problem.

    INDX    (input) INTEGER array, dimension (N)
            The permutation used to arrange the columns of the deflated
            Q matrix into three groups (see SLAED2).
            The rows of the eigenvectors found by SLAED4 must be likewise
            permuted before the matrix multiply can take place.

    CTOT    (input) INTEGER array, dimension (4)
            A count of the total number of the various types of columns
            in Q, as described in INDX.  The fourth column type is any
            column which has been deflated.

    W       (input/output) REAL array, dimension (K)
            The first K elements of this array contain the components
            of the deflation-adjusted updating vector. Destroyed on
            output.

    S       (workspace) REAL array, dimension (N1 + 1)*K
            Will contain the eigenvectors of the repaired matrix which
            will be multiplied by the previously accumulated eigenvectors
            to update the system.

    INDXQ   (output) INTEGER array, dimension (N)
            On exit, the permutation which will reintegrate the
            subproblems back into sorted order,
            i.e. D( INDXQ( I = 1, N ) ) will be in ascending order.

    DWORK   (device workspace) REAL array, dimension (3*N*N/2+3*N)

    INFO    (output) INTEGER
            = 0:  successful exit.
            < 0:  if INFO = -i, the i-th argument had an illegal value.
            > 0:  if INFO = 1, an eigenvalue did not converge

    Further Details
    ===============
    Based on contributions by
    Jeff Rutter, Computer Science Division, University of California
    at Berkeley, USA
    Modified by Francoise Tisseur, University of Tennessee.

    ===================================================================== */

    float d_one  = 1.;
    float d_zero = 0.;
    magma_int_t ione = 1;
    magma_int_t ineg_one = -1;
    char range_[] = {range, 0};

    magma_int_t iil, iiu, rk;

    float* dq2= dwork;
    float* ds = dq2  + n*(n/2+1);
    float* dq = ds   + n*(n/2+1);
    magma_int_t lddq = n/2 + 1;

    magma_int_t i,iq2,j,n12,n2,n23,tmp,lq2;
    float temp;
    magma_int_t alleig, valeig, indeig;

    alleig = lapackf77_lsame(range_, "A");
    valeig = lapackf77_lsame(range_, "V");
    indeig = lapackf77_lsame(range_, "I");

    *info = 0;

    if(k < 0)
        *info=-1;
    else if(n < k)
        *info=-2;
    else if(ldq < max(1,n))
        *info=-6;
    else if (! (alleig || valeig || indeig))
        *info = -15;
    else {
        if (valeig) {
            if (n > 0 && vu <= vl)
                *info = -17;
        }
        else if (indeig) {
            if (il < 1 || il > max(1,n))
                *info = -18;
            else if (iu < min(n,il) || iu > n)
                *info = -19;
        }
    }


    if(*info != 0){
        magma_xerbla(__func__, -(*info));
        return MAGMA_ERR_ILLEGAL_VALUE;
    }

    // Quick return if possible
    if(k == 0)
        return MAGMA_SUCCESS;
    /*
     Modify values DLAMDA(i) to make sure all DLAMDA(i)-DLAMDA(j) can
     be computed with high relative accuracy (barring over/underflow).
     This is a problem on machines without a guard digit in
     add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).
     The following code replaces DLAMDA(I) by 2*DLAMDA(I)-DLAMDA(I),
     which on any of these machines zeros out the bottommost
     bit of DLAMDA(I) if it is 1; this makes the subsequent
     subtractions DLAMDA(I)-DLAMDA(J) unproblematic when cancellation
     occurs. On binary machines with a guard digit (almost all
     machines) it does not change DLAMDA(I) at all. On hexadecimal
     and decimal machines with a guard digit, it slightly
     changes the bottommost bits of DLAMDA(I). It does not account
     for hexadecimal or decimal machines without guard digits
     (we know of none). We use a subroutine call to compute
     2*DLAMBDA(I) to prevent optimizing compilers from eliminating
     this code.*/

    n2 = n - n1;

    n12 = ctot[0] + ctot[1];
    n23 = ctot[1] + ctot[2];

    iq2 = n1 * n12;
    lq2 = iq2 + n2 * n23;

    magma_ssetvector_async( lq2, q2, 1, dq2, 1, NULL );

#ifdef _OPENMP
    /////////////////////////////////////////////////////////////////////////////////
    //openmp implementation
    /////////////////////////////////////////////////////////////////////////////////
#ifdef ENABLE_TIMER_DIVIDE_AND_CONQUER
    magma_timestr_t start, end;
    start = get_current_time();
#endif

#pragma omp parallel private(i, j, tmp, temp)
    {
        magma_int_t id = omp_get_thread_num();
        magma_int_t tot = omp_get_num_threads();

        magma_int_t ib = (  id   * k) / tot; //start index of local loop
        magma_int_t ie = ((id+1) * k) / tot; //end index of local loop
        magma_int_t ik = ie - ib;           //number of local indices

        for(i = ib; i < ie; ++i)
            dlamda[i]=lapackf77_slamc3(&dlamda[i], &dlamda[i]) - dlamda[i];

        for(j = ib; j < ie; ++j){
            magma_int_t tmpp=j+1;
            magma_int_t iinfo = 0;
            lapackf77_slaed4(&k, &tmpp, dlamda, w, Q(0,j), &rho, &d[j], &iinfo);
            // If the zero finder fails, the computation is terminated.
            if(iinfo != 0){
#pragma omp critical (info)
                *info=iinfo;
                break;
            }
        }

#pragma omp barrier

        if(*info == 0){

#pragma omp single
            {
                //Prepare the INDXQ sorting permutation.
                magma_int_t nk = n - k;
                lapackf77_slamrg( &k, &nk, d, &ione , &ineg_one, indxq);

                //compute the lower and upper bound of the non-deflated eigenvectors
                if (valeig)
                    magma_svrange(k, d, &iil, &iiu, vl, vu);
                else if (indeig)
                    magma_sirange(k, indxq, &iil, &iiu, il, iu);
                else {
                    iil = 1;
                    iiu = k;
                }
                rk = iiu - iil + 1;
            }

            if (k == 2){
#pragma omp single
                {
                    for(j = 0; j < k; ++j){
                        w[0] = *Q(0,j);
                        w[1] = *Q(1,j);

                        i = indx[0] - 1;
                        *Q(0,j) = w[i];
                        i = indx[1] - 1;
                        *Q(1,j) = w[i];
                    }
                }

            }
            else if(k != 1){

                // Compute updated W.
                blasf77_scopy( &ik, &w[ib], &ione, &s[ib], &ione);

                // Initialize W(I) = Q(I,I)
                tmp = ldq + 1;
                blasf77_scopy( &ik, Q(ib,ib), &tmp, &w[ib], &ione);

                for(j = 0; j < k; ++j){
                    magma_int_t i_tmp = min(j, ie);
                    for(i = ib; i < i_tmp; ++i)
                        w[i] = w[i] * ( *Q(i, j) / ( dlamda[i] - dlamda[j] ) );
                    i_tmp = max(j+1, ib);
                    for(i = i_tmp; i < ie; ++i)
                        w[i] = w[i] * ( *Q(i, j) / ( dlamda[i] - dlamda[j] ) );
                }

                for(i = ib; i < ie; ++i)
                    w[i] = copysign( sqrt( -w[i] ), s[i]);

#pragma omp barrier

                //reduce the number of used threads to have enough S workspace
                tot = min(n1, omp_get_num_threads());

                if(id < tot){
                    ib = (  id   * rk) / tot + iil - 1;
                    ie = ((id+1) * rk) / tot + iil - 1;
                    ik = ie - ib;
                }
                else{
                    ib = -1;
                    ie = -1;
                    ik = -1;
                }

                // Compute eigenvectors of the modified rank-1 modification.
                for(j = ib; j < ie; ++j){
                    for(i = 0; i < k; ++i)
                        s[id*k + i] = w[i] / *Q(i,j);
                    temp = cblas_snrm2( k, s+id*k, 1);
                    for(i = 0; i < k; ++i){
                        magma_int_t iii = indx[i] - 1;
                        *Q(i,j) = s[id*k + iii] / temp;
                    }
                }
            }
        }
    }
    if (*info != 0)
        return MAGMA_SUCCESS; //??????

#ifdef ENABLE_TIMER_DIVIDE_AND_CONQUER
    end = get_current_time();
    printf("eigenvalues/vector D+zzT = %6.2f\n", GetTimerValue(start,end)/1000.);
#endif

#else
    /////////////////////////////////////////////////////////////////////////////////
    // Non openmp implementation
    /////////////////////////////////////////////////////////////////////////////////
#ifdef ENABLE_TIMER_DIVIDE_AND_CONQUER
    magma_timestr_t start, end;
    start = get_current_time();
#endif

    for(i = 0; i < k; ++i)
        dlamda[i]=lapackf77_slamc3(&dlamda[i], &dlamda[i]) - dlamda[i];

    for(j = 0; j < k; ++j){
        magma_int_t tmpp=j+1;
        magma_int_t iinfo = 0;
        lapackf77_slaed4(&k, &tmpp, dlamda, w, Q(0,j), &rho, &d[j], &iinfo);
        // If the zero finder fails, the computation is terminated.
        if(iinfo != 0)
            *info=iinfo;
    }
    if(*info != 0)
        return MAGMA_SUCCESS;

    //Prepare the INDXQ sorting permutation.
    magma_int_t nk = n - k;
    lapackf77_slamrg( &k, &nk, d, &ione , &ineg_one, indxq);

    //compute the lower and upper bound of the non-deflated eigenvectors
    if (valeig)
        magma_svrange(k, d, &iil, &iiu, vl, vu);
    else if (indeig)
        magma_sirange(k, indxq, &iil, &iiu, il, iu);
    else {
        iil = 1;
        iiu = k;
    }
    rk = iiu - iil + 1;

    if (k == 2){

        for(j = 0; j < k; ++j){
            w[0] = *Q(0,j);
            w[1] = *Q(1,j);

            i = indx[0] - 1;
            *Q(0,j) = w[i];
            i = indx[1] - 1;
            *Q(1,j) = w[i];
        }

    }
    else if(k != 1){

        // Compute updated W.
        blasf77_scopy( &k, w, &ione, s, &ione);

        // Initialize W(I) = Q(I,I)
        tmp = ldq + 1;
        blasf77_scopy( &k, q, &tmp, w, &ione);

        for(j = 0; j < k; ++j){
            for(i = 0; i < j; ++i)
                w[i] = w[i] * ( *Q(i, j) / ( dlamda[i] - dlamda[j] ) );
            for(i = j+1; i < k; ++i)
                w[i] = w[i] * ( *Q(i, j) / ( dlamda[i] - dlamda[j] ) );
        }

        for(i = 0; i < k; ++i)
            w[i] = copysign( sqrt( -w[i] ), s[i]);

        // Compute eigenvectors of the modified rank-1 modification.
        for(j = iil-1; j < iiu; ++j){
            for(i = 0; i < k; ++i)
                s[i] = w[i] / *Q(i,j);
            temp = cblas_snrm2( k, s, 1);
            for(i = 0; i < k; ++i){
                magma_int_t iii = indx[i] - 1;
                *Q(i,j) = s[iii] / temp;
            }
        }
    }

#ifdef ENABLE_TIMER_DIVIDE_AND_CONQUER
    end = get_current_time();
    printf("eigenvalues/vector D+zzT = %6.2f\n", GetTimerValue(start,end)/1000.);
#endif

#endif //_OPENMP
    // Compute the updated eigenvectors.

#ifdef ENABLE_TIMER_DIVIDE_AND_CONQUER
    start = get_current_time();
#endif
    magma_queue_sync( NULL );

    if (rk != 0){
        if( n23 != 0 ){
            if (rk < magma_get_slaed3_k()){
                lapackf77_slacpy("A", &n23, &rk, Q(ctot[0],iil-1), &ldq, s, &n23);
                blasf77_sgemm("N", "N", &n2, &rk, &n23, &d_one, &q2[iq2], &n2,
                              s, &n23, &d_zero, Q(n1,iil-1), &ldq );
            } else {
                magma_ssetmatrix( n23, rk, Q(ctot[0],iil-1), ldq, ds, n23 );
                magma_sgemm('N', 'N', n2, rk, n23, d_one, &dq2[iq2], n2, ds, n23, d_zero, dq, lddq);
                magma_sgetmatrix( n2, rk, dq, lddq, Q(n1,iil-1), ldq );
            }
        } else
            lapackf77_slaset("A", &n2, &rk, &d_zero, &d_zero, Q(n1,iil-1), &ldq);

        if( n12 != 0 ) {
            if (rk < magma_get_slaed3_k()){
                lapackf77_slacpy("A", &n12, &rk, Q(0,iil-1), &ldq, s, &n12);
                blasf77_sgemm("N", "N", &n1, &rk, &n12, &d_one, q2, &n1,
                              s, &n12, &d_zero, Q(0,iil-1), &ldq);
            } else {
                magma_ssetmatrix( n12, rk, Q(0,iil-1), ldq, ds, n12 );
                magma_sgemm('N', 'N', n1, rk, n12, d_one, dq2, n1, ds, n12, d_zero, dq, lddq);
                magma_sgetmatrix( n1, rk, dq, lddq, Q(0,iil-1), ldq );
            }
        } else
            lapackf77_slaset("A", &n1, &rk, &d_zero, &d_zero, Q(0,iil-1), &ldq);
    }
#ifdef ENABLE_TIMER_DIVIDE_AND_CONQUER
    end = get_current_time();
    printf("gemms = %6.2f\n", GetTimerValue(start,end)/1000.);
#endif

    return MAGMA_SUCCESS;
} /*magma_slaed3*/
Esempio n. 11
0
/* ////////////////////////////////////////////////////////////////////////////
   -- Testing slarfb_gpu
*/
int main( int argc, char** argv )
{
    TESTING_INIT();
    
    float c_zero    = MAGMA_S_ZERO;
    float c_one     = MAGMA_S_ONE;
    float c_neg_one = MAGMA_S_NEG_ONE;
    magma_int_t M, N, K, size, ldc, ldv, ldt, ldw, nv;
    magma_int_t ione =  1;
    magma_int_t ISEED[4] = {0,0,0,1};
    float error, work[1];
    
    // test all combinations of input parameters
    const char side[]   = { MagmaLeft,       MagmaRight    };
    const char trans[]  = { MagmaTrans,  MagmaNoTrans  };
    const char direct[] = { MagmaForward,    MagmaBackward };
    const char storev[] = { MagmaColumnwise, MagmaRowwise  };

    magma_opts opts;
    parse_opts( argc, argv, &opts );
    
    printf("    M     N     K   storev   side   direct   trans    ||R||_F / ||HC||_F\n");
    printf("========================================================================\n");
    for( int i = 0; i < opts.ntest; ++i ) {
        M = opts.msize[i];
        N = opts.nsize[i];
        K = opts.ksize[i];
        if ( M < K || N < K || K <= 0 ) {
            printf( "skipping M %d, N %d, K %d; requires M >= K, N >= K, K >= 0.\n", (int) M, (int) N, (int) K );
            continue;
        }
        for( int istor = 0; istor < 2; ++istor ) {
        for( int iside = 0; iside < 2; ++iside ) {
        for( int idir  = 0; idir  < 2; ++idir  ) {
        for( int itran = 0; itran < 2; ++itran ) {
            
            ldc = ((M+31)/32)*32;
            ldt = ((K+31)/32)*32;
            ldw = (side[iside] == MagmaLeft ? N : M);
            // (ldv, nv) get swapped later if rowwise
            ldv = (side[iside] == MagmaLeft ? M : N);
            nv  = K;
            
