Esempio n. 1
0
int leshinput_(char *fname, int len)
{
  char * cname=malloc(len+2);
  int err;
  fName2c(fname,cname,len);
  err=lesHinput(cname);
  free(cname);
  return err;
}
int main(int argc,char** argv){   
    int err;
    char cdmName[10];
    int spin2, charge3,cdim;

    delFiles=0; /* switch to save/delete RGE input/output */
    ForceUG=0;  /* to Force Unitary Gauge assign 1 */

    // Check number of arguments
    if(argc <2) 
    {  printf("The program needs one argument:the name of SLHA input file.\n"
             "Example: ./main suspect2_lha.out \n");
       exit(1);
    }  
      
    // Read in slha
    err=lesHinput(argv[1]);
    if(err) exit(2);
     
    // Check for slha warnings
    slhaWarnings(stdout);
    if(err) exit(1);

    // Sort Particles
    err=sortOddParticles(cdmName);
    if(err) { printf("Can't calculate %s\n",cdmName); return 1;}

    qNumbers(cdmName,&spin2, &charge3, &cdim);
  
    // This shouldn't happen
    if(charge3) { printf("Dark Matter has electric charge %d/3\n",charge3); exit(1);}
    if(cdim!=1) { printf("Dark Matter is a color particle\n"); exit(1);}
    if(strcmp(cdmName,"~o1")) printf(" ~o1 is not CDM\n"); 
                             
    // Calculation of Omega, i.e. dark matter density
    int fast=1;
    double Beps=1.E-5;
    double Omega,Xf;   
    Omega=darkOmega(&Xf,fast,Beps);
    // print value
    printf("[\"MastercodeTag\", \"Omega\", %f  ]\n",Omega);

    // Calculation of sigma_p_si
    double pA0[2],pA5[2],nA0[2],nA5[2];
    double Nmass=0.939; /*nucleon mass*/
    double SCcoeff;        
    nucleonAmplitudes(FeScLoop, pA0,pA5,nA0,nA5);
    SCcoeff=4/M_PI*3.8937966E8*pow(Nmass*Mcdm/(Nmass+ Mcdm),2.);
    double proton_sigma_si=SCcoeff*pA0[0]*pA0[0];
    // print value
    printf("[\"MastercodeTag\", \"sigma_p_si\", %e ] \n",proton_sigma_si);
    // if all went fine, then return 0 
    return 0;
}
Esempio n. 3
0
int main(int argc,char** argv)
{  int err;
   char cdmName[10];
   int spin2, charge3,cdim;

 delFiles=0; /* switch to save/delete RGE input/output */
 ForceUG=0;  /* to Force Unitary Gauge assign 1 */
#ifdef SUGRA
{
  double m0,mhf,a0,tb;
  double gMG1, gMG2, gMG3,  gAl, gAt, gAb,  sgn, gMHu,  gMHd,
         gMl2, gMl3, gMr2, gMr3, gMq2, gMq3, gMu2, gMu3, gMd2, gMd3;
         
  printf("\n========= mSUGRA scenario =====\n");
  PRINTRGE(RGE);

  if(argc<5) 
  { 
    printf(" This program needs 4 parameters:\n"
           "   m0      common scalar mass at GUT scale\n"
           "   mhf     common gaugino mass at GUT scale\n"
           "   a0      trilinear soft breaking parameter at GUT scale\n"
           "   tb      tan(beta) \n");
    printf(" Auxiliary parameters are:\n"
           "   sgn     +/-1,  sign of Higgsino mass term (default 1)\n"    
           "   Mtp     top quark pole mass\n"
           "   MbMb    Mb(Mb) scale independent b-quark mass\n"
           "   alfSMZ  strong coupling at MZ\n");
/*    printf("Example: ./main 70 250 -300 10\n");  */
      printf("Example: ./main 120 500 -350 10 1 173.1 \n");
      exit(1); 
  } else  
  {  double Mtp,MbMb,alfSMZ;
     sscanf(argv[1],"%lf",&m0);
     sscanf(argv[2],"%lf",&mhf);
     sscanf(argv[3],"%lf",&a0);
     sscanf(argv[4],"%lf",&tb);
     if(argc>5)sscanf(argv[5],"%lf",&sgn); else sgn=1;
     if(argc>6){ sscanf(argv[6],"%lf",&Mtp);    assignValW("Mtp",Mtp);      }
     if(argc>7){ sscanf(argv[7],"%lf",&MbMb);   assignValW("MbMb",MbMb);    }
     if(argc>8){ sscanf(argv[8],"%lf",&alfSMZ); assignValW("alfSMZ",alfSMZ);}
  }

/*==== simulation of mSUGRA =====*/
  gMG1=mhf, gMG2=mhf,gMG3=mhf;
  gAl=a0,   gAt=a0,  gAb=a0;  gMHu=m0,  gMHd=m0;
  gMl2=m0,  gMl3=m0, gMr2=m0, gMr3=m0;
  gMq2=m0,  gMq3=m0, gMu2=m0, gMd2=m0, gMu3=m0, gMd3=m0;

  err= SUGRAMODEL(RGE) (tb,  
    gMG1, gMG2, gMG3,  gAl,  gAt, gAb,  sgn, gMHu, gMHd,
    gMl2, gMl3, gMr2, gMr3, gMq2,  gMq3, gMu2, gMu3, gMd2, gMd3); 
}
#elif defined(AMSB)
{
  double m0,m32,sgn,tb;

  printf("\n========= AMSB scenario =====\n");
  PRINTRGE(RGE);
  if(argc<4) 
  { 
    printf(" This program needs 3 parameters:\n"
           "   m0      common scalar mass at GUT scale\n"
           "   m3/2    gravitino mass\n"
           "   tb      tan(beta) \n");
    printf(" Auxiliary parameters are:\n"
           "   sgn     +/-1,  sign of Higgsino mass term (default 1)\n"    
           "   Mtp     top quark pole mass\n"
           "   MbMb    Mb(Mb) scale independent b-quark mass\n"
           "   alfSMZ  strong coupling at MZ\n");
   printf("Example: ./main 450  60000 10\n");                                                                          
   exit(1); 
  } else  
  {  double Mtp,MbMb,alfSMZ;
     sscanf(argv[1],"%lf",&m0);
     sscanf(argv[2],"%lf",&m32);
     sscanf(argv[3],"%lf",&tb);
     if(argc>4)sscanf(argv[4],"%lf",&sgn); else sgn=1;
     if(argc>5){ sscanf(argv[5],"%lf",&Mtp);    assignValW("Mtp",Mtp);      }
     if(argc>6){ sscanf(argv[6],"%lf",&MbMb);   assignValW("MbMb",MbMb);    }
     if(argc>7){ sscanf(argv[7],"%lf",&alfSMZ); assignValW("alfSMZ",alfSMZ);}
  }

  err= AMSBMODEL(RGE)(m0,m32,tb,sgn);
 
