Esempio n. 1
0
static int hax_get_fpu(CPUArchState *env)
{
    struct fx_layout fpu;
    int i, ret;

    ret = hax_sync_fpu(env, &fpu, 0);
    if (ret < 0) {
        return ret;
    }

    env->fpstt = (fpu.fsw >> 11) & 7;
    env->fpus = fpu.fsw;
    env->fpuc = fpu.fcw;
    for (i = 0; i < 8; ++i) {
        env->fptags[i] = !((fpu.ftw >> i) & 1);
    }
    memcpy(env->fpregs, fpu.st_mm, sizeof(env->fpregs));

    for (i = 0; i < 8; i++) {
        env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.mmx_1[i][0]);
        env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.mmx_1[i][8]);
        if (CPU_NB_REGS > 8) {
            env->xmm_regs[i + 8].ZMM_Q(0) = ldq_p(&fpu.mmx_2[i][0]);
            env->xmm_regs[i + 8].ZMM_Q(1) = ldq_p(&fpu.mmx_2[i][8]);
        }
    }
    env->mxcsr = fpu.mxcsr;

    return 0;
}
Esempio n. 2
0
static void spin_kick(void *data)
{
    SpinKick *kick = data;
    CPUState *cpu = CPU(kick->cpu);
    CPUPPCState *env = &kick->cpu->env;
    SpinInfo *curspin = kick->spin;
    hwaddr map_size = 64 * 1024 * 1024;
    hwaddr map_start;

    cpu_synchronize_state(cpu);
    stl_p(&curspin->pir, env->spr[SPR_PIR]);
    env->nip = ldq_p(&curspin->addr) & (map_size - 1);
    env->gpr[3] = ldq_p(&curspin->r3);
    env->gpr[4] = 0;
    env->gpr[5] = 0;
    env->gpr[6] = 0;
    env->gpr[7] = map_size;
    env->gpr[8] = 0;
    env->gpr[9] = 0;

    map_start = ldq_p(&curspin->addr) & ~(map_size - 1);
    mmubooke_create_initial_mapping(env, 0, map_start, map_size);

    cpu->halted = 0;
    env->exception_index = -1;
    cpu->stopped = false;
    qemu_cpu_kick(cpu);
}
Esempio n. 3
0
static void virtio_blk_handle_write(VirtIOBlockReq *req, MultiReqBuffer *mrb)
{
    BlockRequest *blkreq;
    uint64_t sector;

    sector = ldq_p(&req->out->sector);

    trace_virtio_blk_handle_write(req, sector, req->qiov.size / 512);

    if (sector & req->dev->sector_mask) {
        virtio_blk_rw_complete(req, -EIO);
        return;
    }

    if (mrb->num_writes == 32) {
        virtio_submit_multiwrite(req->dev->bs, mrb);
    }

    blkreq = &mrb->blkreq[mrb->num_writes];
    blkreq->sector = sector;
    blkreq->nb_sectors = req->qiov.size / BDRV_SECTOR_SIZE;
    blkreq->qiov = &req->qiov;
    blkreq->cb = virtio_blk_rw_complete;
    blkreq->opaque = req;
    blkreq->error = 0;

    mrb->num_writes++;
}
Esempio n. 4
0
int aarch64_cpu_gdb_write_register(CPUState *cs, uint8_t *mem_buf, int n)
{
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
    uint64_t tmp;

    tmp = ldq_p(mem_buf);

    if (n < 31) {
        /* Core integer register.  */
        env->xregs[n] = tmp;
        return 8;
    }
    switch (n) {
    case 31:
        env->xregs[31] = tmp;
        return 8;
    case 32:
        env->pc = tmp;
        return 8;
    case 33:
        /* CPSR */
        pstate_write(env, tmp);
        return 4;
    }
    /* Unknown register.  */
    return 0;
}
Esempio n. 5
0
static void virtio_blk_handle_read(VirtIOBlockReq *req)
{
    BlockDriverAIOCB *acb;
    uint64_t sector;

    sector = ldq_p(&req->out->sector);

    bdrv_acct_start(req->dev->bs, &req->acct, req->qiov.size, BDRV_ACCT_READ);

    if (sector & req->dev->sector_mask) {
        virtio_blk_rw_complete(req, -EIO);
        return;
    }
    if (req->qiov.size % req->dev->conf->logical_block_size) {
        virtio_blk_rw_complete(req, -EIO);
        return;
    }