            // Allocate memory for matrices
            float *C, *R, *V, *T, *W;
            TESTING_MALLOC( C, float, ldc*N );
            TESTING_MALLOC( R, float, ldc*N );
            TESTING_MALLOC( V, float, ldv*K );
            TESTING_MALLOC( T, float, ldt*K );
            TESTING_MALLOC( W, float, ldw*K );
            
            float *dC, *dV, *dT, *dW;
            TESTING_DEVALLOC( dC, float, ldc*N );
            TESTING_DEVALLOC( dV, float, ldv*K );
            TESTING_DEVALLOC( dT, float, ldt*K );
            TESTING_DEVALLOC( dW, float, ldw*K );
            
            // C is M x N.
            size = ldc*N;
            lapackf77_slarnv( &ione, ISEED, &size, C );
            //printf( "C=" );  magma_sprint( M, N, C, ldc );
            
            // V is ldv x nv. See larfb docs for description.
            // if column-wise and left,  M x K
            // if column-wise and right, N x K
            // if row-wise and left,     K x M
            // if row-wise and right,    K x N
            size = ldv*nv;
            lapackf77_slarnv( &ione, ISEED, &size, V );
            if ( storev[istor] == MagmaColumnwise ) {
                if ( direct[idir] == MagmaForward ) {
                    lapackf77_slaset( MagmaUpperStr, &K, &K, &c_zero, &c_one, V, &ldv );
                }
                else {
                    lapackf77_slaset( MagmaLowerStr, &K, &K, &c_zero, &c_one, &V[(ldv-K)], &ldv );
                }
            }
            else {
                // rowwise, swap V's dimensions
                std::swap( ldv, nv );
                if ( direct[idir] == MagmaForward ) {
                    lapackf77_slaset( MagmaLowerStr, &K, &K, &c_zero, &c_one, V, &ldv );
                }
                else {
                    lapackf77_slaset( MagmaUpperStr, &K, &K, &c_zero, &c_one, &V[(nv-K)*ldv], &ldv );
                }
            }
            //printf( "# ldv %d, nv %d\n", ldv, nv );
            //printf( "V=" );  magma_sprint( ldv, nv, V, ldv );
            
            // T is K x K, upper triangular for forward, and lower triangular for backward
            magma_int_t k1 = K-1;
            size = ldt*K;
            lapackf77_slarnv( &ione, ISEED, &size, T );
            if ( direct[idir] == MagmaForward ) {
                lapackf77_slaset( MagmaLowerStr, &k1, &k1, &c_zero, &c_zero, &T[1], &ldt );
            }
            else {
                lapackf77_slaset( MagmaUpperStr, &k1, &k1, &c_zero, &c_zero, &T[1*ldt], &ldt );
            }
            //printf( "T=" );  magma_sprint( K, K, T, ldt );
            
            magma_ssetmatrix( M,   N,  C, ldc, dC, ldc );
            magma_ssetmatrix( ldv, nv, V, ldv, dV, ldv );
            magma_ssetmatrix( K,   K,  T, ldt, dT, ldt );
            
            lapackf77_slarfb( &side[iside], &trans[itran], &direct[idir], &storev[istor],
                              &M, &N, &K,
                              V, &ldv, T, &ldt, C, &ldc, W, &ldw );
            //printf( "HC=" );  magma_sprint( M, N, C, ldc );
            
            magma_slarfb_gpu( side[iside], trans[itran], direct[idir], storev[istor],
                              M, N, K,
                              dV, ldv, dT, ldt, dC, ldc, dW, ldw );
            magma_sgetmatrix( M, N, dC, ldc, R, ldc );
            //printf( "dHC=" );  magma_sprint( M, N, R, ldc );
            
            // compute relative error |HC_magma - HC_lapack| / |HC_lapack|
            error = lapackf77_slange( "Fro", &M, &N, C, &ldc, work );
            size = ldc*N;
            blasf77_saxpy( &size, &c_neg_one, C, &ione, R, &ione );
            error = lapackf77_slange( "Fro", &M, &N, R, &ldc, work ) / error;
            printf( "%5d %5d %5d      %c       %c       %c       %c      %8.2e\n",
                    (int) M, (int) N, (int) K,
                    storev[istor], side[iside], direct[idir], trans[itran], error );
            
            TESTING_FREE( C );
            TESTING_FREE( R );
            TESTING_FREE( V );
            TESTING_FREE( T );
            TESTING_FREE( W );
            
            TESTING_DEVFREE( dC );
            TESTING_DEVFREE( dV );
            TESTING_DEVFREE( dT );
            TESTING_DEVFREE( dW );
        }}}}
        printf( "\n" );
    }
    
    TESTING_FINALIZE();
    return 0;
}
Esempio n. 12
0
/**
    Purpose
    -------
    SLAHR2 reduces the first NB columns of a real general n-BY-(n-k+1)
    matrix A so that elements below the k-th subdiagonal are zero. The
    reduction is performed by an orthogonal similarity transformation
    Q' * A * Q. The routine returns the matrices V and T which determine
    Q as a block reflector I - V*T*V', and also the matrix Y = A * V.
    (Note this is different than LAPACK, which computes Y = A * V * T.)

    This is an auxiliary routine called by SGEHRD.

    Arguments
    ---------
    @param[in]
    n       INTEGER
            The order of the matrix A.

    @param[in]
    k       INTEGER
            The offset for the reduction. Elements below the k-th
            subdiagonal in the first NB columns are reduced to zero.
            K < N.

    @param[in]
    nb      INTEGER
            The number of columns to be reduced.

    @param[in,out]
    A       REAL array, dimension (LDA,N-K+1)
            On entry, the n-by-(n-k+1) general matrix A.
            On exit, the elements on and above the k-th subdiagonal in
            the first NB columns are overwritten with the corresponding
            elements of the reduced matrix; the elements below the k-th
            subdiagonal, with the array TAU, represent the matrix Q as a
            product of elementary reflectors. The other columns of A are
            unchanged. See Further Details.

    @param[in]
    lda     INTEGER
            The leading dimension of the array A.  LDA >= max(1,N).

    @param[out]
    tau     REAL array, dimension (NB)
            The scalar factors of the elementary reflectors. See Further
            Details.

    @param[out]
    T       REAL array, dimension (LDT,NB)
            The upper triangular matrix T.

    @param[in]
    ldt     INTEGER
            The leading dimension of the array T.  LDT >= NB.

    @param[out]
    Y       REAL array, dimension (LDY,NB)
            The n-by-nb matrix Y.

    @param[in]
    ldy     INTEGER
            The leading dimension of the array Y. LDY >= N.

    @param[in,out]
    data    Structure with pointers to dA, dT, dV, dW, dY
            which are distributed across multiple GPUs.

    Further Details
    ---------------
    The matrix Q is represented as a product of nb elementary reflectors

       Q = H(1) H(2) . . . H(nb).

    Each H(i) has the form

       H(i) = I - tau * v * v'

    where tau is a real scalar, and v is a real vector with
    v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in
    A(i+k+1:n,i), and tau in TAU(i).

    The elements of the vectors v together form the (n-k+1)-by-nb matrix
    V which is needed, with T and Y, to apply the transformation to the
    unreduced part of the matrix, using an update of the form:
    A := (I - V*T*V') * (A - Y*T*V').

    The contents of A on exit are illustrated by the following example
    with n = 7, k = 3 and nb = 2:

    @verbatim
       ( a   a   a   a   a )
       ( a   a   a   a   a )
       ( a   a   a   a   a )
       ( h   h   a   a   a )
       ( v1  h   a   a   a )
       ( v1  v2  a   a   a )
       ( v1  v2  a   a   a )
    @endverbatim

    where "a" denotes an element of the original matrix A, h denotes a
    modified element of the upper Hessenberg matrix H, and vi denotes an
    element of the vector defining H(i).

    This implementation follows the hybrid algorithm and notations described in

    S. Tomov and J. Dongarra, "Accelerating the reduction to upper Hessenberg
    form through hybrid GPU-based computing," University of Tennessee Computer
    Science Technical Report, UT-CS-09-642 (also LAPACK Working Note 219),
    May 24, 2009.

    @ingroup magma_sgeev_aux
    ********************************************************************/
extern "C" magma_int_t
magma_slahr2_m(
    magma_int_t n, magma_int_t k, magma_int_t nb,
    float *A, magma_int_t lda,
    float *tau,
    float *T, magma_int_t ldt,
    float *Y, magma_int_t ldy,
    struct sgehrd_data *data )
{
    #define  A(  i, j ) ( A + (i) + (j)*lda)
    #define  Y(  i, j ) ( Y + (i) + (j)*ldy)
    #define  T(  i, j ) ( T + (i) + (j)*ldt)
    #define dA(  d, i, j ) (data->A [d] + (i) + (j)*ldda)
    #define dTi( d       ) (data->Ti[d])
    #define dV(  d, i, j ) (data->V [d] + (i) + (j)*ldv )
    #define dVd( d, i, j ) (data->Vd[d] + (i) + (j)*ldvd)
    #define dY(  d, i, j ) (data->Y [d] + (i) + (j)*ldda)

    float c_zero    = MAGMA_S_ZERO;
    float c_one     = MAGMA_S_ONE;
    float c_neg_one = MAGMA_S_NEG_ONE;
    float tmp;

    magma_int_t ngpu = data->ngpu;
    magma_int_t ldda = data->ldda;
    magma_int_t ldv  = data->ldv;
    magma_int_t ldvd = data->ldvd;
    
    magma_int_t ione = 1;
    
    magma_int_t d, dki1, dn, nblocks, gblock, lblock, lgid;
    magma_int_t n_k_i_1, n_k;
    float scale;

    magma_int_t i;
    float ei = MAGMA_S_ZERO;

    magma_int_t info_data = 0;
    magma_int_t *info = &info_data;
    if (n < 0) {
        *info = -1;
    } else if (k < 0 || k >= n) {
        *info = -2;
    } else if (nb < 1 || nb > n) {
        *info = -3;
    } else if (lda < max(1,n)) {
        *info = -5;
    } else if (ldt < nb) {
        *info = -8;
    } else if (ldy < max(1,n)) {
        *info = -10;
    }
    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    
    // adjust from 1-based indexing
    k -= 1;

    // Function Body
    if (n <= 1)
        return *info;
    
    magma_device_t orig_dev;
    magma_getdevice( &orig_dev );
    
    // zero out current top block of V on all GPUs
    for( d = 0; d < ngpu; ++d ) {
        magma_setdevice( d );
        magmablas_slaset( MagmaFull, nb, nb, c_zero, c_zero, dV(d,k,0), ldv, data->queues[d] );
    }
    
    // set all Y=0
    lapackf77_slaset( "Full", &n, &nb, &c_zero, &c_zero, Y, &ldy );
    
    for (i = 0; i < nb; ++i) {
        n_k_i_1 = n - k - i - 1;
        n_k     = n - k;
        
        if (i > 0) {
            // Finish applying I - V * T * V' on right
            tmp = MAGMA_S_NEGATE( tau[i-1] );
            blasf77_saxpy( &n_k, &tmp, Y(k,i-1), &ione, A(k,i), &ione );
            
            // Apply I - V * T' * V' to this column (call it b) from the
            // left, using the last column of T as workspace, w.
            //
            // Let  V = ( V1 )   and   b = ( b1 )   (first i-1 rows)
            //          ( V2 )             ( b2 )
            // where V1 is unit lower triangular
            
            // w := b1 = A(k+1:k+i, i)
            blasf77_scopy( &i,
                           A(k+1,i), &ione,
                           T(0,nb-1), &ione );
            
            // w := V1' * b1 = VA(k+1:k+i, 0:i-1)' * w
            blasf77_strmv( "Lower", "Conj", "Unit", &i,
                           A(k+1,0), &lda,
                           T(0,nb-1), &ione );
            
            // w := w + V2'*b2 = w + VA(k+i+1:n-1, 0:i-1)' * A(k+i+1:n-1, i)
            blasf77_sgemv( "Conj", &n_k_i_1, &i,
                           &c_one, A(k+i+1,0), &lda,
                                   A(k+i+1,i), &ione,
                           &c_one, T(0,nb-1), &ione );
            
            // w := T'*w = T(0:i-1, 0:i-1)' * w
            blasf77_strmv( "Upper", "Conj", "Non-unit", &i,
                           T(0,0), &ldt,
                           T(0,nb-1), &ione );
            
            // b2 := b2 - V2*w = A(k+i+1:n-1, i) - VA(k+i+1:n-1, 0:i-1) * w
            blasf77_sgemv( "No trans", &n_k_i_1, &i,
                           &c_neg_one, A(k+i+1,0), &lda,
                                       T(0,nb-1), &ione,
                           &c_one,     A(k+i+1,i), &ione );
            
            // w := V1*w = VA(k+1:k+i, 0:i-1) * w
            blasf77_strmv( "Lower", "No trans", "Unit", &i,
                           A(k+1,0), &lda,
                           T(0,nb-1), &ione );
            
            // b1 := b1 - w = A(k+1:k+i-1, i) - w
            blasf77_saxpy( &i,
                           &c_neg_one, T(0,nb-1), &ione,
                                       A(k+1,i), &ione );
            
            // Restore diagonal element, saved below during previous iteration
            *A(k+i,i-1) = ei;
        }
        
        // Generate the elementary reflector H(i) to annihilate A(k+i+1:n-1,i)
        lapackf77_slarfg( &n_k_i_1,
                          A(k+i+1,i),
                          A(k+i+2,i), &ione, &tau[i] );
        // Save diagonal element and set to one, to simplify multiplying by V
        ei = *A(k+i+1,i);
        *A(k+i+1,i) = c_one;

        // compute yi = A vi = sum_g A{d} vi{d}
        nblocks = (n-1) / nb / ngpu + 1;
        for( d = 0; d < ngpu; ++d ) {
            magma_setdevice( d );
            
            // dV(k+i+1:n-1, i) = VA(k+i:n, i)
            magma_ssetvector_async( n_k_i_1,
                                    A(k+i+1,i), 1,
                                    dV(d, k+i+1, i), 1, data->queues[d] );
            
            // copy column of dV -> dVd, using block cyclic distribution.
            // This assumes V and Vd have been padded so that
            // a 2D matrix copy doesn't access them out-of-bounds
            gblock = k / nb;
            lblock = gblock / ngpu;
            lgid   = gblock % ngpu;
            if ( d < lgid ) {
                lblock += 1;
            }
            // treat V as (nb*ngpu) x nblock matrix, and Vd as nb x nblock matrix
            magmablas_slacpy( MagmaFull, nb, nblocks-lblock,
                              dV (d, d*nb + lblock*nb*ngpu, i), nb*ngpu,
                              dVd(d, 0    + lblock*nb,      i), nb, data->queues[d] );
            
            // convert global indices (k) to local indices (dk)
            magma_indices_1D_bcyclic( nb, ngpu, d, k+i+1, n, &dki1, &dn );
            
            // dY(k:n, i) = dA(k:n, k+i+1:n) * dV(k+i+1:n, i)
            // skip if matrix is empty
            // each GPU copies to different temporary vector in Y,
            // which are summed in separate loop below
            if ( dn-dki1 > 0 ) {
                magma_sgemv( MagmaNoTrans, n-k, dn-dki1,
                             c_one,  dA (d, k,    dki1), ldda,
                                     dVd(d, dki1,    i), 1,
                             c_zero, dY (d, k,       i), 1, data->queues[d] );
                