}
#elif defined(EWSB)
{ 
   printf("\n========= EWSB scale input =========\n");
   PRINTRGE(RGE);

   if(argc <2) 
   {  printf("The program needs one argument:the name of file with MSSM parameters.\n"
            "Example: ./main mssm1.par \n");
      exit(1);
   }  
   
   printf("Initial file  \"%s\"\n",argv[1]);
     
   err=readVarMSSM(argv[1]);
          
   if(err==-1)     { printf("Can not open the file\n"); exit(2);}
   else if(err>0)  { printf("Wrong file contents at line %d\n",err);exit(3);}

   err=EWSBMODEL(RGE)();
}
#else
{
   printf("\n========= SLHA file input =========\n");

   if(argc <2) 
   {  printf("The program needs one argument:the name of SLHA input file.\n"
            "Example: ./main suspect2_lha.out \n");
      exit(1);
   }  
   
   printf("Initial file  \"%s\"\n",argv[1]);
   err=lesHinput(argv[1]);
   if(err) exit(2);
}
#endif
  
  { int nw;
    printf("Warnings from spectrum calculator:\n");
    nw=slhaWarnings(stdout);
    if(nw==0) printf(" .....none\n");
  }  
  if(err) exit(1);
  err=sortOddParticles(cdmName);
  if(err) { printf("Can't calculate %s\n",cdmName); return 1;}

  qNumbers(cdmName,&spin2, &charge3, &cdim);
  printf("\nDark matter candidate is '%s' with spin=%d/2  mass=%.2E\n",
  cdmName,       spin2, Mcdm); 
    
  
  if(charge3) { printf("Dark Matter has electric charge %d/3\n",charge3); exit(1);}
  if(cdim!=1) { printf("Dark Matter is a color particle\n"); exit(1);}
  if(strcmp(cdmName,"~o1")) printf(" ~o1 is not CDM\n"); 
                              else o1Contents(stdout);

                
#ifdef MASSES_INFO
{
  printf("\n=== MASSES OF HIGGS AND SUSY PARTICLES: ===\n");
  printHiggs(stdout);
  printMasses(stdout,1);
}
#endif

#ifdef CONSTRAINTS
{ printf("\n\n==== Physical Constraints: =====\n"); 
  printf("deltartho=%.2E\n",deltarho());
  printf("gmuon=%.2E\n", gmuon());
  printf("bsgnlo=%.2E\n", bsgnlo());
  printf("bsmumu=%.2E\n", bsmumu());
  printf("btaunu=%.2E\n", btaunu());
  if(masslimits()==0) printf("MassLimits OK\n");
}
#endif

#ifdef OMEGA
{ int fast=1;
  double Beps=1.E-5, cut=0.01;
  double Omega,Xf;   
  printf("\n==== Calculation of relic density =====\n");  
  Omega=darkOmega(&Xf,fast,Beps);
  printf("Xf=%.2e Omega=%.2e\n",Xf,Omega);
  printChannels(Xf,cut,Beps,1,stdout);
}
#endif


#ifdef INDIRECT_DETECTION
{ 
  int err,i;
  double Emin=1,SMmev=320;/*Energy cut in GeV and solar potential in MV*/
  double  sigmaV;
  double vcs_gz,vcs_gg;
  char txt[100];
  double SpA[NZ],SpE[NZ],SpP[NZ];
  double FluxA[NZ],FluxE[NZ],FluxP[NZ];
  double SpNe[NZ],SpNm[NZ],SpNl[NZ];  
//  double * SpNe=NULL,*SpNm=NULL,*SpNl=NULL;
  double Etest=Mcdm/2;
 
/* default DarkSUSY parameters */

/*
    K_dif=0.036;
    L_dif=4;  
    Delta_dif=0.6; 
    Vc_dif=10;
    Rdisk=30;
    SMmev=320;
*/                        
  
printf("\n==== Indirect detection =======\n");  

  sigmaV=calcSpectrum( 1+2+4,SpA,SpE,SpP,SpNe,SpNm,SpNl ,&err);
    /* Returns sigma*v in cm^3/sec.     SpX - calculated spectra of annihilation.
       Use SpectdNdE(E, SpX) to calculate energy distribution in  1/GeV units.
       
       First parameter 1-includes W/Z polarization
                       2-includes gammas for 2->2+gamma
                       4-print cross sections             
    */
    
  printf("sigmav=%.2E[cm^3/s]\n",sigmaV); 

  if(SpA)
  { 
     double fi=0.,dfi=M_PI/180.; /* angle of sight and 1/2 of cone angle in [rad] */ 
                                                   /* dfi corresponds to solid angle 1.E-3sr */                                             
     printf("Photon flux  for angle of sight f=%.2f[rad]\n"
     "and spherical region described by cone with angle %.4f[rad]\n",fi,2*dfi);
     gammaFluxTab(fi,dfi, sigmaV, SpA, FluxA);

#ifdef SHOWPLOTS
     sprintf(txt,"Photon flux for angle of sight %.2f[rad] and cone angle %.2f[rad]",fi,2*dfi);
     displaySpectrum(FluxA,txt,Emin,Mcdm,1);
#endif
     printf("Photon flux = %.2E[cm^2 s GeV]^{-1} for E=%.1f[GeV]\n",SpectdNdE(Etest, FluxA), Etest);       
     if(loopGamma(&vcs_gz,&vcs_gg)==0)
     {
         printf("Gamma  ray lines:\n");
         printf("E=%.2E[GeV]  vcs(Z,A)= %.2E[cm^3/s], flux=%.2E[cm^2 s]^{-1}\n",Mcdm-91.19*91.19/4/Mcdm,vcs_gz,
                               gammaFlux(fi,dfi,vcs_gz));  
         printf("E=%.2E[GeV]  vcs(A,A)= %.2E[cm^3/s], flux=%.2E[cm^2 s]^{-1}\n",Mcdm,vcs_gg, 
                             2*gammaFlux(fi,dfi,vcs_gg));
     }
  }

  if(SpE)
  { 

    posiFluxTab(Emin, sigmaV, SpE, FluxE);
    if(SMmev>0)  solarModulation(SMmev,0.0005,FluxE,FluxE);    
#ifdef SHOWPLOTS     
    displaySpectrum(SpE,"positron flux [cm^2 s sr GeV]^{-1}" ,Emin,Mcdm,1);
#endif
    printf("Positron flux  =  %.2E[cm^2 sr s GeV]^{-1} for E=%.1f[GeV] \n",
    SpectdNdE(Etest, FluxE),  Etest); 
  }
  
  if(SpP)
  {
    pbarFluxTab(Emin, sigmaV, SpP,  FluxP); 
    
    if(SMmev>0)  solarModulation(SMmev,1,FluxP,FluxP);     
#ifdef SHOWPLOTS    
     displaySpectrum(FluxP,"antiproton flux [cm^2 s sr GeV]^{-1}" ,Emin,Mcdm,1);
#endif
    printf("Antiproton flux  =  %.2E[cm^2 sr s GeV]^{-1} for E=%.1f[GeV] \n",
    SpectdNdE(Etest, FluxP),  Etest);     
  }
}  
#endif