    acb = bdrv_aio_readv(req->dev->bs, sector, &req->qiov,
                         req->qiov.size / BDRV_SECTOR_SIZE,
                         virtio_blk_rw_complete, req);
    if (!acb) {
        virtio_blk_rw_complete(req, -EIO);
    }
}
Esempio n. 6
0
/* warning: addr must be aligned */
static inline uint64_t glue(address_space_ldq_internal, SUFFIX)(ARG1_DECL,
    hwaddr addr, MemTxAttrs attrs, MemTxResult *result,
    enum device_endian endian)
{
    uint8_t *ptr;
    uint64_t val;
    MemoryRegion *mr;
    hwaddr l = 8;
    hwaddr addr1;
    MemTxResult r;
    bool release_lock = false;

    RCU_READ_LOCK();
    mr = TRANSLATE(addr, &addr1, &l, false);
    if (l < 8 || !IS_DIRECT(mr, false)) {
        release_lock |= prepare_mmio_access(mr);

        /* I/O case */
        r = memory_region_dispatch_read(mr, addr1, &val, 8, attrs);
#if defined(TARGET_WORDS_BIGENDIAN)
        if (endian == DEVICE_LITTLE_ENDIAN) {
            val = bswap64(val);
        }
#else
        if (endian == DEVICE_BIG_ENDIAN) {
            val = bswap64(val);
        }
#endif
    } else {
        /* RAM case */
        ptr = MAP_RAM(mr, addr1);
        switch (endian) {
        case DEVICE_LITTLE_ENDIAN:
            val = ldq_le_p(ptr);
            break;
        case DEVICE_BIG_ENDIAN:
            val = ldq_be_p(ptr);
            break;
        default:
            val = ldq_p(ptr);
            break;
        }
        r = MEMTX_OK;
    }
    if (result) {
        *result = r;
    }
    if (release_lock) {
        qemu_mutex_unlock_iothread();
    }
    RCU_READ_UNLOCK();
    return val;
}
Esempio n. 7
0
static inline int lock_hpte(void *hpte, target_ulong bits)
{
    uint64_t pteh;

    pteh = ldq_p(hpte);

    /* We're protected by qemu's global lock here */
    if (pteh & bits) {
        return 0;
    }
    stq_p(hpte, pteh | HPTE_V_HVLOCK);
    return 1;
}
Esempio n. 8
0
int ppc_cpu_gdb_write_register_apple(CPUState *cs, uint8_t *mem_buf, int n)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
    int r = ppc_gdb_register_len_apple(n);

    if (!r) {
        return r;
    }
    if (msr_le) {
        /* If cpu is in LE mode, convert memory contents to LE. */
        ppc_gdb_swap_register(mem_buf, n, r);
    }
    if (n < 32) {
        /* gprs */
        env->gpr[n] = ldq_p(mem_buf);
    } else if (n < 64) {
        /* fprs */
        env->fpr[n-32] = ldfq_p(mem_buf);
    } else {
        switch (n) {
        case 64 + 32:
            env->nip = ldq_p(mem_buf);
            break;
        case 65 + 32:
            ppc_store_msr(env, ldq_p(mem_buf));
            break;
        case 66 + 32:
            {
                uint32_t cr = ldl_p(mem_buf);
                int i;
                for (i = 0; i < 8; i++) {
                    env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF;
                }
                break;
            }
        case 67 + 32:
            env->lr = ldq_p(mem_buf);
            break;
        case 68 + 32:
            env->ctr = ldq_p(mem_buf);
            break;
        case 69 + 32:
            env->xer = ldq_p(mem_buf);
            break;
        case 70 + 32:
            /* fpscr */
            store_fpscr(env, ldq_p(mem_buf), 0xffffffff);
            break;
        }
    }
    return r;
}
Esempio n. 9
0
static void spin_write(void *opaque, hwaddr addr, uint64_t value,
                       unsigned len)
{
    SpinState *s = opaque;
    int env_idx = addr / sizeof(SpinInfo);
    CPUPPCState *env;
    SpinInfo *curspin = &s->spin[env_idx];
    uint8_t *curspin_p = (uint8_t*)curspin;

    for (env = first_cpu; env != NULL; env = env->next_cpu) {
        if (env->cpu_index == env_idx) {
            break;
        }
    }

    if (!env) {
        /* Unknown CPU */
        return;
    }

    if (!env->cpu_index) {
        /* primary CPU doesn't spin */
        return;
    }