                // copy vector to host, storing in column nb+d of Y
                // as temporary space (Y has >= nb+ngpu columns)
                magma_sgetvector_async( n-k,
                                        dY(d, k, i), 1,
                                        Y(k, nb+d),  1, data->queues[d] );
            }
        }
        
        // while GPU is doing above Ag*v...
        // Compute T(0:i,i) = [ -tau T V' vi ]
        //                    [  tau         ]
        // T(0:i-1, i) = -tau VA(k+i+1:n-1, 0:i-1)' VA(k+i+1:n-1, i)
        scale = MAGMA_S_NEGATE( tau[i] );
        blasf77_sgemv( "Conj", &n_k_i_1, &i,
                       &scale,  A(k+i+1,0), &lda,
                                A(k+i+1,i), &ione,
                       &c_zero, T(0,i), &ione );
        // T(0:i-1, i) = T(0:i-1, 0:i-1) * T(0:i-1, i)
        blasf77_strmv( "Upper", "No trans", "Non-unit", &i,
                       T(0,0), &ldt,
                       T(0,i), &ione );
        *T(i,i) = tau[i];
        
        // apply reflectors to next column, A(i+1), on right only.
        // one axpy will be required to finish this, in the next iteration above
        if ( i > 0 && i+1 < nb ) {
            // Update next column, A(k:n,i+1), applying Q on right.
            // One axpy will be required to finish this, in the next iteration
            // above, after yi is computed.
            // This updates one more row than LAPACK does (row k),
            // making block above panel an even multiple of nb.
            // Use last column of T as workspace, w.
            magma_int_t i1 = i+1;
            
            // If real, conjugate row of V, and undo afterwards
            #ifdef COMPLEX
            lapackf77_slacgv( &i1,  A(k+i1,0), &lda );
            #endif
            // w = T(0:i, 0:i+1) * VA(k+i+1, 0:i+1)'
            // T is now rectangular, so we use gemv instead of trmv as in lapack.
            blasf77_sgemv( "No trans", &i, &i1,
                           &c_one,  T(0,0), &ldt,
                                    A(k+i1,0), &lda,
                           &c_zero, T(0,nb-1), &ione );
            #ifdef COMPLEX
            lapackf77_slacgv( &i1,  A(k+i1,0), &lda );
            #endif
            
            // A(k:n, i+1) -= Y(k:n, 0:i) * w
            blasf77_sgemv( "No trans", &n_k, &i,
                           &c_neg_one, Y(k,0), &ldy,
                                       T(0,nb-1), &ione,
                           &c_one,     A(k,i1), &ione );
        }
        
        // yi = sum_g yi{d}
        for( d = 0; d < ngpu; ++d ) {
            magma_setdevice( d );
            magma_queue_sync( data->queues[d] );
            magma_indices_1D_bcyclic( nb, ngpu, d, k+i+1, n, &dki1, &dn );
            if ( dn-dki1 > 0 ) {
                // yi = yi + yi{d}
                blasf77_saxpy( &n_k, &c_one, Y(k,nb+d), &ione, Y(k,i), &ione );
            }
        }
    }
    // Restore diagonal element
    *A(k+nb,nb-1) = ei;
    
    // compute Y = Am V = sum_g Am{d} V{d} --- top part, Y(0:k-1,:)
    for( d = 0; d < ngpu; ++d ) {
        magma_setdevice( d );
        
        // convert global indices (k) to local indices (dk)
        magma_indices_1D_bcyclic( nb, ngpu, d, k+1, n, &dki1, &dn );
        
        // dY(0:k, :) = dA(0:k, k+i+1:n-1) * dV(k+i+1:n-1, :)
        // skip if matrix is empty
        // each GPU copies to different temporary block in Y,
        // which are summed in separate loop below
        if ( dn-dki1 > 0 ) {
            magma_sgemm( MagmaNoTrans, MagmaNoTrans, k, nb, dn-dki1,
                         c_one,  dA (d, 0,    dki1), ldda,
                                 dVd(d, dki1,    0), ldvd,
                         c_zero, dY (d, 0,       0), ldda, data->queues[d] );
            
            // copy result to host, storing in columns [nb + nb*d : nb + nb*(d+1)] of Y
            // as temporary space (Y has nb + nb*ngpu columns)
            magma_sgetmatrix_async( k, nb,
                                    dY(d, 0, 0),  ldda,
                                    Y(0,nb+nb*d), ldy, data->queues[d] );
        }
    }
    
    // Y = sum_g Y{d}
    for( d = 0; d < ngpu; ++d ) {
        magma_setdevice( d );
        magma_queue_sync( 0 );
        magma_indices_1D_bcyclic( nb, ngpu, d, k+1, n, &dki1, &dn );
        if ( dn-dki1 > 0 ) {
            // Y = Y + Am V
            for( i = 0; i < nb; ++i ) {
                blasf77_saxpy( &k, &c_one, Y(0,nb+nb*d+i), &ione, Y(0,i), &ione );
            }
        }
    }
    
    // copy Y and T matrices to GPUs
    for( d = 0; d < ngpu; ++d ) {
        magma_setdevice( d );
        magma_ssetmatrix_async( n, nb, Y, ldy, dY(d, 0, 0), ldda, data->queues[d] );
        magma_ssetmatrix_async( nb, nb, T, nb, dTi(d),      nb,   data->queues[d] );
    }

    magma_setdevice( orig_dev );
    
    return *info;
} /* magma_slahr2 */
Esempio n. 13
0
/* ////////////////////////////////////////////////////////////////////////////
   -- Testing slaset
   Code is very similar to testing_slacpy.cpp
*/
int main( int argc, char** argv)
{
    TESTING_INIT();

    real_Double_t    gbytes, gpu_perf, gpu_time, cpu_perf, cpu_time;
    float           error, work[1];
    float  c_neg_one = MAGMA_S_NEG_ONE;
    float *h_A, *h_R;
    magmaFloat_ptr d_A;
    float offdiag = MAGMA_S_MAKE( 1.2000, 6.7000 );
    float diag    = MAGMA_S_MAKE( 3.1415, 2.7183 );
    magma_int_t M, N, size, lda, ldda;
    magma_int_t ione     = 1;
    magma_int_t status = 0;
    
    magma_opts opts;
    parse_opts( argc, argv, &opts );

    magma_uplo_t uplo[] = { MagmaLower, MagmaUpper, MagmaFull };

    printf("uplo      M     N   CPU GByte/s (ms)    GPU GByte/s (ms)    check\n");
    printf("=================================================================\n");
    for( int iuplo = 0; iuplo < 3; ++iuplo ) {
      for( int itest = 0; itest < opts.ntest; ++itest ) {
        for( int iter = 0; iter < opts.niter; ++iter ) {
            M = opts.msize[itest];
            N = opts.nsize[itest];
            //M += 2;  // space for insets
            //N += 2;
            lda    = M;
            ldda   = ((M+31)/32)*32;
            size   = lda*N;
            if ( uplo[iuplo] == MagmaLower || uplo[iuplo] == MagmaUpper ) {
                // save triangle (with diagonal)
                // TODO wrong for trapezoid
                gbytes = sizeof(float) * 0.5*N*(N+1) / 1e9;
            }
            else {
                // save entire matrix
                gbytes = sizeof(float) * 1.*M*N / 1e9;
            }
    
            TESTING_MALLOC_CPU( h_A, float, size   );
            TESTING_MALLOC_CPU( h_R, float, size   );
            
            TESTING_MALLOC_DEV( d_A, float, ldda*N );
            
            /* Initialize the matrix */
            for( int j = 0; j < N; ++j ) {
                for( int i = 0; i < M; ++i ) {
                    h_A[i + j*lda] = MAGMA_S_MAKE( i + j/10000., j );
                }
            }
            
            /* ====================================================================
               Performs operation using MAGMA
               =================================================================== */
            magma_ssetmatrix( M, N, h_A, lda, d_A, 0, ldda, opts.queue );
            
            gpu_time = magma_sync_wtime( 0 );
            //magmablas_slaset( uplo[iuplo], M-2, N-2, offdiag, diag, d_A+1+ldda, 0, ldda, opts.queue );  // inset by 1 row & col
            magmablas_slaset( uplo[iuplo], M, N, offdiag, diag, d_A, 0, ldda, opts.queue );
            gpu_time = magma_sync_wtime( 0 ) - gpu_time;
            gpu_perf = gbytes / gpu_time;
            
            /* =====================================================================
               Performs operation using LAPACK
               =================================================================== */
            cpu_time = magma_wtime();
            //magma_int_t M2 = M-2;  // inset by 1 row & col
            //magma_int_t N2 = N-2;
            //lapackf77_slaset( lapack_uplo_const( uplo[iuplo] ), &M2, &N2, &offdiag, &diag, h_A+1+lda, &lda );
            lapackf77_slaset( lapack_uplo_const( uplo[iuplo] ), &M, &N, &offdiag, &diag, h_A, &lda );
            cpu_time = magma_wtime() - cpu_time;
            cpu_perf = gbytes / cpu_time;
            
            if ( opts.verbose ) {
                printf( "A= " );  magma_sprint(     M, N, h_A, lda );
                printf( "dA=" );  magma_sprint_gpu( M, N, d_A, 0, ldda, opts.queue );
            }
            
            /* =====================================================================
               Check the result
               =================================================================== */
            magma_sgetmatrix( M, N, d_A, 0, ldda, h_R, lda, opts.queue );
            
            blasf77_saxpy(&size, &c_neg_one, h_A, &ione, h_R, &ione);
            error = lapackf77_slange("f", &M, &N, h_R, &lda, work);

            printf("%5s %5d %5d   %7.2f (%7.2f)   %7.2f (%7.2f)   %s\n",
                   lapack_uplo_const( uplo[iuplo] ), (int) M, (int) N,
                   cpu_perf, cpu_time*1000., gpu_perf, gpu_time*1000.,
                   (error == 0. ? "ok" : "failed") );
            status += ! (error == 0.);
            
            TESTING_FREE_CPU( h_A );
            TESTING_FREE_CPU( h_R );
            
            TESTING_FREE_DEV( d_A );
            fflush( stdout );
        }
        if ( opts.niter > 1 ) {
            printf( "\n" );
        }
      }
      printf( "\n" );
    }

    TESTING_FINALIZE();
    return status;
}
Esempio n. 14
0
/* ////////////////////////////////////////////////////////////////////////////
   -- Testing sgetri
*/
int main( int argc, char** argv )
{
    TESTING_INIT();

    // constants
    const float c_zero    = MAGMA_S_ZERO;
    const float c_one     = MAGMA_S_ONE;
    const float c_neg_one = MAGMA_S_NEG_ONE;
    
    real_Double_t   gflops, gpu_perf, gpu_time, cpu_perf, cpu_time;
    float *h_A, *h_Ainv, *h_R, *work;
    magmaFloat_ptr d_A, dwork;
    magma_int_t N, n2, lda, ldda, info, lwork, ldwork;
    magma_int_t ione     = 1;
    magma_int_t ISEED[4] = {0,0,0,1};
    float tmp;
    float error, rwork[1];
    magma_int_t *ipiv;
    magma_int_t status = 0;
    
    magma_opts opts;
    opts.parse_opts( argc, argv );
    
    float tol = opts.tolerance * lapackf77_slamch("E");
    
    printf("%%   N   CPU Gflop/s (sec)   GPU Gflop/s (sec)   ||I - A*A^{-1}||_1 / (N*cond(A))\n");
    printf("%%===============================================================================\n");
    for( int itest = 0; itest < opts.ntest; ++itest ) {
        for( int iter = 0; iter < opts.niter; ++iter ) {
            N = opts.nsize[itest];
            lda    = N;
            n2     = lda*N;
            ldda   = magma_roundup( N, opts.align );  // multiple of 32 by default
            ldwork = N * magma_get_sgetri_nb( N );
            gflops = FLOPS_SGETRI( N ) / 1e9;
            
            // query for workspace size
            lwork = -1;
            lapackf77_sgetri( &N, NULL, &lda, NULL, &tmp, &lwork, &info );
            if (info != 0) {
                printf("lapackf77_sgetri returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            }
            lwork = magma_int_t( MAGMA_S_REAL( tmp ));
            
            TESTING_MALLOC_CPU( ipiv,   magma_int_t,        N      );
            TESTING_MALLOC_CPU( work,   float, lwork  );
            TESTING_MALLOC_CPU( h_A,    float, n2     );
            TESTING_MALLOC_CPU( h_Ainv, float, n2     );
            TESTING_MALLOC_CPU( h_R,    float, n2     );
            
            TESTING_MALLOC_DEV( d_A,    float, ldda*N );
            TESTING_MALLOC_DEV( dwork,  float, ldwork );
            
            /* Initialize the matrix */
            lapackf77_slarnv( &ione, ISEED, &n2, h_A );
            
            /* Factor the matrix. Both MAGMA and LAPACK will use this factor. */
            magma_ssetmatrix( N, N, h_A, lda, d_A, ldda, opts.queue );
            magma_sgetrf_gpu( N, N, d_A, ldda, ipiv, &info );
            magma_sgetmatrix( N, N, d_A, ldda, h_Ainv, lda, opts.queue );
            if (info != 0) {
                printf("magma_sgetrf_gpu returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            }
            
            // check for exact singularity
            //h_Ainv[ 10 + 10*lda ] = MAGMA_S_MAKE( 0.0, 0.0 );
            //magma_ssetmatrix( N, N, h_Ainv, lda, d_A, ldda, opts.queue );
            
            /* ====================================================================
               Performs operation using MAGMA
               =================================================================== */
            gpu_time = magma_wtime();
            magma_sgetri_gpu( N, d_A, ldda, ipiv, dwork, ldwork, &info );
            gpu_time = magma_wtime() - gpu_time;
            gpu_perf = gflops / gpu_time;
            if (info != 0) {
                printf("magma_sgetri_gpu returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            }
            
            /* =====================================================================
               Performs operation using LAPACK
               =================================================================== */
            if ( opts.lapack ) {
                cpu_time = magma_wtime();
                lapackf77_sgetri( &N, h_Ainv, &lda, ipiv, work, &lwork, &info );
                cpu_time = magma_wtime() - cpu_time;
                cpu_perf = gflops / cpu_time;
                if (info != 0) {
                    printf("lapackf77_sgetri returned error %d: %s.\n",
                           (int) info, magma_strerror( info ));
                }
                printf( "%5d   %7.2f (%7.2f)   %7.2f (%7.2f)",
                        (int) N, cpu_perf, cpu_time, gpu_perf, gpu_time );
            }
            else {
                printf( "%5d     ---   (  ---  )   %7.2f (%7.2f)",
                        (int) N, gpu_perf, gpu_time );
            }
            
            /* =====================================================================
               Check the result
               =================================================================== */
            if ( opts.check ) {
                magma_sgetmatrix( N, N, d_A, ldda, h_Ainv, lda, opts.queue );
                