#ifdef RESET_FORMFACTORS
{
/* 
   The user has approach to form factors  which specifies quark contents 
   of  proton and nucleon via global parametes like
      <Type>FF<Nucleon><q>
   where <Type> can be "Scalar", "pVector", and "Sigma"; 
         <Nucleon>     "P" or "N" for proton and neutron
         <q>            "d", "u","s"

   calcScalarFF( Mu/Md, Ms/Md, sigmaPiN[MeV], sigma0[MeV])  
   calculates and rewrites Scalar form factors
*/

  printf("protonFF (default) d %E, u %E, s %E\n",ScalarFFPd, ScalarFFPu,ScalarFFPs);                               
  printf("neutronFF(default) d %E, u %E, s %E\n",ScalarFFNd, ScalarFFNu,ScalarFFNs);

  calcScalarFF(0.553,18.9,70.,35.);

  printf("protonFF (new)     d %E, u %E, s %E\n",ScalarFFPd, ScalarFFPu,ScalarFFPs);                               
  printf("neutronFF(new)     d %E, u %E, s %E\n",ScalarFFNd, ScalarFFNu,ScalarFFNs);



/* Option to change parameters of DM velocity  distribution  */   
   SetfMaxwell(220.,600.);
/* 
    dN  ~  exp(-v^2/arg1^2)*Theta(v-arg2)  d^3v     
    Earth velocity with respect to Galaxy defined by 'Vearth' parameter.
    All parameters are  in [km/s] units.       
*/
}
#endif

#ifdef CDM_NUCLEON
{ double pA0[2],pA5[2],nA0[2],nA5[2];
  double Nmass=0.939; /*nucleon mass*/
  double SCcoeff;        

printf("\n==== Calculation of CDM-nucleons amplitudes  =====\n");   
#ifdef TEST_Direct_Detection
printf("         TREE LEVEL\n");

    MSSMDDtest(0, pA0,pA5,nA0,nA5);
    printf("Analitic formulae\n");
    printf("proton:  SI  %.3E  SD  %.3E\n",pA0[0],pA5[0]);
    printf("neutron: SI  %.3E  SD  %.3E\n",nA0[0],nA5[0]); 

    nucleonAmplitudes(NULL, pA0,pA5,nA0,nA5);
    printf("CDM-nucleon micrOMEGAs amplitudes:\n");
    printf("proton:  SI  %.3E  SD  %.3E\n",pA0[0],pA5[0]);
    printf("neutron: SI  %.3E  SD  %.3E\n",nA0[0],nA5[0]); 

printf("         BOX DIAGRAMS\n");  

    MSSMDDtest(1, pA0,pA5,nA0,nA5);
    printf("Analitic formulae\n");
    printf("proton:  SI  %.3E  SD  %.3E\n",pA0[0],pA5[0]);
    printf("neutron: SI  %.3E  SD  %.3E\n",nA0[0],nA5[0]); 

    
#endif

    nucleonAmplitudes(FeScLoop, pA0,pA5,nA0,nA5);
    printf("CDM-nucleon micrOMEGAs amplitudes:\n");
    printf("proton:  SI  %.3E  SD  %.3E\n",pA0[0],pA5[0]);
    printf("neutron: SI  %.3E  SD  %.3E\n",nA0[0],nA5[0]); 

  SCcoeff=4/M_PI*3.8937966E8*pow(Nmass*Mcdm/(Nmass+ Mcdm),2.);
    printf("CDM-nucleon cross sections[pb]:\n");
    printf(" proton  SI %.3E  SD %.3E\n",SCcoeff*pA0[0]*pA0[0],3*SCcoeff*pA5[0]*pA5[0]);
    printf(" neutron SI %.3E  SD %.3E\n",SCcoeff*nA0[0]*nA0[0],3*SCcoeff*nA5[0]*nA5[0]);
}
#endif
  
#ifdef CDM_NUCLEUS
{ double dNdE[300];
  double nEvents;

printf("\n======== Direct Detection ========\n");    

  nEvents=nucleusRecoil(Maxwell,73,Z_Ge,J_Ge73,S00Ge73,S01Ge73,S11Ge73,FeScLoop,dNdE);

  printf("73Ge: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));
                                                                                                         
#ifdef SHOWPLOTS
    displayRecoilPlot(dNdE,"Distribution of recoil energy of 73Ge",0,199);
#endif

  nEvents=nucleusRecoil(Maxwell,131,Z_Xe,J_Xe131,S00Xe131,S01Xe131,S11Xe131,FeScLoop,dNdE);

  printf("131Xe: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));                                   
#ifdef SHOWPLOTS
    displayRecoilPlot(dNdE,"Distribution of recoil energy of 131Xe",0,199);
#endif

  nEvents=nucleusRecoil(Maxwell,23,Z_Na,J_Na23,S00Na23,S01Na23,S11Na23,FeScLoop,dNdE);

  printf("23Na: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));                                   
#ifdef SHOWPLOTS
    displayRecoilPlot(dNdE,"Distribution of recoil energy of 23Na",0,199);
#endif

  nEvents=nucleusRecoil(Maxwell,127,Z_I,J_I127,S00I127,S01I127,S11I127,FeScLoop,dNdE);

  printf("I127: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));                                   
#ifdef SHOWPLOTS
    displayRecoilPlot(dNdE,"Distribution of recoil energy of 127I",0,199);
#endif
  
}
#endif 

#ifdef DECAYS
{  
  txtList L;
   int dim;
   double width,br;
   char * pname;

   pname = "h";
    width=pWidth(pname,&L,&dim);
    printf("%s->%d*x :   total width=%E \n and Branchings:\n",pname,dim,width);
    printTxtList(L,stdout);

   pname = "l";
    width=pWidth(pname,&L,&dim);
    printf("%s->%d*x :   total width=%E \n and Branchings:\n",pname,dim,width);
    printTxtList(L,stdout);
    printf("Br(e,Ne,nl)= %E\n",findBr(L,"e,Ne,nl"));

   pname = "~o2";
    width=pWidth(pname,&L,&dim);
    printf("%s->%d*x :   total width=%E \n and Branchings:\n",pname,dim,width);
    printTxtList(L,stdout);
    
   pname = "~g";
    width=pWidth(pname,&L,&dim);
    printf("%s->%d*x :   total width=%E \n and Branchings:\n",pname,dim,width);
    printTxtList(L,stdout);
    
    
}
#endif

#ifdef CROSS_SECTIONS
{
  double Pcm=500, cosmin=-0.99, cosmax=0.99, cs;
  numout* cc;
printf("\n====== Calculation of cross section ====\n");  

printf(" e^+, e^- annihilation\n");
  Pcm=500.;
  Helicity[0]=0.5;    /* helicity : spin projection on direction of motion   */    
  Helicity[1]=-0.5;   /* helicities ={ 0.5, -0.5} corresponds to vector state */
  printf("Process e,E->2*x at Pcm=%.3E GeV\n",Pcm);
  cc=newProcess("e%,E%->2*x","eE_2x");
  if(cc)
  { int ntot,l;
    char * name[4];
    procInfo1(cc,&ntot,NULL,NULL);
    for(l=1;l<=ntot; l++)
    { int err;
      double cs;
      char txt[100];
      procInfo2(cc,l,name,NULL);
      sprintf(txt,"%3s,%3s -> %3s %3s  ",name[0],name[1],name[2],name[3]);
      cs= cs22(cc,l,Pcm,cosmin,cosmax,&err);
      if(err) printf("%-20.20s    Error\n",txt);
      else if(cs) printf("%-20.20s  %.2E [pb]\n",txt,cs); 
    }
  } 
}