    curspin_p = &curspin_p[addr % sizeof(SpinInfo)];
    switch (len) {
    case 1:
        stb_p(curspin_p, value);
        break;
    case 2:
        stw_p(curspin_p, value);
        break;
    case 4:
        stl_p(curspin_p, value);
        break;
    }

    if (!(ldq_p(&curspin->addr) & 1)) {
        /* run CPU */
        SpinKick kick = {
            .cpu = ppc_env_get_cpu(env),
            .spin = curspin,
        };

        run_on_cpu(CPU(kick.cpu), spin_kick, &kick);
    }
Esempio n. 10
0
int handle_frontend_syscall(HTIFState *htifstate, uint64_t payload) {

    uint64_t mm[8];
    int i;
    void * base = htifstate->main_mem_ram_ptr + (uintptr_t)payload;
    for (i = 0; i < 8; i++) {
        mm[i] = ldq_p((void*)(base + i*8));
    }

    #ifdef DEBUG_FRONTEND_RISCV
    for (i = 0; i < 8; i++) {
        fprintf(stderr, "elem %d, val 0x%016lx\n", i, mm[i]);
    }
    #endif

    uint64_t retval = -1;
    switch(mm[0]) {
        case RV_FSYSCALL_sys_openat:
            retval = sys_openat(htifstate, mm[1], mm[2], mm[3], mm[4], mm[5]);
            break;
        case RV_FSYSCALL_sys_close:
            retval = sys_close(htifstate, mm[1]);
            break;
        case RV_FSYSCALL_sys_write:
            retval = sys_write(htifstate, mm[1], mm[2], mm[3]);
            break;
        case RV_FSYSCALL_sys_pread:
            retval = sys_pread(htifstate, mm[1], mm[2], mm[3], mm[4]);
            break;
        case RV_FSYSCALL_sys_exit:
            retval = sys_exit(htifstate, mm[1]);
            break;
        case RV_FSYSCALL_sys_getmainvars:
            retval = sys_getmainvars(htifstate, mm[1], mm[2]);
            break;
        default:
            fprintf(stderr, "FRONTEND SYSCALL %ld NOT IMPLEMENTED\n", mm[0]);
            exit(1);
    }

    // write retval to mm
    stq_p((void*)base, retval);
    return 1;
}
Esempio n. 11
0
static void virtio_blk_handle_read(VirtIOBlockReq *req)
{
    BlockDriverAIOCB *acb;
    uint64_t sector;

    sector = ldq_p(&req->out->sector);

    if (sector & req->dev->sector_mask) {
        virtio_blk_rw_complete(req, -EIO);
        return;
    }

    acb = bdrv_aio_readv(req->dev->bs, sector, &req->qiov,
                         req->qiov.size / BDRV_SECTOR_SIZE,
                         virtio_blk_rw_complete, req);
    if (!acb) {
        virtio_blk_rw_complete(req, -EIO);
    }
}
Esempio n. 12
0
static void spin_write(void *opaque, hwaddr addr, uint64_t value,
                       unsigned len)
{
    SpinState *s = opaque;
    int env_idx = addr / sizeof(SpinInfo);
    CPUState *cpu;
    SpinInfo *curspin = &s->spin[env_idx];
    uint8_t *curspin_p = (uint8_t*)curspin;

    cpu = qemu_get_cpu(env_idx);
    if (cpu == NULL) {
        /* Unknown CPU */
        return;
    }

    if (cpu->cpu_index == 0) {
        /* primary CPU doesn't spin */
        return;
    }

    curspin_p = &curspin_p[addr % sizeof(SpinInfo)];
    switch (len) {
    case 1:
        stb_p(curspin_p, value);
        break;
    case 2:
        stw_p(curspin_p, value);
        break;
    case 4:
        stl_p(curspin_p, value);
        break;
    }

    if (!(ldq_p(&curspin->addr) & 1)) {
        /* run CPU */
        SpinKick kick = {
            .cpu = POWERPC_CPU(cpu),
            .spin = curspin,
        };

        run_on_cpu(cpu, spin_kick, &kick);
    }
Esempio n. 13
0
int x86_cpu_gdb_write_register(CPUState *cs, uint8_t *mem_buf, int n)
{
    X86CPU *cpu = X86_CPU(cs);
    CPUX86State *env = &cpu->env;
    uint32_t tmp;