                // compute 1-norm condition number estimate, following LAPACK's zget03
                float normA, normAinv, rcond;
                normA    = lapackf77_slange( "1", &N, &N, h_A,    &lda, rwork );
                normAinv = lapackf77_slange( "1", &N, &N, h_Ainv, &lda, rwork );
                if ( normA <= 0 || normAinv <= 0 ) {
                    rcond = 0;
                    error = 1 / (tol/opts.tolerance);  // == 1/eps
                }
                else {
                    rcond = (1 / normA) / normAinv;
                    // R = I
                    // R -= A*A^{-1}
                    // err = ||I - A*A^{-1}|| / ( N ||A||*||A^{-1}|| ) = ||R|| * rcond / N, using 1-norm
                    lapackf77_slaset( "full", &N, &N, &c_zero, &c_one, h_R, &lda );
                    blasf77_sgemm( "no", "no", &N, &N, &N,
                                   &c_neg_one, h_A,    &lda,
                                               h_Ainv, &lda,
                                   &c_one,     h_R,    &lda );
                    error = lapackf77_slange( "1", &N, &N, h_R, &lda, rwork );
                    error = error * rcond / N;
                }
                
                bool okay = (error < tol);
                status += ! okay;
                printf( "   %8.2e   %s\n",
                        error, (okay ? "ok" : "failed"));
            }
            else {
                printf( "\n" );
            }
            
            TESTING_FREE_CPU( ipiv   );
            TESTING_FREE_CPU( work   );
            TESTING_FREE_CPU( h_A    );
            TESTING_FREE_CPU( h_Ainv );
            TESTING_FREE_CPU( h_R    );
            
            TESTING_FREE_DEV( d_A    );
            TESTING_FREE_DEV( dwork  );
            fflush( stdout );
        }
        if ( opts.niter > 1 ) {
            printf( "\n" );
        }
    }

    opts.cleanup();
    TESTING_FINALIZE();
    return status;
}
Esempio n. 15
0
/* ////////////////////////////////////////////////////////////////////////////
   -- Testing cheevd
*/
int main( int argc, char** argv)
{
    TESTING_INIT();

    /* Constants */
    const float d_zero = 0;
    const magma_int_t izero = 0;
    const magma_int_t ione  = 1;
    
    /* Local variables */
    real_Double_t   gpu_time, cpu_time;
    magmaFloatComplex *h_A, *h_R, *h_Z, *h_work, aux_work[1];
    #ifdef COMPLEX
    float *rwork, aux_rwork[1];
    magma_int_t lrwork;
    #endif
    float *w1, *w2, result[4]={0, 0, 0, 0}, eps, abstol;
    magma_int_t *iwork, *isuppz, *ifail, aux_iwork[1];
    magma_int_t N, n2, info, lwork, liwork, lda;
    magma_int_t ISEED[4] = {0,0,0,1};
    eps = lapackf77_slamch( "E" );
    magma_int_t status = 0;

    magma_opts opts;
    opts.parse_opts( argc, argv );

    // checking NoVec requires LAPACK
    opts.lapack |= (opts.check && opts.jobz == MagmaNoVec);
    
    magma_range_t range = MagmaRangeAll;
    if (opts.fraction != 1)
        range = MagmaRangeI;
    
    #ifdef REAL
    if (opts.version == 3 || opts.version == 4) {
        printf("%% magma_cheevr and magma_cheevx are not available for real precisions (single, float).\n");
        return status;
    }
    #endif
    
    float tol    = opts.tolerance * lapackf77_slamch("E");
    float tolulp = opts.tolerance * lapackf77_slamch("P");
    
    // pass ngpu = -1 to test multi-GPU code using 1 gpu
    magma_int_t abs_ngpu = abs( opts.ngpu );
    
    printf("%% jobz = %s, range = %s, uplo = %s, fraction = %6.4f, ngpu = %d\n",
           lapack_vec_const(opts.jobz), lapack_range_const(range), lapack_uplo_const(opts.uplo),
           opts.fraction, int(abs_ngpu) );

    printf("%%   N   CPU Time (sec)   GPU Time (sec)   |S-S_magma|   |A-USU^H|   |I-U^H U|\n");
    printf("%%============================================================================\n");
    for( int itest = 0; itest < opts.ntest; ++itest ) {
        for( int iter = 0; iter < opts.niter; ++iter ) {
            N = opts.nsize[itest];
            n2  = N*N;
            lda = N;
            abstol = 0;  // auto, in cheevr
            
            // TODO: test vl-vu range
            magma_int_t m1 = 0;
            float vl = 0;
            float vu = 0;
            magma_int_t il = 0;
            magma_int_t iu = 0;
            if (opts.fraction == 0) {
                il = max( 1, magma_int_t(0.1*N) );
                iu = max( 1, magma_int_t(0.3*N) );
            }
            else {
                il = 1;
                iu = max( 1, magma_int_t(opts.fraction*N) );
            }

            // query for workspace sizes
            if ( opts.version == 1 || opts.version == 2 ) {
                magma_cheevd( opts.jobz, opts.uplo,
                              N, NULL, lda, NULL,  // A, w
                              aux_work,  -1,
                              #ifdef COMPLEX
                              aux_rwork, -1,
                              #endif
                              aux_iwork, -1,
                              &info );
            }
            else if ( opts.version == 3 ) {
                #ifdef COMPLEX
                magma_cheevr( opts.jobz, range, opts.uplo,
                              N, NULL, lda,      // A
                              vl, vu, il, iu, abstol,
                              &m1, NULL,         // w
                              NULL, lda, NULL,   // Z, isuppz
                              aux_work,  -1,
                              #ifdef COMPLEX
                              aux_rwork, -1,
                              #endif
                              aux_iwork, -1,
                              &info );
                #endif
            }
            else if ( opts.version == 4 ) {
                #ifdef COMPLEX
                magma_cheevx( opts.jobz, range, opts.uplo,
                              N, NULL, lda,      // A
                              vl, vu, il, iu, abstol,
                              &m1, NULL,         // w
                              NULL, lda,         // Z
                              aux_work,  -1,
                              #ifdef COMPLEX
                              aux_rwork,
                              #endif
                              aux_iwork,
                              NULL,              // ifail
                              &info );
                // cheevx doesn't query rwork, iwork; set them for consistency
                aux_rwork[0] = float(7*N);
                aux_iwork[0] = float(5*N);
                #endif
            }
            lwork  = (magma_int_t) MAGMA_C_REAL( aux_work[0] );
            #ifdef COMPLEX
            lrwork = (magma_int_t) aux_rwork[0];
            #endif
            liwork = aux_iwork[0];
            
            /* Allocate host memory for the matrix */
            TESTING_MALLOC_CPU( h_A,    magmaFloatComplex, N*lda  );
            TESTING_MALLOC_CPU( w1,     float,             N      );
            TESTING_MALLOC_CPU( w2,     float,             N      );
            #ifdef COMPLEX
            TESTING_MALLOC_CPU( rwork,  float,             lrwork );
            #endif
            TESTING_MALLOC_CPU( iwork,  magma_int_t,        liwork );
            
            TESTING_MALLOC_PIN( h_R,    magmaFloatComplex, N*lda  );
            TESTING_MALLOC_PIN( h_work, magmaFloatComplex, lwork  );
            
            if (opts.version == 3) {
                TESTING_MALLOC_CPU( h_Z,    magmaFloatComplex, N*lda      );
                TESTING_MALLOC_CPU( isuppz, magma_int_t,        2*max(1,N) );
            }
            if (opts.version == 4) {
                TESTING_MALLOC_CPU( h_Z,    magmaFloatComplex, N*lda      );
                TESTING_MALLOC_CPU( ifail,  magma_int_t,        N          );
            }
            
            /* Clear eigenvalues, for |S-S_magma| check when fraction < 1. */
            lapackf77_slaset( "Full", &N, &ione, &d_zero, &d_zero, w1, &N );
            lapackf77_slaset( "Full", &N, &ione, &d_zero, &d_zero, w2, &N );
            
            /* Initialize the matrix */
            lapackf77_clarnv( &ione, ISEED, &n2, h_A );
            magma_cmake_hermitian( N, h_A, lda );
            
            lapackf77_clacpy( MagmaFullStr, &N, &N, h_A, &lda, h_R, &lda );
            
            /* ====================================================================
               Performs operation using MAGMA
               =================================================================== */
            gpu_time = magma_wtime();
            if (opts.version == 1) {
                if (opts.ngpu == 1) {
                    magma_cheevd( opts.jobz, opts.uplo,
                                  N, h_R, lda, w1,
                                  h_work, lwork,
                                  #ifdef COMPLEX
                                  rwork, lrwork,
                                  #endif
                                  iwork, liwork,
                                  &info );
                }
                else {
                    //printf( "magma_cheevd_m, ngpu %d (%d)\n", opts.ngpu, abs_ngpu );
                    magma_cheevd_m( abs_ngpu, opts.jobz, opts.uplo,
                                    N, h_R, lda, w1,
                                    h_work, lwork,
                                    #ifdef COMPLEX
                                    rwork, lrwork,
                                    #endif
                                    iwork, liwork,
                                    &info );
                }
            }
            else if ( opts.version == 2 ) {  // version 2: cheevdx computes selected eigenvalues/vectors
                if (opts.ngpu == 1) {
                    magma_cheevdx( opts.jobz, range, opts.uplo,
                                   N, h_R, lda,
                                   vl, vu, il, iu,
                                   &m1, w1,
                                   h_work, lwork,
                                   #ifdef COMPLEX
                                   rwork, lrwork,
                                   #endif
                                   iwork, liwork,
                                   &info );
                }
                else {
                    //printf( "magma_cheevdx_m, ngpu %d (%d)\n", opts.ngpu, abs_ngpu );
                    magma_cheevdx_m( abs_ngpu, opts.jobz, range, opts.uplo,
                                     N, h_R, lda,
                                     vl, vu, il, iu,
                                     &m1, w1,
                                     h_work, lwork,
                                     #ifdef COMPLEX
                                     rwork, lrwork,
                                     #endif
                                     iwork, liwork,
                                     &info );
                }
                //printf( "il %d, iu %d, m1 %d\n", il, iu, m1 );
            }
            else if ( opts.version == 3 ) {  // version 3: MRRR, computes selected eigenvalues/vectors
                // only complex version available
                #ifdef COMPLEX
                magma_cheevr( opts.jobz, range, opts.uplo,
                              N, h_R, lda,
                              vl, vu, il, iu, abstol,
                              &m1, w1,
                              h_Z, lda, isuppz,
                              h_work, lwork,
                              #ifdef COMPLEX
                              rwork, lrwork,
                              #endif
                              iwork, liwork,
                              &info );
                lapackf77_clacpy( "Full", &N, &N, h_Z, &lda, h_R, &lda );
                #endif
            }
            else if ( opts.version == 4 ) {  // version 3: cheevx (QR iteration), computes selected eigenvalues/vectors
                // only complex version available
                #ifdef COMPLEX
                magma_cheevx( opts.jobz, range, opts.uplo,
                              N, h_R, lda,
                              vl, vu, il, iu, abstol,
                              &m1, w1,
                              h_Z, lda,
                              h_work, lwork,
                              #ifdef COMPLEX
                              rwork, /*lrwork,*/
                              #endif
                              iwork, /*liwork,*/
                              ifail,
                              &info );
                lapackf77_clacpy( "Full", &N, &N, h_Z, &lda, h_R, &lda );
                #endif
            }
            gpu_time = magma_wtime() - gpu_time;
            if (info != 0) {
                printf("magma_cheevd returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            }
            
            bool okay = true;
            if ( opts.check && opts.jobz != MagmaNoVec ) {
                /* =====================================================================
                   Check the results following the LAPACK's [zcds]drvst routine.
                   A is factored as A = U S U^H and the following 3 tests computed:
                   (1)    | A - U S U^H | / ( |A| N )
                   (2)    | I - U^H U   | / ( N )
                   (3)    | S(with U) - S(w/o U) | / | S |    // currently disabled, but compares to LAPACK
                   =================================================================== */
                magmaFloatComplex *work;
                TESTING_MALLOC_CPU( work, magmaFloatComplex, 2*N*N );
                
                // e=NULL is unused since kband=0; tau=NULL is unused since itype=1
                lapackf77_chet21( &ione, lapack_uplo_const(opts.uplo), &N, &izero,
                                  h_A, &lda,
                                  w1, NULL,
                                  h_R, &lda,
                                  h_R, &lda,
                                  NULL, work,
                                  #ifdef COMPLEX
                                  rwork,
                                  #endif
                                  &result[0] );
                result[0] *= eps;
                result[1] *= eps;
                
                TESTING_FREE_CPU( work );  work=NULL;
                
                // Disable third eigenvalue check that calls routine again --
                // it obscures whether error occurs in first call above or in this call.
                // But see comparison to LAPACK below.
                //
                //lapackf77_clacpy( MagmaFullStr, &N, &N, h_A, &lda, h_R, &lda );
                //magma_cheevd( MagmaNoVec, opts.uplo,
                //              N, h_R, lda, w2,
                //              h_work, lwork,
                //              #ifdef COMPLEX
                //              rwork, lrwork,
                //              #endif
                //              iwork, liwork,
                //              &info );
                //if (info != 0) {
                //    printf("magma_cheevd returned error %d: %s.\n",
                //           (int) info, magma_strerror( info ));
                //}
                //
                //float maxw=0, diff=0;
                //for( int j=0; j < N; j++ ) {
                //    maxw = max(maxw, fabs(w1[j]));
                //    maxw = max(maxw, fabs(w2[j]));
                //    diff = max(diff, fabs(w1[j]-w2[j]));
                //}
                //result[2] = diff / (N*maxw);
            }
            
            /* =====================================================================
               Performs operation using LAPACK
               =================================================================== */
            if ( opts.lapack ) {
                cpu_time = magma_wtime();
                if ( opts.version == 1 || opts.version == 2 ) {
                    lapackf77_cheevd( lapack_vec_const(opts.jobz), lapack_uplo_const(opts.uplo),
                                      &N, h_A, &lda, w2,
                                      h_work, &lwork,
                                      #ifdef COMPLEX
                                      rwork, &lrwork,
                                      #endif
                                      iwork, &liwork,
                                      &info );
                }
                else if ( opts.version == 3 ) {
                    lapackf77_cheevr( lapack_vec_const(opts.jobz),
                                      lapack_range_const(range),
                                      lapack_uplo_const(opts.uplo),
                                      &N, h_A, &lda,
                                      &vl, &vu, &il, &iu, &abstol,
                                      &m1, w2,
                                      h_Z, &lda, isuppz,
                                      h_work, &lwork,
                                      #ifdef COMPLEX
                                      rwork, &lrwork,
                                      #endif
                                      iwork, &liwork,
                                      &info );
                    lapackf77_clacpy( "Full", &N, &N, h_Z, &lda, h_A, &lda );
                }
                else if ( opts.version == 4 ) {
                    lapackf77_cheevx( lapack_vec_const(opts.jobz),
                                      lapack_range_const(range),
                                      lapack_uplo_const(opts.uplo),
                                      &N, h_A, &lda,
                                      &vl, &vu, &il, &iu, &abstol,
                                      &m1, w2,
                                      h_Z, &lda,
                                      h_work, &lwork,
                                      #ifdef COMPLEX
                                      rwork,
                                      #endif
                                      iwork,
                                      ifail,
                                      &info );
                    lapackf77_clacpy( "Full", &N, &N, h_Z, &lda, h_A, &lda );
                }
                cpu_time = magma_wtime() - cpu_time;
                if (info != 0) {
                    printf("lapackf77_cheevd returned error %d: %s.\n",
                           (int) info, magma_strerror( info ));
                }
                
                // compare eigenvalues
                float maxw=0, diff=0;
                for( int j=0; j < N; j++ ) {
                    maxw = max(maxw, fabs(w1[j]));
                    maxw = max(maxw, fabs(w2[j]));
                    diff = max(diff, fabs(w1[j] - w2[j]));
                }
                result[3] = diff / (N*maxw);
                
                okay = okay && (result[3] < tolulp);
                printf("%5d   %9.4f        %9.4f         %8.2e  ",
                       (int) N, cpu_time, gpu_time, result[3] );
            }
            else {
                printf("%5d      ---           %9.4f           ---     ",
                       (int) N, gpu_time);
            }
            
            // print error checks
            if ( opts.check && opts.jobz != MagmaNoVec ) {
                okay = okay && (result[0] < tol) && (result[1] < tol);
                printf("    %8.2e    %8.2e", result[0], result[1] );
            }
            else {
                printf("      ---         ---   ");
            }
            printf("   %s\n", (okay ? "ok" : "failed"));
            status += ! okay;
            
            TESTING_FREE_CPU( h_A   );
            TESTING_FREE_CPU( w1    );
            TESTING_FREE_CPU( w2    );
            #ifdef COMPLEX
            TESTING_FREE_CPU( rwork );
            #endif
            TESTING_FREE_CPU( iwork );
            
            TESTING_FREE_PIN( h_R    );
            TESTING_FREE_PIN( h_work );
            
            if ( opts.version == 3 ) {
                TESTING_FREE_CPU( h_Z    );
                TESTING_FREE_CPU( isuppz );
            }
            if ( opts.version == 4 ) {
                TESTING_FREE_CPU( h_Z    );
                TESTING_FREE_CPU( ifail  );
            }
            fflush( stdout );
        }
        if ( opts.niter > 1 ) {
            printf( "\n" );
        }
    }
    
    opts.cleanup();
    TESTING_FINALIZE();
    return status;
}
Esempio n. 16
0
/**
    Purpose
    -------
    SORGQR generates an M-by-N REAL matrix Q with orthonormal columns,
    which is defined as the first N columns of a product of K elementary
    reflectors of order M

          Q  =  H(1) H(2) . . . H(k)

    as returned by SGEQRF.