#endif
   
  killPlots();

  return 0;
}
Esempio n. 4
0
int main(int argc,char** argv)
{  int err;
   char cdmName[10];
   int spin2, charge3,cdim;
   
  

// sysTimeLim=1000; 
  ForceUG=0;   /* to Force Unitary Gauge assign 1 */
//  nPROCSS=0; /* to switch off multiprocessor calculations */
/*
   if you would like to work with superIso
    setenv("superIso","./superiso_v3.1",1);  
*/


#ifdef SUGRA
{
  double m0,mhf,a0,tb;
  double gMG1, gMG2, gMG3,  gAl, gAt, gAb,  sgn, gMHu,  gMHd,
         gMl2, gMl3, gMr2, gMr3, gMq2, gMq3, gMu2, gMu3, gMd2, gMd3;
         
  printf("\n========= mSUGRA scenario =====\n");
  PRINTRGE(RGE);

  if(argc<5) 
  { 
    printf(" This program needs 4 parameters:\n"
           "   m0      common scalar mass at GUT scale\n"
           "   mhf     common gaugino mass at GUT scale\n"
           "   a0      trilinear soft breaking parameter at GUT scale\n"
           "   tb      tan(beta) \n");
    printf(" Auxiliary parameters are:\n"
           "   sgn     +/-1,  sign of Higgsino mass term (default 1)\n"    
           "   Mtp     top quark pole mass\n"
           "   MbMb    Mb(Mb) scale independent b-quark mass\n"
           "   alfSMZ  strong coupling at MZ\n");
/*    printf("Example: ./main 70 250 -300 10\n");  */
      printf("Example: ./main 120 500 -350 10 1 173.1 \n");
      exit(1); 
  } else  
  {  double Mtp,MbMb,alfSMZ;
     sscanf(argv[1],"%lf",&m0);
     sscanf(argv[2],"%lf",&mhf);
     sscanf(argv[3],"%lf",&a0);
     sscanf(argv[4],"%lf",&tb);
     if(argc>5)sscanf(argv[5],"%lf",&sgn); else sgn=1;
     if(argc>6){ sscanf(argv[6],"%lf",&Mtp);    assignValW("Mtp",Mtp);      }
     if(argc>7){ sscanf(argv[7],"%lf",&MbMb);   assignValW("MbMb",MbMb);    }
     if(argc>8){ sscanf(argv[8],"%lf",&alfSMZ); assignValW("alfSMZ",alfSMZ);}
  }

/*==== simulation of mSUGRA =====*/
  gMG1=mhf, gMG2=mhf,gMG3=mhf;
  gAl=a0,   gAt=a0,  gAb=a0;  gMHu=m0,  gMHd=m0;
  gMl2=m0,  gMl3=m0, gMr2=m0, gMr3=m0;
  gMq2=m0,  gMq3=m0, gMu2=m0, gMd2=m0, gMu3=m0, gMd3=m0;

  err= SUGRAMODEL(RGE) (tb,  
    gMG1, gMG2, gMG3,  gAl,  gAt, gAb,  sgn, gMHu, gMHd,
    gMl2, gMl3, gMr2, gMr3, gMq2,  gMq3, gMu2, gMu3, gMd2, gMd3); 
}
#elif defined(SUGRANUH)
{
  double m0,mhf,a0,tb;
  double gMG1, gMG2, gMG3,  gAl, gAt, gAb,  gMl2, gMl3, gMr2, gMr3, gMq2, gMq3, gMu2, gMu3, gMd2, gMd3,mu,MA;
         
  printf("\n========= mSUGRA non-universal Higgs scenario =====\n");
  PRINTRGE(RGE);

  if(argc<7) 
  { 
    printf(" This program needs 6 parameters:\n"
           "   m0      common scalar mass at GUT scale\n"
           "   mhf     common gaugino mass at GUT scale\n"
           "   a0      trilinear soft breaking parameter at GUT scale\n"
           "   tb      tan(beta) \n" 
           "   mu      mu(EWSB)\n"
           "   MA      mass of pseudoscalar Higgs\n");     
    printf(" Auxiliary parameters are:\n"
           "   Mtp     top quark pole mass\n"
           "   MbMb    Mb(Mb) scale independent b-quark mass\n"
           "   alfSMZ  strong coupling at MZ\n");
/*    printf("Example: ./main 70 250 -300 10\n");  */
      printf("Example: ./main 120 500 -350 10 680 760  \n");
      exit(1); 
  } else  
  {  double Mtp,MbMb,alfSMZ;
     sscanf(argv[1],"%lf",&m0);
     sscanf(argv[2],"%lf",&mhf);
     sscanf(argv[3],"%lf",&a0);
     sscanf(argv[4],"%lf",&tb);
     sscanf(argv[5],"%lf",&mu);
     sscanf(argv[6],"%lf",&MA); 
     if(argc>7){ sscanf(argv[7],"%lf",&Mtp);    assignValW("Mtp",Mtp);      }
     if(argc>8){ sscanf(argv[8],"%lf",&MbMb);   assignValW("MbMb",MbMb);    }
     if(argc>9){ sscanf(argv[9],"%lf",&alfSMZ); assignValW("alfSMZ",alfSMZ);}
  }

/*==== simulation of mSUGRA =====*/
  gMG1=mhf, gMG2=mhf,gMG3=mhf;
  gAl=a0,   gAt=a0,  gAb=a0;
  gMl2=m0,  gMl3=m0, gMr2=m0, gMr3=m0;
  gMq2=m0,  gMq3=m0, gMu2=m0, gMd2=m0, gMu3=m0, gMd3=m0;

  err= SUGRANUHMODEL(RGE) (tb,gMG1,gMG2,gMG3,gAl,gAt,gAb,gMl2,gMl3,gMr2,gMr3,gMq2,gMq3,gMu2,gMu3,gMd2,gMd3,mu,MA); 
}
#elif defined(AMSB)
{
  double m0,m32,sgn,tb;

  printf("\n========= AMSB scenario =====\n");
  PRINTRGE(RGE);
  if(argc<4) 
  { 
    printf(" This program needs 3 parameters:\n"
           "   m0      common scalar mass at GUT scale\n"
           "   m3/2    gravitino mass\n"
           "   tb      tan(beta) \n");
    printf(" Auxiliary parameters are:\n"
           "   sgn     +/-1,  sign of Higgsino mass term (default 1)\n"    
           "   Mtp     top quark pole mass\n"
           "   MbMb    Mb(Mb) scale independent b-quark mass\n"
           "   alfSMZ  strong coupling at MZ\n");
   printf("Example: ./main 450  60000 10\n");                                                                          
   exit(1); 
  } else  
  {  double Mtp,MbMb,alfSMZ;
     sscanf(argv[1],"%lf",&m0);
     sscanf(argv[2],"%lf",&m32);
     sscanf(argv[3],"%lf",&tb);
     if(argc>4)sscanf(argv[4],"%lf",&sgn); else sgn=1;
     if(argc>5){ sscanf(argv[5],"%lf",&Mtp);    assignValW("Mtp",Mtp);      }
     if(argc>6){ sscanf(argv[6],"%lf",&MbMb);   assignValW("MbMb",MbMb);    }
     if(argc>7){ sscanf(argv[7],"%lf",&alfSMZ); assignValW("alfSMZ",alfSMZ);}
  }

  err= AMSBMODEL(RGE)(m0,m32,tb,sgn);
 