    if (n < CPU_NB_REGS) {
        if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
            env->regs[gpr_map[n]] = ldtul_p(mem_buf);
            return sizeof(target_ulong);
        } else if (n < CPU_NB_REGS32) {
            n = gpr_map32[n];
            env->regs[n] &= ~0xffffffffUL;
            env->regs[n] |= (uint32_t)ldl_p(mem_buf);
            return 4;
        }
    } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
#ifdef USE_X86LDOUBLE
        /* FIXME: byteswap float values - after fixing fpregs layout. */
        memcpy(&env->fpregs[n - IDX_FP_REGS], mem_buf, 10);
#endif
        return 10;
    } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
        n -= IDX_XMM_REGS;
        if (n < CPU_NB_REGS32 ||
                (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK)) {
            env->xmm_regs[n].XMM_Q(0) = ldq_p(mem_buf);
            env->xmm_regs[n].XMM_Q(1) = ldq_p(mem_buf + 8);
            return 16;
        }
    } else {
        switch (n) {
        case IDX_IP_REG:
            if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
                env->eip = ldq_p(mem_buf);
                return 8;
            } else {
                env->eip &= ~0xffffffffUL;
                env->eip |= (uint32_t)ldl_p(mem_buf);
                return 4;
            }
        case IDX_FLAGS_REG:
            env->eflags = ldl_p(mem_buf);
            return 4;

        case IDX_SEG_REGS:
            return x86_cpu_gdb_load_seg(cpu, R_CS, mem_buf);
        case IDX_SEG_REGS + 1:
            return x86_cpu_gdb_load_seg(cpu, R_SS, mem_buf);
        case IDX_SEG_REGS + 2:
            return x86_cpu_gdb_load_seg(cpu, R_DS, mem_buf);
        case IDX_SEG_REGS + 3:
            return x86_cpu_gdb_load_seg(cpu, R_ES, mem_buf);
        case IDX_SEG_REGS + 4:
            return x86_cpu_gdb_load_seg(cpu, R_FS, mem_buf);
        case IDX_SEG_REGS + 5:
            return x86_cpu_gdb_load_seg(cpu, R_GS, mem_buf);

        case IDX_FP_REGS + 8:
            cpu_set_fpuc(env, ldl_p(mem_buf));
            return 4;
        case IDX_FP_REGS + 9:
            tmp = ldl_p(mem_buf);
            env->fpstt = (tmp >> 11) & 7;
            env->fpus = tmp & ~0x3800;
            return 4;
        case IDX_FP_REGS + 10: /* ftag */
            return 4;
        case IDX_FP_REGS + 11: /* fiseg */
            return 4;
        case IDX_FP_REGS + 12: /* fioff */
            return 4;
        case IDX_FP_REGS + 13: /* foseg */
            return 4;
        case IDX_FP_REGS + 14: /* fooff */
            return 4;
        case IDX_FP_REGS + 15: /* fop */
            return 4;

        case IDX_MXCSR_REG:
            cpu_set_mxcsr(env, ldl_p(mem_buf));
            return 4;
        }
    }
    /* Unrecognised register.  */
    return 0;
}
Esempio n. 14
0
int aarch64_cpu_gdb_write_register(CPUState *cs, uint8_t *mem_buf, int n)
{
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
    uint64_t tmp;
    int rlen = 0;

#ifndef CONFIG_USER_ONLY
    if (!is_a64(env)) {
        map_a32_to_a64_regs(env);
    }
#endif

    tmp = ldq_p(mem_buf);

    if (n < 31) {
        /* Core integer register.  */
        env->xregs[n] = tmp;
        rlen = 8;
    }
    switch (n) {
    case 31: {
        unsigned int cur_el = arm_current_el(env);

        aarch64_save_sp(env, cur_el);
        switch (env->debug_ctx) {
            case DEBUG_EL0:
                env->sp_el[0] = tmp;
                break;
            case DEBUG_EL1:
                env->sp_el[1] = tmp;
                break;
            case DEBUG_EL2:
                env->sp_el[2] = tmp;
                break;
            case DEBUG_EL3:
                env->sp_el[3] = tmp;
                break;
            default:
                env->xregs[31] = tmp;
                break;
        }
        aarch64_restore_sp(env, cur_el);
        rlen = 8;
        break;
    }
    case 32:
        env->pc = tmp;
        rlen = 8;
        break;
    case 33:
        /* CPSR */
        pstate_write(env, tmp);
        rlen = 4;
        break;
    }

#ifndef CONFIG_USER_ONLY
    if (!is_a64(env)) {
        map_a64_to_a32_regs(env);
    }
#endif

    /* Unknown register.  */
    return rlen;
}