    Arguments
    ---------
    @param[in]
    m       INTEGER
            The number of rows of the matrix Q. M >= 0.

    @param[in]
    n       INTEGER
            The number of columns of the matrix Q. M >= N >= 0.

    @param[in]
    k       INTEGER
            The number of elementary reflectors whose product defines the
            matrix Q. N >= K >= 0.

    @param[in,out]
    A       REAL array A, dimension (LDDA,N).
            On entry, the i-th column must contain the vector
            which defines the elementary reflector H(i), for
            i = 1,2,...,k, as returned by SGEQRF_GPU in the
            first k columns of its array argument A.
            On exit, the M-by-N matrix Q.

    @param[in]
    lda     INTEGER
            The first dimension of the array A. LDA >= max(1,M).

    @param[in]
    tau     REAL array, dimension (K)
            TAU(i) must contain the scalar factor of the elementary
            reflector H(i), as returned by SGEQRF_GPU.

    @param[in]
    dT      REAL array on the GPU device.
            DT contains the T matrices used in blocking the elementary
            reflectors H(i), e.g., this can be the 6th argument of
            magma_sgeqrf_gpu.

    @param[in]
    nb      INTEGER
            This is the block size used in SGEQRF_GPU, and correspondingly
            the size of the T matrices, used in the factorization, and
            stored in DT.

    @param[out]
    info    INTEGER
      -     = 0:  successful exit
      -     < 0:  if INFO = -i, the i-th argument has an illegal value

    @ingroup magma_sgeqrf_comp
    ********************************************************************/
extern "C" magma_int_t
magma_sorgqr(
    magma_int_t m, magma_int_t n, magma_int_t k,
    float *A, magma_int_t lda,
    float *tau,
    magmaFloat_ptr dT, magma_int_t nb,
    magma_int_t *info)
{
#define  A(i,j) ( A + (i) + (j)*lda )
#define dA(i,j) (dA + (i) + (j)*ldda)
#define dT(j)   (dT + (j)*nb)

    float c_zero = MAGMA_S_ZERO;
    float c_one  = MAGMA_S_ONE;

    magma_int_t  m_kk, n_kk, k_kk, mi;
    magma_int_t lwork, ldda;
    magma_int_t i, ib, ki, kk;  //, iinfo;
    magma_int_t lddwork;
    float *dA, *dV, *dW;
    float *work;

    *info = 0;
    if (m < 0) {
        *info = -1;
    } else if ((n < 0) || (n > m)) {
        *info = -2;
    } else if ((k < 0) || (k > n)) {
        *info = -3;
    } else if (lda < max(1,m)) {
        *info = -5;
    }
    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }

    if (n <= 0) {
        return *info;
    }

    magma_queue_t orig_stream;
    magmablasGetKernelStream( &orig_stream );

    // first kk columns are handled by blocked method.
    // ki is start of 2nd-to-last block
    if ((nb > 1) && (nb < k)) {
        ki = (k - nb - 1) / nb * nb;
        kk = min(k, ki + nb);
    } else {
        ki = 0;
        kk = 0;
    }

    // Allocate GPU work space
    // ldda*n     for matrix dA
    // ldda*nb    for dV
    // lddwork*nb for dW larfb workspace
    ldda    = ((m + 31) / 32) * 32;
    lddwork = ((n + 31) / 32) * 32;
    if (MAGMA_SUCCESS != magma_smalloc( &dA, ldda*n + ldda*nb + lddwork*nb )) {
        *info = MAGMA_ERR_DEVICE_ALLOC;
        return *info;
    }
    dV = dA + ldda*n;
    dW = dA + ldda*n + ldda*nb;

    // Allocate CPU work space
    lwork = (n+m+nb) * nb;
    magma_smalloc_cpu( &work, lwork );
    if (work == NULL) {
        magma_free( dA );
        *info = MAGMA_ERR_HOST_ALLOC;
        return *info;
    }
    float *V = work + (n+nb)*nb;

    magma_queue_t stream;
    magma_queue_create( &stream );

    // Use unblocked code for the last or only block.
    if (kk < n) {
        m_kk = m - kk;
        n_kk = n - kk;
        k_kk = k - kk;
        /*
            // Replacing this with the following 4 routines works but sorgqr is slow for
            // k smaller than the sorgqr's blocking size (new version can be up to 60x faster)
            lapackf77_sorgqr( &m_kk, &n_kk, &k_kk,
                              A(kk, kk), &lda,
                              &tau[kk], work, &lwork, &iinfo );
        */
        lapackf77_slacpy( MagmaUpperLowerStr, &m_kk, &k_kk, A(kk,kk), &lda, V, &m_kk);
        lapackf77_slaset( MagmaUpperLowerStr, &m_kk, &n_kk, &c_zero, &c_one, A(kk, kk), &lda );

        lapackf77_slarft( MagmaForwardStr, MagmaColumnwiseStr,
                          &m_kk, &k_kk,
                          V, &m_kk, &tau[kk], work, &k_kk);
        lapackf77_slarfb( MagmaLeftStr, MagmaNoTransStr, MagmaForwardStr, MagmaColumnwiseStr,
                          &m_kk, &n_kk, &k_kk,
                          V, &m_kk, work, &k_kk, A(kk, kk), &lda, work+k_kk*k_kk, &n_kk );

        if (kk > 0) {
            magma_ssetmatrix( m_kk, n_kk,
                              A(kk, kk),  lda,
                              dA(kk, kk), ldda );

            // Set A(1:kk,kk+1:n) to zero.
            magmablas_slaset( MagmaFull, kk, n - kk, c_zero, c_zero, dA(0, kk), ldda );
        }
    }

    if (kk > 0) {
        // Use blocked code
        // stream: set Aii (V) --> laset --> laset --> larfb --> [next]
        // CPU has no computation
        magmablasSetKernelStream( stream );

        for (i = ki; i >= 0; i -= nb) {
            ib = min(nb, k - i);

            // Send current panel to the GPU
            mi = m - i;
            lapackf77_slaset( "Upper", &ib, &ib, &c_zero, &c_one, A(i, i), &lda );
            magma_ssetmatrix_async( mi, ib,
                                    A(i, i), lda,
                                    dV,      ldda, stream );

            // set panel to identity
            magmablas_slaset( MagmaFull, i,  ib, c_zero, c_zero, dA(0, i), ldda );
            magmablas_slaset( MagmaFull, mi, ib, c_zero, c_one,  dA(i, i), ldda );

            if (i < n) {
                // Apply H to A(i:m,i:n) from the left
                magma_slarfb_gpu( MagmaLeft, MagmaNoTrans, MagmaForward, MagmaColumnwise,
                                  mi, n-i, ib,
                                  dV,       ldda, dT(i), nb,
                                  dA(i, i), ldda, dW, lddwork );
            }
        }

        // copy result back to CPU
        magma_sgetmatrix( m, n,
                          dA(0, 0), ldda, A(0, 0), lda);
    }

    magma_queue_destroy( stream );
    magma_free( dA );
    magma_free_cpu( work );

    magmablasSetKernelStream( orig_stream );

    return *info;
} /* magma_sorgqr */
Esempio n. 17
0
int main(int argc, char **argv)
{
    TESTING_INIT();

    const float c_neg_one = MAGMA_S_NEG_ONE;
    const magma_int_t        ione      = 1;
    
    real_Double_t   atomics_perf, atomics_time;
    real_Double_t   gflops, magma_perf, magma_time, cublas_perf, cublas_time, cpu_perf, cpu_time;
    float          magma_error, atomics_error, cublas_error, work[1];
    magma_int_t ISEED[4] = {0,0,0,1};
    magma_int_t N, lda, ldda, sizeA, sizeX, sizeY, blocks, ldwork;
    magma_int_t incx = 1;
    magma_int_t incy = 1;
    magma_int_t nb   = 64;
    float alpha = MAGMA_S_MAKE(  1.5, -2.3 );
    float beta  = MAGMA_S_MAKE( -0.6,  0.8 );
    float *A, *X, *Y, *Yatomics, *Ycublas, *Ymagma;
    magmaFloat_ptr dA, dX, dY, dwork;
    magma_int_t status = 0;
    
    magma_opts opts;
    parse_opts( argc, argv, &opts );
    
    float tol = opts.tolerance * lapackf77_slamch("E");

    printf("uplo = %s\n", lapack_uplo_const(opts.uplo) );
    printf("    N   MAGMA Gflop/s (ms)    Atomics Gflop/s      CUBLAS Gflop/s       CPU Gflop/s   MAGMA error  Atomics    CUBLAS\n");
    printf("======================================================================================================================\n");
    for( int itest = 0; itest < opts.ntest; ++itest ) {
        for( int iter = 0; iter < opts.niter; ++iter ) {
            N = opts.nsize[itest];
            lda    = N;
            ldda   = ((N + 31)/32)*32;
            sizeA  = N*lda;
            sizeX  = N*incx;
            sizeY  = N*incy;
            gflops = FLOPS_SSYMV( N ) / 1e9;
            
            TESTING_MALLOC_CPU( A,        float, sizeA );
            TESTING_MALLOC_CPU( X,        float, sizeX );
            TESTING_MALLOC_CPU( Y,        float, sizeY );
            TESTING_MALLOC_CPU( Yatomics, float, sizeY );
            TESTING_MALLOC_CPU( Ycublas,  float, sizeY );
            TESTING_MALLOC_CPU( Ymagma,   float, sizeY );
            
            TESTING_MALLOC_DEV( dA, float, ldda*N );
            TESTING_MALLOC_DEV( dX, float, sizeX );
            TESTING_MALLOC_DEV( dY, float, sizeY );
            
            blocks = (N + nb - 1) / nb;
            ldwork = ldda*blocks;
            TESTING_MALLOC_DEV( dwork, float, ldwork );
            
            magmablas_slaset( MagmaFull, ldwork, 1, MAGMA_S_NAN, MAGMA_S_NAN, dwork, ldwork );
            magmablas_slaset( MagmaFull, ldda,   N, MAGMA_S_NAN, MAGMA_S_NAN, dA,    ldda   );
            
            /* Initialize the matrix */
            lapackf77_slarnv( &ione, ISEED, &sizeA, A );
            magma_smake_symmetric( N, A, lda );
            
            // should not use data from the opposite triangle -- fill with NAN to check
            magma_int_t N1 = N-1;
            if ( opts.uplo == MagmaUpper ) {
                lapackf77_slaset( "Lower", &N1, &N1, &MAGMA_S_NAN, &MAGMA_S_NAN, &A[1], &lda );
            }
            else {
                lapackf77_slaset( "Upper", &N1, &N1, &MAGMA_S_NAN, &MAGMA_S_NAN, &A[lda], &lda );
            }
            
            lapackf77_slarnv( &ione, ISEED, &sizeX, X );
            lapackf77_slarnv( &ione, ISEED, &sizeY, Y );
            
            /* =====================================================================
               Performs operation using CUBLAS
               =================================================================== */
            magma_ssetmatrix( N, N, A, lda, dA, ldda );
            magma_ssetvector( N, X, incx, dX, incx );
            magma_ssetvector( N, Y, incy, dY, incy );
            
            cublas_time = magma_sync_wtime( 0 );
            cublasSsymv( opts.handle, cublas_uplo_const(opts.uplo),
                         N, &alpha, dA, ldda, dX, incx, &beta, dY, incy );
            cublas_time = magma_sync_wtime( 0 ) - cublas_time;
            cublas_perf = gflops / cublas_time;
            
            magma_sgetvector( N, dY, incy, Ycublas, incy );
            
            /* =====================================================================
               Performs operation using CUBLAS - using atomics
               =================================================================== */
            cublasSetAtomicsMode( opts.handle, CUBLAS_ATOMICS_ALLOWED );
            magma_ssetvector( N, Y, incy, dY, incy );
            
            atomics_time = magma_sync_wtime( 0 );
            cublasSsymv( opts.handle, cublas_uplo_const(opts.uplo),
                         N, &alpha, dA, ldda, dX, incx, &beta, dY, incy );
            atomics_time = magma_sync_wtime( 0 ) - atomics_time;
            atomics_perf = gflops / atomics_time;
            
            magma_sgetvector( N, dY, incy, Yatomics, incy );
            cublasSetAtomicsMode( opts.handle, CUBLAS_ATOMICS_NOT_ALLOWED );
            
            /* =====================================================================
               Performs operation using MAGMABLAS
               =================================================================== */
            magma_ssetvector( N, Y, incy, dY, incy );
            
            magma_time = magma_sync_wtime( 0 );
            if ( opts.version == 1 ) {
                magmablas_ssymv_work( opts.uplo, N, alpha, dA, ldda, dX, incx, beta, dY, incy, dwork, ldwork, opts.queue );
            }
            else {
                // non-work interface (has added overhead)
                magmablas_ssymv( opts.uplo, N, alpha, dA, ldda, dX, incx, beta, dY, incy );
            }
            magma_time = magma_sync_wtime( 0 ) - magma_time;
            magma_perf = gflops / magma_time;
            
            magma_sgetvector( N, dY, incy, Ymagma, incy );
            
            /* =====================================================================
               Performs operation using CPU BLAS
               =================================================================== */
            cpu_time = magma_wtime();
            blasf77_ssymv( lapack_uplo_const(opts.uplo), &N, &alpha, A, &lda, X, &incx, &beta, Y, &incy );
            cpu_time = magma_wtime() - cpu_time;
            cpu_perf = gflops / cpu_time;
            