}
#elif defined(EWSB)
{ 
   printf("\n========= EWSB scale input =========\n");
   PRINTRGE(RGE);

   if(argc <2) 
   {  printf("The program needs one argument:the name of file with MSSM parameters.\n"
            "Example: ./main mssm1.par \n");
      exit(1);
   }  
   
   printf("Initial file  \"%s\"\n",argv[1]);
     
   err=readVarMSSM(argv[1]);
          
   if(err==-1)     { printf("Can not open the file\n"); exit(2);}
   else if(err>0)  { printf("Wrong file contents at line %d\n",err);exit(3);}

   err=EWSBMODEL(RGE)();
}
#else
{
   printf("\n========= SLHA file input =========\n");

   if(argc <2) 
   {  printf("The program needs one argument:the name of SLHA input file.\n"
            "Example: ./main suspect2_lha.out \n");
      exit(1);
   }  
   
   printf("Initial file  \"%s\"\n",argv[1]);
   err=lesHinput(argv[1]);
   if(err) exit(2);
}
#endif
          
    if(err==-1)     { printf("Can not open the file\n"); exit(2);}
    else if(err>0)  { printf("Wrong file contents at line %d\n",err);exit(3);}
  
  { int nw;
    printf("Warnings from spectrum calculator:\n");
    nw=slhaWarnings(stdout);
    if(nw==0) printf(" .....none\n");
  } 

  if(err) exit(1);
  err=sortOddParticles(cdmName);
  if(err) { printf("Can't calculate %s\n",cdmName); return 1;}

  qNumbers(cdmName,&spin2, &charge3, &cdim);
  printf("\nDark matter candidate is '%s' with spin=%d/2  mass=%.2E\n",
  cdmName,       spin2, Mcdm); 
  
  if(charge3) { printf("Dark Matter has electric charge %d/3\n",charge3); exit(1);}
  if(cdim!=1) { printf("Dark Matter is a color particle\n"); exit(1);}
  if(strcmp(cdmName,"~o1")) printf(" ~o1 is not CDM\n"); 
                              else o1Contents(stdout);

                             
#ifdef MASSES_INFO
{
  printf("\n=== MASSES OF HIGGS AND SUSY PARTICLES: ===\n");
  printHiggs(stdout);
  printMasses(stdout,1);
}
#endif

#ifdef CONSTRAINTS
{ double SMbsg,dmunu;
  printf("\n\n==== Physical Constraints: =====\n"); 
  printf("deltartho=%.2E\n",deltarho());
  printf("gmuon=%.2E\n", gmuon());
  printf("bsgnlo=%.2E ", bsgnlo(&SMbsg)); printf("( SM %.2E )\n",SMbsg);

  printf("bsmumu=%.2E\n", bsmumu());
  printf("btaunu=%.2E\n", btaunu());

  printf("dtaunu=%.2E  ", dtaunu(&dmunu)); printf("dmunu=%.2E\n", dmunu);   
  printf("Rl23=%.3E\n", Rl23());
  
  if(masslimits()==0) printf("MassLimits OK\n");
}
#endif


#ifdef HIGGSBOUNDS
   if(access(HIGGSBOUNDS "/HiggsBounds",X_OK )) system( "cd " HIGGSBOUNDS "; ./configure; make ");
   slhaWrite("HB.in");
   HBblocks("HB.in");
   system(HIGGSBOUNDS "/HiggsBounds  LandH SLHA 3 1 HB.in HB.out > hb.stdout");
   slhaRead("HB.out",1+4);
    printf("HB result= %.0E  obsratio=%.2E\n",slhaValFormat("HiggsBoundsResults",0.,"1 2 %lf"), slhaValFormat("HiggsBoundsResults",0.,"1 3 %lf" )  );
   { char hbInfo[100];
    if(0==slhaSTRFormat("HiggsBoundsResults","1 5 ||%[^|]||",hbInfo)) printf("Channel: %s\n",hbInfo);
   }     
#endif

#ifdef HIGGSSIGNALS
#define DataSet " latestresults "
//#define Method  " peak " 
//#define  Method " mass "
#define  Method " both "
#define PDF  " 2 "  // Gaussian
//#define PDF " 1 "  // box 
//#define PDF " 3 "  // box+Gaussia
#define dMh " 2 "
   printf("HiggsSignals:\n");
   if(access(HIGGSSIGNALS "/HiggsSignals",X_OK )) system( "cd " HIGGSSIGNALS "; ./configure; make ");
     system("rm -f HS.in HS.out");
     slhaWrite("HS.in");
     HBblocks("HS.in");
     system("echo 'BLOCK DMASS\n 25 " dMh " '>> HS.in");
     system(HIGGSSIGNALS "/HiggsSignals" DataSet Method  PDF  " SLHA 3 1 HS.in > hs.stdout");
     system("grep -A 10000  HiggsSignalsResults HS.in > HS.out");
     slhaRead("HS.out",1+4);
     printf("  Number of observables %.0f\n",slhaVal("HiggsSignalsResults",0.,1,7));
     printf("  total chi^2= %.1E\n",slhaVal("HiggsSignalsResults",0.,1,12));
     printf("  HS p-value = %.1E\n", slhaVal("HiggsSignalsResults",0.,1,13));     
#undef dMh
#undef PDF
#undef Method
#undef DataSet

#endif

#ifdef LILITH
   if(LiLithF("Lilith_in.xml"))
   {  double  like; 
      int exp_ndf;
      system("python " LILITH "/run_lilith.py  Lilith_in.xml  -s -r  Lilith_out.slha");
      slhaRead("Lilith_out.slha", 1);
      like = slhaVal("LilithResults",0.,1,0);
      exp_ndf = slhaVal("LilithResults",0.,1,1);
      printf("LILITH:  -2*log(L): %f; exp ndf: %d \n", like,exp_ndf );
   } else printf("LILITH: there is no Higgs candidate\n");
     
#endif

#ifdef SMODELS
{  int res;

   smodels(4000.,5, 0.1, "smodels.in",0);
   system("make -C " SMODELS); 
   system(SMODELS "/runTools.py xseccomputer -p -N -O -f smodels.in");
   system(SMODELS "/runSModelS.py -f smodels.in -s smodels.res -particles ./  > smodels.out "); 
   slhaRead("smodels.res", 1);
   res=slhaVal("SModelS_Exclusion",0.,2,0,0); 
   switch(res)
   { case -1: printf("SMODELS: no channels for testing\n");break;
     case  0: printf("SMODELS: not excluded\n");break; 
     case  1:  printf("SMODELS: excluded\n");break;
   }  
}   
#endif 