            /* =====================================================================
               Check the result
               =================================================================== */
            blasf77_saxpy( &N, &c_neg_one, Y, &incy, Ymagma, &incy );
            magma_error = lapackf77_slange( "M", &N, &ione, Ymagma, &N, work ) / N;
            
            blasf77_saxpy( &N, &c_neg_one, Y, &incy, Ycublas, &incy );
            cublas_error = lapackf77_slange( "M", &N, &ione, Ycublas, &N, work ) / N;
            
            blasf77_saxpy( &N, &c_neg_one, Y, &incy, Yatomics, &incy );
            atomics_error = lapackf77_slange( "M", &N, &ione, Yatomics, &N, work ) / N;
            
            bool ok = (magma_error < tol && cublas_error < tol && atomics_error < tol);
            status += ! ok;
            printf("%5d   %7.2f (%7.2f)   %7.2f (%7.2f)   %7.2f (%7.2f)   %7.2f (%7.2f)   %8.2e   %8.2e   %8.2e   %s\n",
                   (int) N,
                   magma_perf,   1000.*magma_time,
                   atomics_perf, 1000.*atomics_time,
                   cublas_perf,  1000.*cublas_time,
                   cpu_perf,     1000.*cpu_time,
                   magma_error, cublas_error, atomics_error,
                   (ok ? "ok" : "failed"));
            
            TESTING_FREE_CPU( A );
            TESTING_FREE_CPU( X );
            TESTING_FREE_CPU( Y );
            TESTING_FREE_CPU( Ycublas  );
            TESTING_FREE_CPU( Yatomics );
            TESTING_FREE_CPU( Ymagma   );
            
            TESTING_FREE_DEV( dA );
            TESTING_FREE_DEV( dX );
            TESTING_FREE_DEV( dY );
            TESTING_FREE_DEV( dwork );
            fflush( stdout );
        }
        if ( opts.niter > 1 ) {
            printf( "\n" );
        }
      }

    TESTING_FINALIZE();
    return status;
}
Esempio n. 18
0
/* ////////////////////////////////////////////////////////////////////////////
   -- Testing slarfb_gpu
*/
int main( int argc, char** argv )
{
    TESTING_INIT();
    
    // constants
    const float c_zero    = MAGMA_S_ZERO;
    const float c_one     = MAGMA_S_ONE;
    const float c_neg_one = MAGMA_S_NEG_ONE;
    const magma_int_t ione = 1;
    
    // local variables
    magma_int_t M, N, K, size, ldc, ldv, ldt, ldw, ldw2, nv;
    magma_int_t ISEED[4] = {0,0,0,1};
    float Cnorm, error, work[1];
    magma_int_t status = 0;
    
    // test all combinations of input parameters
    magma_side_t   side  [] = { MagmaLeft,       MagmaRight    };
    magma_trans_t  trans [] = { MagmaTrans, MagmaNoTrans  };
    magma_direct_t direct[] = { MagmaForward,    MagmaBackward };
    magma_storev_t storev[] = { MagmaColumnwise, MagmaRowwise  };

    magma_opts opts;
    opts.parse_opts( argc, argv );
    
    float tol = opts.tolerance * lapackf77_slamch("E");
    
    printf("%%   M     N     K   storev   side   direct   trans    ||R||_F / ||HC||_F\n");
    printf("%%=======================================================================\n");
    for( int itest = 0; itest < opts.ntest; ++itest ) {
      M = opts.msize[itest];
      N = opts.nsize[itest];
      K = opts.ksize[itest];
      if ( M < K || N < K || K <= 0 ) {
          printf( "%5d %5d %5d   skipping because slarfb requires M >= K, N >= K, K >= 0\n",
                  (int) M, (int) N, (int) K );
          continue;
      }
      for( int istor = 0; istor < 2; ++istor ) {
      for( int iside = 0; iside < 2; ++iside ) {
      for( int idir  = 0; idir  < 2; ++idir  ) {
      for( int itran = 0; itran < 2; ++itran ) {
        for( int iter = 0; iter < opts.niter; ++iter ) {
            ldc = magma_roundup( M, opts.align );  // multiple of 32 by default
            ldt = magma_roundup( K, opts.align );  // multiple of 32 by default
            ldw = (side[iside] == MagmaLeft ? N : M);
            ldw2 = min( M, N );
            // (ldv, nv) get swapped later if rowwise
            ldv = (side[iside] == MagmaLeft ? M : N);
            nv  = K;
            
            // Allocate memory for matrices
            float *C, *R, *V, *T, *W;
            TESTING_MALLOC_CPU( C, float, ldc*N );
            TESTING_MALLOC_CPU( R, float, ldc*N );
            TESTING_MALLOC_CPU( V, float, ldv*K );
            TESTING_MALLOC_CPU( T, float, ldt*K );
            TESTING_MALLOC_CPU( W, float, ldw*K );
            
            magmaFloat_ptr dC, dV, dT, dW, dW2;
            TESTING_MALLOC_DEV( dC,  float, ldc*N );
            TESTING_MALLOC_DEV( dV,  float, ldv*K );
            TESTING_MALLOC_DEV( dT,  float, ldt*K );
            TESTING_MALLOC_DEV( dW,  float, ldw*K );
            TESTING_MALLOC_DEV( dW2, float, ldw2*K );
            
            // C is M x N.
            size = ldc*N;
            lapackf77_slarnv( &ione, ISEED, &size, C );
            //printf( "C=" );  magma_sprint( M, N, C, ldc );
            
            // V is ldv x nv. See larfb docs for description.
            // if column-wise and left,  M x K
            // if column-wise and right, N x K
            // if row-wise and left,     K x M
            // if row-wise and right,    K x N
            size = ldv*nv;
            lapackf77_slarnv( &ione, ISEED, &size, V );
            if ( storev[istor] == MagmaColumnwise ) {
                if ( direct[idir] == MagmaForward ) {
                    lapackf77_slaset( MagmaUpperStr, &K, &K, &c_zero, &c_one, V, &ldv );
                }
                else {
                    lapackf77_slaset( MagmaLowerStr, &K, &K, &c_zero, &c_one, &V[(ldv-K)], &ldv );
                }
            }
            else {
                // rowwise, swap V's dimensions
                std::swap( ldv, nv );
                if ( direct[idir] == MagmaForward ) {
                    lapackf77_slaset( MagmaLowerStr, &K, &K, &c_zero, &c_one, V, &ldv );
                }
                else {
                    lapackf77_slaset( MagmaUpperStr, &K, &K, &c_zero, &c_one, &V[(nv-K)*ldv], &ldv );
                }
            }
            //printf( "# ldv %d, nv %d\n", ldv, nv );
            //printf( "V=" );  magma_sprint( ldv, nv, V, ldv );
            
            // T is K x K, upper triangular for forward, and lower triangular for backward
            magma_int_t k1 = K-1;
            size = ldt*K;
            lapackf77_slarnv( &ione, ISEED, &size, T );
            if ( direct[idir] == MagmaForward ) {
                lapackf77_slaset( MagmaLowerStr, &k1, &k1, &c_zero, &c_zero, &T[1], &ldt );
            }
            else {
                lapackf77_slaset( MagmaUpperStr, &k1, &k1, &c_zero, &c_zero, &T[1*ldt], &ldt );
            }
            //printf( "T=" );  magma_sprint( K, K, T, ldt );
            
            magma_ssetmatrix( M,   N,  C, ldc, dC, ldc, opts.queue );
            magma_ssetmatrix( ldv, nv, V, ldv, dV, ldv, opts.queue );
            magma_ssetmatrix( K,   K,  T, ldt, dT, ldt, opts.queue );
            
            lapackf77_slarfb( lapack_side_const( side[iside] ), lapack_trans_const( trans[itran] ),
                              lapack_direct_const( direct[idir] ), lapack_storev_const( storev[istor] ),
                              &M, &N, &K,
                              V, &ldv, T, &ldt, C, &ldc, W, &ldw );
            //printf( "HC=" );  magma_sprint( M, N, C, ldc );
            
            if ( opts.version == 1 ) {
                magma_slarfb_gpu( side[iside], trans[itran], direct[idir], storev[istor],
                                  M, N, K,
                                  dV, ldv, dT, ldt, dC, ldc, dW, ldw, opts.queue );
            }
            else {
                magma_slarfb_gpu_gemm( side[iside], trans[itran], direct[idir], storev[istor],
                                       M, N, K,
                                       dV, ldv, dT, ldt, dC, ldc, dW, ldw, dW2, ldw2, opts.queue );
            }
            magma_sgetmatrix( M, N, dC, ldc, R, ldc, opts.queue );
            //printf( "dHC=" );  magma_sprint( M, N, R, ldc );
            
            // compute relative error |HC_magma - HC_lapack| / |HC_lapack|
            size = ldc*N;
            blasf77_saxpy( &size, &c_neg_one, C, &ione, R, &ione );
            Cnorm = lapackf77_slange( "Fro", &M, &N, C, &ldc, work );
            error = lapackf77_slange( "Fro", &M, &N, R, &ldc, work ) / Cnorm;
            
            printf( "%5d %5d %5d      %c       %c       %c       %c      %8.2e   %s\n",
                    (int) M, (int) N, (int) K,
                    lapacke_storev_const(storev[istor]), lapacke_side_const(side[iside]),
                    lapacke_direct_const(direct[idir]), lapacke_trans_const(trans[itran]),
                   error, (error < tol ? "ok" : "failed") );
            status += ! (error < tol);
            
            TESTING_FREE_CPU( C );
            TESTING_FREE_CPU( R );
            TESTING_FREE_CPU( V );
            TESTING_FREE_CPU( T );
            TESTING_FREE_CPU( W );
            
            TESTING_FREE_DEV( dC  );
            TESTING_FREE_DEV( dV  );
            TESTING_FREE_DEV( dT  );
            TESTING_FREE_DEV( dW  );
            TESTING_FREE_DEV( dW2 );
            fflush( stdout );
        }
        if ( opts.niter > 1 ) {
            printf( "\n" );
        }
      }}}}
      printf( "\n" );
    }
    
    opts.cleanup();
    TESTING_FINALIZE();
    return status;
}
Esempio n. 19
0
/**
    Purpose
    -------
    SLAEX3 finds the roots of the secular equation, as defined by the
    values in D, W, and RHO, between 1 and K.  It makes the
    appropriate calls to SLAED4 and then updates the eigenvectors by
    multiplying the matrix of eigenvectors of the pair of eigensystems
    being combined by the matrix of eigenvectors of the K-by-K system
    which is solved here.

    It is used in the last step when only a part of the eigenvectors
    is required.
    It compute only the required part of the eigenvectors and the rest
    is not used.

    This code makes very mild assumptions about floating point
    arithmetic. It will work on machines with a guard digit in
    add/subtract, or on those binary machines without guard digits
    which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
    It could conceivably fail on hexadecimal or decimal machines
    without guard digits, but we know of none.

    Arguments
    ---------
    @param[in]
    ngpu    INTEGER
            Number of GPUs to use. ngpu > 0.

    @param[in]
    k       INTEGER
            The number of terms in the rational function to be solved by
            SLAED4.  K >= 0.

    @param[in]
    n       INTEGER
            The number of rows and columns in the Q matrix.
            N >= K (deflation may result in N > K).

    @param[in]
    n1      INTEGER
            The location of the last eigenvalue in the leading submatrix.
            min(1,N) <= N1 <= N/2.

    @param[out]
    d       REAL array, dimension (N)
            D(I) contains the updated eigenvalues for
            1 <= I <= K.

    @param[out]
    Q       REAL array, dimension (LDQ,N)
            Initially the first K columns are used as workspace.
            On output the columns ??? to ??? contain
            the updated eigenvectors.

    @param[in]
    ldq     INTEGER
            The leading dimension of the array Q.  LDQ >= max(1,N).

    @param[in]
    rho     REAL
            The value of the parameter in the rank one update equation.
            RHO >= 0 required.

    @param[in,out]
    dlamda  REAL array, dimension (K)
            The first K elements of this array contain the old roots
            of the deflated updating problem.  These are the poles
            of the secular equation. May be changed on output by
            having lowest order bit set to zero on Cray X-MP, Cray Y-MP,
            Cray-2, or Cray C-90, as described above.

    @param[in]
    Q2      REAL array, dimension (LDQ2, N)
            The first K columns of this matrix contain the non-deflated
            eigenvectors for the split problem.

    @param[in]
    indx    INTEGER array, dimension (N)
            The permutation used to arrange the columns of the deflated
            Q matrix into three groups (see SLAED2).
            The rows of the eigenvectors found by SLAED4 must be likewise
            permuted before the matrix multiply can take place.

    @param[in]
    ctot    INTEGER array, dimension (4)
            A count of the total number of the various types of columns
            in Q, as described in INDX.  The fourth column type is any
            column which has been deflated.

    @param[in,out]
    w       REAL array, dimension (K)
            The first K elements of this array contain the components
            of the deflation-adjusted updating vector. Destroyed on
            output.

    @param
    s       (workspace) REAL array, dimension (N1 + 1)*K
            Will contain the eigenvectors of the repaired matrix which
            will be multiplied by the previously accumulated eigenvectors
            to update the system.

    @param[out]
    indxq   INTEGER array, dimension (N)
            On exit, the permutation which will reintegrate the
            subproblems back into sorted order,
            i.e. D( INDXQ( I = 1, N ) ) will be in ascending order.
    
    @param
    dwork   (devices workspaces) REAL array of arrays,
            dimension NRGPU.
            if NRGPU = 1 the dimension of the first workspace
            should be (3*N*N/2+3*N)
            otherwise the NRGPU workspaces should have the size
            ceil((N-N1) * (N-N1) / floor(ngpu/2)) +
            NB * ((N-N1) + (N-N1) / floor(ngpu/2))
    
    @param
    queues  (device queues) magma_queue_t array,
            dimension (MagmaMaxGPUs,2)

    @param[in]
    range   magma_range_t
      -     = MagmaRangeAll: all eigenvalues will be found.
      -     = MagmaRangeV:   all eigenvalues in the half-open interval (VL,VU]
                             will be found.
      -     = MagmaRangeI:   the IL-th through IU-th eigenvalues will be found.
            TODO verify range, vl, vu, il, iu -- copied from slaex1.

    @param[in]
    vl      REAL
    @param[in]
    vu      REAL
            if RANGE=MagmaRangeV, the lower and upper bounds of the interval to
            be searched for eigenvalues. VL < VU.
            Not referenced if RANGE = MagmaRangeAll or MagmaRangeI.

    @param[in]
    il      INTEGER
    @param[in]
    iu      INTEGER
            if RANGE=MagmaRangeI, the indices (in ascending order) of the
            smallest and largest eigenvalues to be returned.
            1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
            Not referenced if RANGE = MagmaRangeAll or MagmaRangeV.

    @param[out]
    info    INTEGER
      -     = 0:  successful exit.
      -     < 0:  if INFO = -i, the i-th argument had an illegal value.
      -     > 0:  if INFO = 1, an eigenvalue did not converge

    Further Details
    ---------------
    Based on contributions by
    Jeff Rutter, Computer Science Division, University of California
    at Berkeley, USA
    Modified by Francoise Tisseur, University of Tennessee.

    @ingroup magma_ssyev_aux
    ********************************************************************/
extern "C" magma_int_t
magma_slaex3_m(
    magma_int_t ngpu,
    magma_int_t k, magma_int_t n, magma_int_t n1, float *d,
    float *Q, magma_int_t ldq, float rho,
    float *dlamda, float *Q2, magma_int_t *indx,
    magma_int_t *ctot, float *w, float *s, magma_int_t *indxq,
    magmaFloat_ptr dwork[],
    magma_queue_t queues[MagmaMaxGPUs][2],
    magma_range_t range, float vl, float vu, magma_int_t il, magma_int_t iu,
    magma_int_t *info )
{
#define Q(i_,j_) (Q + (i_) + (j_)*ldq)

#define dQ2(id)    (dwork[id])
#define dS(id, ii) (dwork[id] + n2*n2_loc + (ii)*(n2*nb))
#define dQ(id, ii) (dwork[id] + n2*n2_loc +    2*(n2*nb) + (ii)*(n2_loc*nb))

    if (ngpu == 1) {
        magma_setdevice(0);
        magma_slaex3(k, n, n1, d, Q, ldq, rho,
                     dlamda, Q2, indx, ctot, w, s, indxq,
                     *dwork, range, vl, vu, il, iu, info );
        return *info;
    }
    float d_one  = 1.;
    float d_zero = 0.;
    magma_int_t ione = 1;
    magma_int_t ineg_one = -1;

    magma_int_t iil, iiu, rk;
    magma_int_t n1_loc, n2_loc, ib, nb, ib2, igpu;
    magma_int_t ni_loc[MagmaMaxGPUs];

    magma_int_t i, ind, iq2, j, n12, n2, n23, tmp;
    float temp;
    magma_int_t alleig, valeig, indeig;

    alleig = (range == MagmaRangeAll);
    valeig = (range == MagmaRangeV);
    indeig = (range == MagmaRangeI);

    *info = 0;

    if (k < 0)
        *info=-1;
    else if (n < k)
        *info=-2;
    else if (ldq < max(1,n))
        *info=-6;
    else if (! (alleig || valeig || indeig))
        *info = -15;
    else {
        if (valeig) {
            if (n > 0 && vu <= vl)
                *info = -17;
        }
        else if (indeig) {
            if (il < 1 || il > max(1,n))
                *info = -18;
            else if (iu < min(n,il) || iu > n)
                *info = -19;
        }
    }

    if (*info != 0) {
        magma_xerbla(__func__, -(*info));
        return *info;
    }

    // Quick return if possible
    if (k == 0)
        return *info;

    magma_device_t orig_dev;
    magma_getdevice( &orig_dev );
    magma_queue_t orig_stream;
    magmablasGetKernelStream( &orig_stream );
    
    /*
     Modify values DLAMDA(i) to make sure all DLAMDA(i)-DLAMDA(j) can
     be computed with high relative accuracy (barring over/underflow).
     This is a problem on machines without a guard digit in
     add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).
     The following code replaces DLAMDA(I) by 2*DLAMDA(I)-DLAMDA(I),
     which on any of these machines zeros out the bottommost
     bit of DLAMDA(I) if it is 1; this makes the subsequent
     subtractions DLAMDA(I)-DLAMDA(J) unproblematic when cancellation
     occurs. On binary machines with a guard digit (almost all
     machines) it does not change DLAMDA(I) at all. On hexadecimal
     and decimal machines with a guard digit, it slightly
     changes the bottommost bits of DLAMDA(I). It does not account
     for hexadecimal or decimal machines without guard digits
     (we know of none). We use a subroutine call to compute
     2*DLAMBDA(I) to prevent optimizing compilers from eliminating
     this code.*/

//#define CHECK_CPU
#ifdef CHECK_CPU
    float *hwS[2][MagmaMaxGPUs], *hwQ[2][MagmaMaxGPUs], *hwQ2[MagmaMaxGPUs];
    #define hQ2(id) (hwQ2[id])
    #define hS(id, ii) (hwS[ii][id])
    #define hQ(id, ii) (hwQ[ii][id])
#endif
    n2 = n - n1;

    n12 = ctot[0] + ctot[1];
    n23 = ctot[1] + ctot[2];

    iq2 = n1 * n12;
    //lq2 = iq2 + n2 * n23;

    n1_loc = (n1-1) / (ngpu/2) + 1;
    n2_loc = (n2-1) / (ngpu/2) + 1;

    nb = magma_get_slaex3_m_nb();

    if (n1 >= magma_get_slaex3_m_k()) {
#ifdef CHECK_CPU
        for (igpu = 0; igpu < ngpu; ++igpu) {
            magma_smalloc_pinned( &(hwS[0][igpu]), n2*nb );
            magma_smalloc_pinned( &(hwS[1][igpu]), n2*nb );
            magma_smalloc_pinned( &(hwQ2[igpu]), n2*n2_loc );
            magma_smalloc_pinned( &(hwQ[0][igpu]), n2_loc*nb );
            magma_smalloc_pinned( &(hwQ[1][igpu]), n2_loc*nb );
        }
#endif
        for (igpu = 0; igpu < ngpu-1; igpu += 2) {
            ni_loc[igpu] = min(n1_loc, n1 - igpu/2 * n1_loc);
#ifdef CHECK_CPU
            lapackf77_slacpy("A", &ni_loc[igpu], &n12, Q2+n1_loc*(igpu/2), &n1, hQ2(igpu), &n1_loc);
#endif
            magma_setdevice(igpu);
            magma_ssetmatrix_async( ni_loc[igpu], n12,
                                    Q2+n1_loc*(igpu/2), n1,
                                    dQ2(igpu),          n1_loc, queues[igpu][0] );
            ni_loc[igpu+1] = min(n2_loc, n2 - igpu/2 * n2_loc);
#ifdef CHECK_CPU
            lapackf77_slacpy("A", &ni_loc[igpu+1], &n23, Q2+iq2+n2_loc*(igpu/2), &n2, hQ2(igpu+1), &n2_loc);
#endif
            magma_setdevice(igpu+1);
            magma_ssetmatrix_async( ni_loc[igpu+1], n23,
                                    Q2+iq2+n2_loc*(igpu/2), n2,
                                    dQ2(igpu+1),            n2_loc, queues[igpu+1][0] );
        }
    }

    //

#ifdef _OPENMP
    /////////////////////////////////////////////////////////////////////////////////
    //openmp implementation
    /////////////////////////////////////////////////////////////////////////////////
    magma_timer_t time=0;
    timer_start( time );

#pragma omp parallel private(i, j, tmp, temp)
    {
        magma_int_t id = omp_get_thread_num();
        magma_int_t tot = omp_get_num_threads();

        magma_int_t ib = (  id   * k) / tot; //start index of local loop
        magma_int_t ie = ((id+1) * k) / tot; //end index of local loop
        magma_int_t ik = ie - ib;           //number of local indices

        for (i = ib; i < ie; ++i)
            dlamda[i]=lapackf77_slamc3(&dlamda[i], &dlamda[i]) - dlamda[i];

        for (j = ib; j < ie; ++j) {
            magma_int_t tmpp=j+1;
            magma_int_t iinfo = 0;
            lapackf77_slaed4(&k, &tmpp, dlamda, w, Q(0,j), &rho, &d[j], &iinfo);
            // If the zero finder fails, the computation is terminated.
            if (iinfo != 0) {
#pragma omp critical (info)
                *info = iinfo;
                break;
            }
        }

#pragma omp barrier

        if (*info == 0) {
#pragma omp single
            {
                //Prepare the INDXQ sorting permutation.
                magma_int_t nk = n - k;
                lapackf77_slamrg( &k, &nk, d, &ione, &ineg_one, indxq);

                //compute the lower and upper bound of the non-deflated eigenvectors
                if (valeig)
                    magma_svrange(k, d, &iil, &iiu, vl, vu);
                else if (indeig)
                    magma_sirange(k, indxq, &iil, &iiu, il, iu);
                else {
                    iil = 1;
                    iiu = k;
                }
                rk = iiu - iil + 1;
            }

            if (k == 2) {
#pragma omp single
                {
                    for (j = 0; j < k; ++j) {
                        w[0] = *Q(0,j);
                        w[1] = *Q(1,j);

                        i = indx[0] - 1;
                        *Q(0,j) = w[i];
                        i = indx[1] - 1;
                        *Q(1,j) = w[i];
                    }
                }
            }
            else if (k != 1) {
                // Compute updated W.
                blasf77_scopy( &ik, &w[ib], &ione, &s[ib], &ione);

                // Initialize W(I) = Q(I,I)
                tmp = ldq + 1;
                blasf77_scopy( &ik, Q(ib,ib), &tmp, &w[ib], &ione);

                for (j = 0; j < k; ++j) {
                    magma_int_t i_tmp = min(j, ie);
                    for (i = ib; i < i_tmp; ++i)
                        w[i] = w[i] * ( *Q(i, j) / ( dlamda[i] - dlamda[j] ) );
                    i_tmp = max(j+1, ib);
                    for (i = i_tmp; i < ie; ++i)
                        w[i] = w[i] * ( *Q(i, j) / ( dlamda[i] - dlamda[j] ) );
                }

                for (i = ib; i < ie; ++i)
                    w[i] = copysign( sqrt( -w[i] ), s[i]);

#pragma omp barrier

                //reduce the number of used threads to have enough S workspace
                tot = min(n1, omp_get_num_threads());

                if (id < tot) {
                    ib = (  id   * rk) / tot + iil - 1;
                    ie = ((id+1) * rk) / tot + iil - 1;
                    ik = ie - ib;
                }
                else {
                    ib = -1;
                    ie = -1;
                    ik = -1;
                }

                // Compute eigenvectors of the modified rank-1 modification.
                for (j = ib; j < ie; ++j) {
                    for (i = 0; i < k; ++i)
                        s[id*k + i] = w[i] / *Q(i,j);
                    temp = magma_cblas_snrm2( k, s+id*k, 1 );
                    for (i = 0; i < k; ++i) {
                        magma_int_t iii = indx[i] - 1;
                        *Q(i,j) = s[id*k + iii] / temp;
                    }
                }
            }
        }
    }
    if (*info != 0)
        return *info;

    timer_stop( time );
    timer_printf( "eigenvalues/vector D+zzT = %6.2f\n", time );

#else
    /////////////////////////////////////////////////////////////////////////////////
    // Non openmp implementation
    /////////////////////////////////////////////////////////////////////////////////
    magma_timer_t time=0;
    timer_start( time );

    for (i = 0; i < k; ++i)
        dlamda[i]=lapackf77_slamc3(&dlamda[i], &dlamda[i]) - dlamda[i];

    for (j = 0; j < k; ++j) {
        magma_int_t tmpp=j+1;
        magma_int_t iinfo = 0;
        lapackf77_slaed4(&k, &tmpp, dlamda, w, Q(0,j), &rho, &d[j], &iinfo);
        // If the zero finder fails, the computation is terminated.
        if (iinfo != 0)
            *info=iinfo;
    }
    if (*info != 0)
        return *info;

    //Prepare the INDXQ sorting permutation.
    magma_int_t nk = n - k;
    lapackf77_slamrg( &k, &nk, d, &ione, &ineg_one, indxq);

    //compute the lower and upper bound of the non-deflated eigenvectors
    if (valeig)
        magma_svrange(k, d, &iil, &iiu, vl, vu);
    else if (indeig)
        magma_sirange(k, indxq, &iil, &iiu, il, iu);
    else {
        iil = 1;
        iiu = k;
    }
    rk = iiu - iil + 1;

    if (k == 2) {
        for (j = 0; j < k; ++j) {
            w[0] = *Q(0,j);
            w[1] = *Q(1,j);

            i = indx[0] - 1;
            *Q(0,j) = w[i];
            i = indx[1] - 1;
            *Q(1,j) = w[i];
        }
    }
    else if (k != 1) {
        // Compute updated W.
        blasf77_scopy( &k, w, &ione, s, &ione);

        // Initialize W(I) = Q(I,I)
        tmp = ldq + 1;
        blasf77_scopy( &k, Q, &tmp, w, &ione);

        for (j = 0; j < k; ++j) {
            for (i = 0; i < j; ++i)
                w[i] = w[i] * ( *Q(i, j) / ( dlamda[i] - dlamda[j] ) );
            for (i = j+1; i < k; ++i)
                w[i] = w[i] * ( *Q(i, j) / ( dlamda[i] - dlamda[j] ) );
        }

        for (i = 0; i < k; ++i)
            w[i] = copysign( sqrt( -w[i] ), s[i]);

        // Compute eigenvectors of the modified rank-1 modification.
        for (j = iil-1; j < iiu; ++j) {
            for (i = 0; i < k; ++i)
                s[i] = w[i] / *Q(i,j);
            temp = magma_cblas_snrm2( k, s, 1 );
            for (i = 0; i < k; ++i) {
                magma_int_t iii = indx[i] - 1;
                *Q(i,j) = s[iii] / temp;
            }
        }
    }

    timer_stop( time );
    timer_printf( "eigenvalues/vector D+zzT = %6.2f\n", time );

#endif //_OPENMP

    // Compute the updated eigenvectors.

    timer_start( time );

    if (rk > 0) {
        if (n1 < magma_get_slaex3_m_k()) {
            // stay on the CPU
            if ( n23 != 0 ) {
                lapackf77_slacpy("A", &n23, &rk, Q(ctot[0],iil-1), &ldq, s, &n23);
                blasf77_sgemm("N", "N", &n2, &rk, &n23, &d_one, &Q2[iq2], &n2,
                              s, &n23, &d_zero, Q(n1,iil-1), &ldq );
            }
            else
                lapackf77_slaset("A", &n2, &rk, &d_zero, &d_zero, Q(n1,iil-1), &ldq);

            if ( n12 != 0 ) {
                lapackf77_slacpy("A", &n12, &rk, Q(0,iil-1), &ldq, s, &n12);
                blasf77_sgemm("N", "N", &n1, &rk, &n12, &d_one, Q2, &n1,
                              s, &n12, &d_zero, Q(0,iil-1), &ldq);
            }
            else
                lapackf77_slaset("A", &n1, &rk, &d_zero, &d_zero, Q(0,iil-1), &ldq);
        }
        else {
            //use the gpus
            ib = min(nb, rk);
            for (igpu = 0; igpu < ngpu-1; igpu += 2) {
                if (n23 != 0) {
                    magma_setdevice(igpu+1);
                    magma_ssetmatrix_async( n23, ib,
                                            Q(ctot[0],iil-1), ldq,
                                            dS(igpu+1,0),     n23, queues[igpu+1][0] );
                }
                if (n12 != 0) {
                    magma_setdevice(igpu);
                    magma_ssetmatrix_async( n12, ib,
                                            Q(0,iil-1), ldq,
                                            dS(igpu,0), n12, queues[igpu][0] );
                }
            }

            for (i = 0; i < rk; i += nb) {
                ib = min(nb, rk - i);
                ind = (i/nb)%2;
                if (i+nb < rk) {
                    ib2 = min(nb, rk - i - nb);
                    for (igpu = 0; igpu < ngpu-1; igpu += 2) {
                        if (n23 != 0) {
                            magma_setdevice(igpu+1);
                            magma_ssetmatrix_async( n23, ib2,
                                                    Q(ctot[0],iil-1+i+nb), ldq,
                                                    dS(igpu+1,(ind+1)%2),  n23, queues[igpu+1][(ind+1)%2] );
                        }
                        if (n12 != 0) {
                            magma_setdevice(igpu);
                            magma_ssetmatrix_async( n12, ib2,
                                                    Q(0,iil-1+i+nb),    ldq,
                                                    dS(igpu,(ind+1)%2), n12, queues[igpu][(ind+1)%2] );
                        }
                    }
                }