#ifdef OMEGA
{ int fast=1;
  double Beps=1.E-5, cut=0.01;
  double Omega,Xf; 
  
// to exclude processes with virtual W/Z in DM   annihilation      
    VZdecay=0; VWdecay=0; cleanDecayTable(); 

// to include processes with virtual W/Z  also  in co-annihilation 
//   VZdecay=2; VWdecay=2; cleanDecayTable(); 
    
  printf("\n==== Calculation of relic density =====\n");  

  sortOddParticles(cdmName);
  Omega=darkOmega(&Xf,fast,Beps);
  printf("Xf=%.2e Omega=%.2e\n",Xf,Omega);
//  printChannels(Xf,cut,Beps,1,stdout);
  
// direct access for annihilation channels 


/*
if(omegaCh){
  int i; 
  for(i=0; omegaCh[i].weight>0  ;i++)
  printf(" %.2E %s %s -> %s %s\n", omegaCh[i].weight, omegaCh[i].prtcl[0],
  omegaCh[i].prtcl[1],omegaCh[i].prtcl[2],omegaCh[i].prtcl[3]); 
}  
*/
// to restore default switches  
    VZdecay=1; VWdecay=1; cleanDecayTable();
}
#endif

 VZdecay=0; VWdecay=0; cleanDecayTable();
 

#ifdef INDIRECT_DETECTION
{ 
  int err,i;
  double Emin=1,SMmev=320;/*Energy cut in GeV and solar potential in MV*/
  double  sigmaV;
  char txt[100];
  double SpA[NZ],SpE[NZ],SpP[NZ];
  double FluxA[NZ],FluxE[NZ],FluxP[NZ];
  double SpNe[NZ],SpNm[NZ],SpNl[NZ];  
//  double * SpNe=NULL,*SpNm=NULL,*SpNl=NULL;
  double Etest=Mcdm/2;
 
/* default DarkSUSY parameters */

/*
    K_dif=0.036;
    L_dif=4;  
    Delta_dif=0.6; 
    Vc_dif=10;
    Rdisk=30;
    SMmev=320;
*/                        
  
printf("\n==== Indirect detection =======\n");  

  sigmaV=calcSpectrum(1+2+4,SpA,SpE,SpP,SpNe,SpNm,SpNl ,&err);
    /* Returns sigma*v in cm^3/sec.     SpX - calculated spectra of annihilation.
       Use SpectdNdE(E, SpX) to calculate energy distribution in  1/GeV units.
       
       First parameter 1-includes W/Z polarization
                       2-includes gammas for 2->2+gamma
                       4-print cross sections             
    */
    

  if(SpA)
  { 
     double fi=0.1,dfi=M_PI/180.; /* angle of sight and 1/2 of cone angle in [rad] */ 
                                                   /* dfi corresponds to solid angle 1.E-3sr */                                             
     printf("\nPhoton flux  for angle of sight f=%.2f[rad]\n"
     "and spherical region described by cone with angle %.4f[rad]\n",fi,2*dfi);
     gammaFluxTab(fi,dfi, sigmaV, SpA, FluxA);

     printf("Photon flux = %.2E[cm^2 s GeV]^{-1} for E=%.1f[GeV]\n",SpectdNdE(Etest, FluxA), Etest);

#ifdef SHOWPLOTS
     sprintf(txt,"Photon flux for angle of sight %.2f[rad] and cone angle %.2f[rad]",fi,2*dfi);
     displaySpectrum(txt,Emin,Mcdm,FluxA);
#endif
     printf("Photon flux = %.2E[cm^2 s GeV]^{-1} for E=%.1f[GeV]\n",SpectdNdE(Etest, FluxA), Etest);
  }

  if(SpE)
  { 
    posiFluxTab(Emin, sigmaV, SpE, FluxE);
    if(SMmev>0)  solarModulation(SMmev,0.0005,FluxE,FluxE);
#ifdef SHOWPLOTS     
    displaySpectrum("positron flux [cm^2 s sr GeV]^{-1}" ,Emin,Mcdm,FluxE);
#endif
    printf("\nPositron flux  =  %.2E[cm^2 sr s GeV]^{-1} for E=%.1f[GeV] \n",
    SpectdNdE(Etest, FluxE),  Etest); 
  }
  
  if(SpP)
  {
    pbarFluxTab(Emin, sigmaV, SpP,  FluxP); 
    
    if(SMmev>0)  solarModulation(SMmev,1,FluxP,FluxP);     
#ifdef SHOWPLOTS    
     displaySpectrum("antiproton flux [cm^2 s sr GeV]^{-1}" ,Emin,Mcdm,FluxP);
#endif
    printf("\nAntiproton flux  =  %.2E[cm^2 sr s GeV]^{-1} for E=%.1f[GeV] \n",
    SpectdNdE(Etest, FluxP),  Etest);     
  }
}  
#endif

#ifdef LoopGAMMA
{    double vcs_gz,vcs_gg;
     double fi=0.,dfi=M_PI/180.; /* fi angle of sight[rad], dfi  1/2 of cone angle in [rad] */
                                 /* dfi corresponds to solid angle  pi*(1-cos(dfi)) [sr] */
                                                       
     if(loopGamma(&vcs_gz,&vcs_gg)==0)
     {
         printf("\nGamma  ray lines:\n");
         printf("E=%.2E[GeV]  vcs(Z,A)= %.2E[cm^3/s], flux=%.2E[cm^2 s]^{-1}\n",Mcdm-91.19*91.19/4/Mcdm,vcs_gz,
                               gammaFlux(fi,dfi,vcs_gz));  
         printf("E=%.2E[GeV]  vcs(A,A)= %.2E[cm^3/s], flux=%.2E[cm^2 s]^{-1}\n",Mcdm,vcs_gg, 
                             2*gammaFlux(fi,dfi,vcs_gg));
     }
}     
#endif     



#ifdef RESET_FORMFACTORS
{
/* 
   The user has approach to form factors  which specifies quark contents 
   of  proton and nucleon via global parametes like
      <Type>FF<Nucleon><q>
   where <Type> can be "Scalar", "pVector", and "Sigma"; 
         <Nucleon>     "P" or "N" for proton and neutron
         <q>            "d", "u","s"

   calcScalarQuarkFF( Mu/Md, Ms/Md, sigmaPiN[MeV], sigmaS[MeV])  
   calculates and rewrites Scalar form factors
*/

  printf("protonFF (default) d %E, u %E, s %E\n",ScalarFFPd, ScalarFFPu,ScalarFFPs);                               
  printf("neutronFF(default) d %E, u %E, s %E\n",ScalarFFNd, ScalarFFNu,ScalarFFNs);

 
  calcScalarQuarkFF(0.46,27.5,34.,42.);

//  To restore default form factors of  version 2  call 
//  calcScalarQuarkFF(0.553,18.9,55.,243.5);

  printf("protonFF (new)     d %E, u %E, s %E\n",ScalarFFPd, ScalarFFPu,ScalarFFPs);                               
  printf("neutronFF(new)     d %E, u %E, s %E\n",ScalarFFNd, ScalarFFNu,ScalarFFNs);

}
#endif

#ifdef CDM_NUCLEON
{ double pA0[2],pA5[2],nA0[2],nA5[2];
  double Nmass=0.939; /*nucleon mass*/
  double SCcoeff;        

printf("\n==== Calculation of CDM-nucleons amplitudes  =====\n");   
#ifdef TEST_Direct_Detection
printf("         TREE LEVEL\n");

    MSSMDDtest(0, pA0,pA5,nA0,nA5);
    printf("Analitic formulae\n");
    printf(" proton:  SI %.3E  SD  %.3E\n",pA0[0],pA5[0]);
    printf(" neutron: SI %.3E  SD  %.3E\n",nA0[0],nA5[0]); 

    nucleonAmplitudes(CDM1,NULL, pA0,pA5,nA0,nA5);
    printf("CDM-nucleon micrOMEGAs amplitudes:\n");
    printf("proton:  SI  %.3E  SD  %.3E\n",pA0[0],pA5[0]);
    printf("neutron: SI  %.3E  SD  %.3E\n",nA0[0],nA5[0]); 

printf("         BOX DIAGRAMS\n");  

    MSSMDDtest(1, pA0,pA5,nA0,nA5);
    printf("Analitic formulae\n");
    printf(" proton:  SI %.3E  SD  %.3E\n",pA0[0],pA5[0]);
    printf(" neutron: SI %.3E  SD  %.3E\n",nA0[0],nA5[0]); 

    
#endif

    nucleonAmplitudes(CDM1,pA0,pA5,nA0,nA5);
    printf("CDM-nucleon micrOMEGAs amplitudes:\n");
    printf("proton:  SI  %.3E  SD  %.3E\n",pA0[0],pA5[0]);
    printf("neutron: SI  %.3E  SD  %.3E\n",nA0[0],nA5[0]); 

  SCcoeff=4/M_PI*3.8937966E8*pow(Nmass*Mcdm/(Nmass+ Mcdm),2.);
    printf("\n==== CDM-nucleon cross sections[pb] ====\n");
    printf(" proton  SI %.3E  SD %.3E\n",SCcoeff*pA0[0]*pA0[0],3*SCcoeff*pA5[0]*pA5[0]);
    printf(" neutron SI %.3E  SD %.3E\n",SCcoeff*nA0[0]*nA0[0],3*SCcoeff*nA5[0]*nA5[0]);
}
#endif
  
#ifdef CDM_NUCLEUS
{ double dNdE[300];
  double nEvents;

printf("\n======== Direct Detection ========\n");    

  nEvents=nucleusRecoil(Maxwell,73,Z_Ge,J_Ge73,SxxGe73,dNdE);

  printf("73Ge: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));
                                                                                                         
#ifdef SHOWPLOTS
    displayRecoilPlot(dNdE,"Distribution of recoil energy of 73Ge",0,199);
#endif

  nEvents=nucleusRecoil(Maxwell,131,Z_Xe,J_Xe131,SxxXe131,dNdE);

  printf("131Xe: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));                                   
#ifdef SHOWPLOTS
    displayRecoilPlot(dNdE,"Distribution of recoil energy of 131Xe",0,199);
#endif

  nEvents=nucleusRecoil(Maxwell,23,Z_Na,J_Na23,SxxNa23,dNdE);

  printf("23Na: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));                                   
#ifdef SHOWPLOTS
    displayRecoilPlot(dNdE,"Distribution of recoil energy of 23Na",0,199);
#endif

  nEvents=nucleusRecoil(Maxwell,127,Z_I,J_I127,SxxI127,dNdE);

  printf("I127: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));                                   
#ifdef SHOWPLOTS
    displayRecoilPlot(dNdE,"Distribution of recoil energy of 127I",0,199);
#endif
  
}
#endif 

#ifdef NEUTRINO
{ double nu[NZ], nu_bar[NZ],mu[NZ];
  int forSun=1;
  double Emin=1;

WIMPSIM=0;
 
  printf("\n===============Neutrino Telescope=======  for  "); 
  if(forSun) printf("Sun\n"); else printf("Earth\n");  

  err=neutrinoFlux(Maxwell,forSun, nu,nu_bar);
#ifdef SHOWPLOTS
  displaySpectra("neutrino fluxes [1/Year/km^2/GeV]",Emin,Mcdm,2,nu,"nu",nu_bar,"nu_bar");
#endif

printf(" E>%.1E GeV neutrino/anti-neutrin fluxes   %.2E/%.2E [1/Year/km^2]\n",Emin,
          spectrInfo(Emin,nu,NULL), spectrInfo(Emin,nu_bar,NULL));  
//  ICE CUBE
if(forSun)printf("IceCube22 exclusion confidence level = %.2E%%\n", 100*exLevIC22(nu,nu_bar,NULL));
  
/* Upward events */
  
  muonUpward(nu,nu_bar, mu);
#ifdef SHOWPLOTS  
  displaySpectrum("Upward muons[1/Year/km^2/GeV]",Emin,Mcdm/2,mu);
#endif

  printf(" E>%.1E GeV Upward muon flux    %.2E [1/Year/km^2]\n",Emin,spectrInfo(Emin,mu,NULL));
  
/* Contained events */
  muonContained(nu,nu_bar,1., mu);
#ifdef SHOWPLOTS  
  displaySpectrum("Contained  muons[1/Year/km^3/GeV]",Emin,Mcdm,mu); 
#endif
  printf(" E>%.1E GeV Contained muon flux %.2E [1/Year/km^3]\n",Emin,spectrInfo(Emin,mu,NULL)); 
}        
#endif 


#ifdef DECAYS
{  
  txtList L;
   double width,br;
   char * pname;
   printf("\n================= Decays ==============\n");

   pname = "h";
   width=pWidth(pname,&L);
   printf("\n%s :   total width=%.2E \n and Branchings:\n",pname,width);
   printTxtList(L,stdout);

   pname = "~o2";
   width=pWidth(pname,&L);
   printf("\n%s :   total width=%.2E \n and Branchings:\n",pname,width);
   printTxtList(L,stdout);            
}
#endif


#ifdef CROSS_SECTIONS
{
  double cs, Pcm=4000, Qren,Qfact=pMass("~o2"),pTmin=0;
  int nf=3;

  printf("pp collision at %.2E GeV\n",Pcm);  

  Qren=Qfact;
  cs=hCollider(Pcm,1,nf,Qren, Qfact, "~o1","~o2",pTmin,1);
  printf("cs(pp->~o1,~o2)=%.2E[pb]\n",cs);
  