                // Ensure that the data is copied on gpu since we will overwrite it.
                for (igpu = 0; igpu < ngpu-1; igpu += 2) {
                    if (n23 != 0) {
#ifdef CHECK_CPU
                        lapackf77_slacpy("A", &n23, &ib, Q(ctot[0],iil-1+i), &ldq, hS(igpu+1,ind), &n23);
#endif
                        magma_setdevice(igpu+1);
                        magma_queue_sync( queues[igpu+1][ind] );
                    }
                    if (n12 != 0) {
#ifdef CHECK_CPU
                        lapackf77_slacpy("A", &n12, &ib, Q(0,iil-1+i), &ldq, hS(igpu,ind), &n12);
#endif
                        magma_setdevice(igpu);
                        magma_queue_sync( queues[igpu][ind] );
                    }
                }
                for (igpu = 0; igpu < ngpu-1; igpu += 2) {
                    if (n23 != 0) {
#ifdef CHECK_CPU
                        blasf77_sgemm("N", "N", &ni_loc[igpu+1], &ib, &n23, &d_one, hQ2(igpu+1), &n2_loc,
                                      hS(igpu+1,ind), &n23, &d_zero, hQ(igpu+1, ind), &n2_loc);
#endif
                        magma_setdevice(igpu+1);
                        magmablasSetKernelStream(queues[igpu+1][ind]);
                        magma_sgemm(MagmaNoTrans, MagmaNoTrans, ni_loc[igpu+1], ib, n23, d_one, dQ2(igpu+1), n2_loc,
                                    dS(igpu+1, ind), n23, d_zero, dQ(igpu+1, ind), n2_loc);
#ifdef CHECK_CPU
                        printf("norm Q %d: %f\n", igpu+1, cpu_gpu_sdiff(ni_loc[igpu+1], ib, hQ(igpu+1, ind), n2_loc, dQ(igpu+1, ind), n2_loc));
#endif
                    }
                    if (n12 != 0) {
#ifdef CHECK_CPU
                        blasf77_sgemm("N", "N", &ni_loc[igpu], &ib, &n12, &d_one, hQ2(igpu), &n1_loc,
                                      hS(igpu,ind%2), &n12, &d_zero, hQ(igpu, ind%2), &n1_loc);
#endif
                        magma_setdevice(igpu);
                        magmablasSetKernelStream(queues[igpu][ind]);
                        magma_sgemm(MagmaNoTrans, MagmaNoTrans, ni_loc[igpu], ib, n12, d_one, dQ2(igpu), n1_loc,
                                    dS(igpu, ind), n12, d_zero, dQ(igpu, ind), n1_loc);
#ifdef CHECK_CPU
                        printf("norm Q %d: %f\n", igpu, cpu_gpu_sdiff(ni_loc[igpu], ib, hQ(igpu, ind), n1_loc, dQ(igpu, ind), n1_loc));
#endif
                    }
                }
                for (igpu = 0; igpu < ngpu-1; igpu += 2) {
                    if (n23 != 0) {
                        magma_setdevice(igpu+1);
                        magma_sgetmatrix( ni_loc[igpu+1], ib, dQ(igpu+1, ind), n2_loc,
                                          Q(n1+n2_loc*(igpu/2),iil-1+i), ldq );
//                        magma_sgetmatrix_async( ni_loc[igpu+1], ib, dQ(igpu+1, ind), n2_loc,
//                                                Q(n1+n2_loc*(igpu/2),iil-1+i), ldq, queues[igpu+1][ind] );
                    }
                    if (n12 != 0) {
                        magma_setdevice(igpu);
                        magma_sgetmatrix( ni_loc[igpu], ib, dQ(igpu, ind), n1_loc,
                                          Q(n1_loc*(igpu/2),iil-1+i), ldq );
//                        magma_sgetmatrix_async( ni_loc[igpu], ib, dQ(igpu, ind), n1_loc,
//                                                Q(n1_loc*(igpu/2),iil-1+i), ldq, queues[igpu][ind] );
                    }
                }
            }
            for (igpu = 0; igpu < ngpu; ++igpu) {
#ifdef CHECK_CPU
                magma_free_pinned( hwS[1][igpu] );
                magma_free_pinned( hwS[0][igpu] );
                magma_free_pinned( hwQ2[igpu] );
                magma_free_pinned( hwQ[1][igpu] );
                magma_free_pinned( hwQ[0][igpu] );
#endif
                magma_setdevice(igpu);
                magma_queue_sync( queues[igpu][0] );
                magma_queue_sync( queues[igpu][1] );
            }
            if ( n23 == 0 )
                lapackf77_slaset("A", &n2, &rk, &d_zero, &d_zero, Q(n1,iil-1), &ldq);

            if ( n12 == 0 )
                lapackf77_slaset("A", &n1, &rk, &d_zero, &d_zero, Q(0,iil-1), &ldq);
        }
    }
    timer_stop( time );
    timer_printf( "gemms = %6.2f\n", time );

    magma_setdevice( orig_dev );
    magmablasSetKernelStream( orig_stream );
    
    return *info;
} /* magma_slaed3_m */
Esempio n. 20
0
extern "C" magma_int_t
magma_sstedx(magma_vec_t range, magma_int_t n, float vl, float vu,
             magma_int_t il, magma_int_t iu, float* d, float* e, float* z, magma_int_t ldz,
             float* work, magma_int_t lwork, magma_int_t* iwork, magma_int_t liwork,
             magmaFloat_ptr dwork, magma_int_t* info, magma_queue_t queue)
{
/*
    -- MAGMA (version 1.1.0) --
    Univ. of Tennessee, Knoxville
    Univ. of California, Berkeley
    Univ. of Colorado, Denver
    @date January 2014

       .. Scalar Arguments ..
      CHARACTER          RANGE
      INTEGER            IL, IU, INFO, LDZ, LIWORK, LWORK, N
      REAL   VL, VU
       ..
       .. Array Arguments ..
      INTEGER            IWORK( * )
      REAL   D( * ), E( * ), WORK( * ), Z( LDZ, * ),
     $                   DWORK ( * )
       ..

    Purpose
    =======

    SSTEDX computes some eigenvalues and, optionally, eigenvectors of a
    symmetric tridiagonal matrix using the divide and conquer method.

    This code makes very mild assumptions about floating point
    arithmetic. It will work on machines with a guard digit in
    add/subtract, or on those binary machines without guard digits
    which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
    It could conceivably fail on hexadecimal or decimal machines
    without guard digits, but we know of none.  See SLAEX3 for details.

    Arguments
    =========

    RANGE   (input) CHARACTER*1
            = 'A': all eigenvalues will be found.
            = 'V': all eigenvalues in the half-open interval (VL,VU]
                   will be found.
            = 'I': the IL-th through IU-th eigenvalues will be found.

    N       (input) INTEGER
            The dimension of the symmetric tridiagonal matrix.  N >= 0.

    VL      (input) REAL
    VU      (input) REAL
            If RANGE='V', the lower and upper bounds of the interval to
            be searched for eigenvalues. VL < VU.
            Not referenced if RANGE = 'A' or 'I'.

    IL      (input) INTEGER
    IU      (input) INTEGER
            If RANGE='I', the indices (in ascending order) of the
            smallest and largest eigenvalues to be returned.
            1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
            Not referenced if RANGE = 'A' or 'V'.

    D       (input/output) REAL array, dimension (N)
            On entry, the diagonal elements of the tridiagonal matrix.
            On exit, if INFO = 0, the eigenvalues in ascending order.

    E       (input/output) REAL array, dimension (N-1)
            On entry, the subdiagonal elements of the tridiagonal matrix.
            On exit, E has been destroyed.

    Z       (input/output) REAL array, dimension (LDZ,N)
            On exit, if INFO = 0, Z contains the orthonormal eigenvectors
            of the symmetric tridiagonal matrix.

    LDZ     (input) INTEGER
            The leading dimension of the array Z. LDZ >= max(1,N).

    WORK    (workspace/output) REAL array,
                                           dimension (LWORK)
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

    LWORK   (input) INTEGER
            The dimension of the array WORK.
            If N > 1 then LWORK must be at least ( 1 + 4*N + N**2 ).
            Note that  if N is less than or
            equal to the minimum divide size, usually 25, then LWORK need
            only be max(1,2*(N-1)).

            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal size of the WORK array, returns
            this value as the first entry of the WORK array, and no error
            message related to LWORK is issued by XERBLA.

    IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
            On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.

    LIWORK  (input) INTEGER
            The dimension of the array IWORK.
            LIWORK must be at least ( 3 + 5*N ).
            Note that if N is less than or
            equal to the minimum divide size, usually 25, then LIWORK
            need only be 1.

            If LIWORK = -1, then a workspace query is assumed; the
            routine only calculates the optimal size of the IWORK array,
            returns this value as the first entry of the IWORK array, and
            no error message related to LIWORK is issued by XERBLA.

    DWORK  (device workspace) REAL array, dimension (3*N*N/2+3*N)

    INFO    (output) INTEGER
            = 0:  successful exit.
            < 0:  if INFO = -i, the i-th argument had an illegal value.
            > 0:  The algorithm failed to compute an eigenvalue while
                  working on the submatrix lying in rows and columns
                  INFO/(N+1) through mod(INFO,N+1).

    Further Details
    ===============

    Based on contributions by
       Jeff Rutter, Computer Science Division, University of California
       at Berkeley, USA
    Modified by Francoise Tisseur, University of Tennessee.

    =====================================================================
*/
    magma_vec_t range_ = range;

    float d_zero = 0.;
    float d_one  = 1.;
    magma_int_t izero = 0;
    magma_int_t ione = 1;


    magma_int_t alleig, indeig, valeig, lquery;
    magma_int_t i, j, k, m;
    magma_int_t liwmin, lwmin;
    magma_int_t start, end, smlsiz;
    float eps, orgnrm, p, tiny;

    // Test the input parameters.

    alleig = lapackf77_lsame(lapack_const(range_), "A");
    valeig = lapackf77_lsame(lapack_const(range_), "V");
    indeig = lapackf77_lsame(lapack_const(range_), "I");
    lquery = lwork == -1 || liwork == -1;

    *info = 0;

    if (! (alleig || valeig || indeig)) {
        *info = -1;
    } else if (n < 0) {
        *info = -2;
    } else if (ldz < max(1,n)) {
        *info = -10;
    } else {
        if (valeig) {
            if (n > 0 && vu <= vl) {
                *info = -4;
            }
        } else if (indeig) {
            if (il < 1 || il > max(1,n)) {
                *info = -5;
            } else if (iu < min(n,il) || iu > n) {
                *info = -6;
            }
        }
    }

    if (*info == 0) {
        // Compute the workspace requirements

        smlsiz = get_sstedx_smlsize();
        if( n <= 1 ){
            lwmin = 1;
            liwmin = 1;
        } else {
            lwmin = 1 + 4*n + n*n;
            liwmin = 3 + 5*n;
        }

        work[0] = lwmin;
        iwork[0] = liwmin;

        if (lwork < lwmin && ! lquery) {
            *info = -12;
        } else if (liwork < liwmin && ! lquery) {
            *info = -14;
        }
    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info));
        return MAGMA_ERR_ILLEGAL_VALUE;
    } else if (lquery) {
        return MAGMA_SUCCESS;
    }

    // Quick return if possible

    if(n==0)
        return MAGMA_SUCCESS;
    if(n==1){
        *z = 1.;
        return MAGMA_SUCCESS;
    }

    // If N is smaller than the minimum divide size (SMLSIZ+1), then
    // solve the problem with another solver.

    if (n < smlsiz){
        char char_I[]= {'I', 0};
        lapackf77_ssteqr(char_I, &n, d, e, z, &ldz, work, info);
    } else {
        char char_F[]= {'F', 0};
        lapackf77_slaset(char_F, &n, &n, &d_zero, &d_one, z, &ldz);

        //Scale.
        char char_M[]= {'M', 0};

        orgnrm = lapackf77_slanst(char_M, &n, d, e);

        if (orgnrm == 0){
            work[0]  = lwmin;
            iwork[0] = liwmin;
            return MAGMA_SUCCESS;
        }

        eps = lapackf77_slamch( "Epsilon" );

        if (alleig){
            start = 0;
            while ( start < n ){

                // Let FINISH be the position of the next subdiagonal entry
                // such that E( END ) <= TINY or FINISH = N if no such
                // subdiagonal exists.  The matrix identified by the elements
                // between START and END constitutes an independent
                // sub-problem.

                for(end = start+1; end < n; ++end){
                    tiny = eps * sqrt( MAGMA_S_ABS(d[end-1]*d[end]));
                    if (MAGMA_S_ABS(e[end-1]) <= tiny)
                        break;
                }

                // (Sub) Problem determined.  Compute its size and solve it.

                m = end - start;
                if (m==1){
                    start = end;
                    continue;
                }
                if (m > smlsiz){

                    // Scale
                    char char_G[] = {'G', 0};
                    orgnrm = lapackf77_slanst(char_M, &m, &d[start], &e[start]);
                    lapackf77_slascl(char_G, &izero, &izero, &orgnrm, &d_one, &m, &ione, &d[start], &m, info);
                    magma_int_t mm = m-1;
                    lapackf77_slascl(char_G, &izero, &izero, &orgnrm, &d_one, &mm, &ione, &e[start], &mm, info);

                    magma_slaex0( m, &d[start], &e[start], Z(start, start), ldz, work, iwork, dwork, MagmaAllVec, vl, vu, il, iu, info, queue);

                    if( *info != 0) {
                        return MAGMA_SUCCESS;
                    }

                    // Scale Back
                    lapackf77_slascl(char_G, &izero, &izero, &d_one, &orgnrm, &m, &ione, &d[start], &m, info);

                } else {

                    char char_I[]= {'I', 0};
                    lapackf77_ssteqr( char_I, &m, &d[start], &e[start], Z(start, start), &ldz, work, info);
                    if (*info != 0){
                        *info = (start+1) *(n+1) + end;
                    }
                }

                start = end;
            }


            // If the problem split any number of times, then the eigenvalues
            // will not be properly ordered.  Here we permute the eigenvalues
            // (and the associated eigenvectors) into ascending order.

            if (m < n){

                // Use Selection Sort to minimize swaps of eigenvectors
                for (i = 1; i < n; ++i){
                    k = i-1;
                    p = d[i-1];
                    for (j = i; j < n; ++j){
                        if (d[j] < p){
                            k = j;
                            p = d[j];
                        }
                    }
                    if(k != i-1) {
                        d[k] = d[i-1];
                        d[i-1] = p;
                        blasf77_sswap(&n, Z(0,i-1), &ione, Z(0,k), &ione);
                    }
                }
            }

        } else {

            // Scale
            char char_G[] = {'G', 0};
            lapackf77_slascl(char_G, &izero, &izero, &orgnrm, &d_one, &n, &ione, d, &n, info);
            magma_int_t nm = n-1;
            lapackf77_slascl(char_G, &izero, &izero, &orgnrm, &d_one, &nm, &ione, e, &nm, info);

            magma_slaex0( n, d, e, z, ldz, work, iwork, dwork, range, vl, vu, il, iu, info, queue);

            if( *info != 0) {
                return MAGMA_SUCCESS;
            }

            // Scale Back
            lapackf77_slascl(char_G, &izero, &izero, &d_one, &orgnrm, &n, &ione, d, &n, info);

        }
    }

    work[0]  = lwmin;
    iwork[0] = liwmin;

    return MAGMA_SUCCESS;

} /* sstedx */