}
#endif

#ifdef CLEAN
  killPlots();
  system("rm -f suspect2_lha.in suspect2_lha.out suspect2.out  Key.dat  nngg.out output.flha ");
  system("rm -f HB.in HB.out HS.in HS.out hb.stdout hs.stdout  debug_channels.txt debug_predratio.txt");
  system("rm -f Lilith_in.xml  Lilith_out.slha smodels.* summary.*  particles.py");
#endif 

return 0;
}
Esempio n. 5
0
int main(int argc,char** argv)
{  int err;
   char cdmName[10];
   int spin2, charge3,cdim;

   ForceUG=0;  /* to Force Unitary Gauge assign 1 */
// sysTimeLim=1000; 
/*
   if you would like to work with superIso
    setenv("superIso","./superiso_v3.1",1);  
*/

#ifdef SUGRA
{
  double m0,mhf,a0,tb;
  double gMG1, gMG2, gMG3,  gAl, gAt, gAb,  sgn, gMHu,  gMHd,
         gMl2, gMl3, gMr2, gMr3, gMq2, gMq3, gMu2, gMu3, gMd2, gMd3;
         
  printf("\n========= mSUGRA scenario =====\n");
  PRINTRGE(RGE);

  if(argc<5) 
  { 
    printf(" This program needs 4 parameters:\n"
           "   m0      common scalar mass at GUT scale\n"
           "   mhf     common gaugino mass at GUT scale\n"
           "   a0      trilinear soft breaking parameter at GUT scale\n"
           "   tb      tan(beta) \n");
    printf(" Auxiliary parameters are:\n"
           "   sgn     +/-1,  sign of Higgsino mass term (default 1)\n"    
           "   Mtp     top quark pole mass\n"
           "   MbMb    Mb(Mb) scale independent b-quark mass\n"
           "   alfSMZ  strong coupling at MZ\n");
/*    printf("Example: ./main 70 250 -300 10\n");  */
      printf("Example: ./main 120 500 -350 10 1 173.1 \n");
      exit(1); 
  } else  
  {  double Mtp,MbMb,alfSMZ;
     sscanf(argv[1],"%lf",&m0);
     sscanf(argv[2],"%lf",&mhf);
     sscanf(argv[3],"%lf",&a0);
     sscanf(argv[4],"%lf",&tb);
     if(argc>5)sscanf(argv[5],"%lf",&sgn); else sgn=1;
     if(argc>6){ sscanf(argv[6],"%lf",&Mtp);    assignValW("Mtp",Mtp);      }
     if(argc>7){ sscanf(argv[7],"%lf",&MbMb);   assignValW("MbMb",MbMb);    }
     if(argc>8){ sscanf(argv[8],"%lf",&alfSMZ); assignValW("alfSMZ",alfSMZ);}
  }

/*==== simulation of mSUGRA =====*/
  gMG1=mhf, gMG2=mhf,gMG3=mhf;
  gAl=a0,   gAt=a0,  gAb=a0;  gMHu=m0,  gMHd=m0;
  gMl2=m0,  gMl3=m0, gMr2=m0, gMr3=m0;
  gMq2=m0,  gMq3=m0, gMu2=m0, gMd2=m0, gMu3=m0, gMd3=m0;

  err= SUGRAMODEL(RGE) (tb,  
    gMG1, gMG2, gMG3,  gAl,  gAt, gAb,  sgn, gMHu, gMHd,
    gMl2, gMl3, gMr2, gMr3, gMq2,  gMq3, gMu2, gMu3, gMd2, gMd3); 
}
#elif defined(SUGRANUH)
{
  double m0,mhf,a0,tb;
  double gMG1, gMG2, gMG3,  gAl, gAt, gAb,  gMl2, gMl3, gMr2, gMr3, gMq2, gMq3, gMu2, gMu3, gMd2, gMd3,mu,MA;
         
  printf("\n========= mSUGRA non-universal Higgs scenario =====\n");
  PRINTRGE(RGE);

  if(argc<7) 
  { 
    printf(" This program needs 6 parameters:\n"
           "   m0      common scalar mass at GUT scale\n"
           "   mhf     common gaugino mass at GUT scale\n"
           "   a0      trilinear soft breaking parameter at GUT scale\n"
           "   tb      tan(beta) \n" 
           "   mu      mu(EWSB)\n"
           "   MA      mass of pseudoscalar Higgs\n");     
    printf(" Auxiliary parameters are:\n"
           "   Mtp     top quark pole mass\n"
           "   MbMb    Mb(Mb) scale independent b-quark mass\n"
           "   alfSMZ  strong coupling at MZ\n");
/*    printf("Example: ./main 70 250 -300 10\n");  */
      printf("Example: ./main 120 500 -350 10 680 760  \n");
      exit(1); 
  } else  
  {  double Mtp,MbMb,alfSMZ;
     sscanf(argv[1],"%lf",&m0);
     sscanf(argv[2],"%lf",&mhf);
     sscanf(argv[3],"%lf",&a0);
     sscanf(argv[4],"%lf",&tb);
     sscanf(argv[5],"%lf",&mu);
     sscanf(argv[6],"%lf",&MA); 
     if(argc>7){ sscanf(argv[7],"%lf",&Mtp);    assignValW("Mtp",Mtp);      }
     if(argc>8){ sscanf(argv[8],"%lf",&MbMb);   assignValW("MbMb",MbMb);    }
     if(argc>9){ sscanf(argv[9],"%lf",&alfSMZ); assignValW("alfSMZ",alfSMZ);}
  }

/*==== simulation of mSUGRA =====*/
  gMG1=mhf, gMG2=mhf,gMG3=mhf;
  gAl=a0,   gAt=a0,  gAb=a0;
  gMl2=m0,  gMl3=m0, gMr2=m0, gMr3=m0;
  gMq2=m0,  gMq3=m0, gMu2=m0, gMd2=m0, gMu3=m0, gMd3=m0;

  err= SUGRANUHMODEL(RGE) (tb,gMG1,gMG2,gMG3,gAl,gAt,gAb,gMl2,gMl3,gMr2,gMr3,gMq2,gMq3,gMu2,gMu3,gMd2,gMd3,mu,MA); 
}
#elif defined(AMSB)
{
  double m0,m32,sgn,tb;

  printf("\n========= AMSB scenario =====\n");
  PRINTRGE(RGE);
  if(argc<4) 
  { 
    printf(" This program needs 3 parameters:\n"
           "   m0      common scalar mass at GUT scale\n"
           "   m3/2    gravitino mass\n"
           "   tb      tan(beta) \n");
    printf(" Auxiliary parameters are:\n"
           "   sgn     +/-1,  sign of Higgsino mass term (default 1)\n"    
           "   Mtp     top quark pole mass\n"
           "   MbMb    Mb(Mb) scale independent b-quark mass\n"
           "   alfSMZ  strong coupling at MZ\n");
   printf("Example: ./main 450  60000 10\n");                                                                          
   exit(1); 
  } else  
  {  double Mtp,MbMb,alfSMZ;
     sscanf(argv[1],"%lf",&m0);
     sscanf(argv[2],"%lf",&m32);
     sscanf(argv[3],"%lf",&tb);
     if(argc>4)sscanf(argv[4],"%lf",&sgn); else sgn=1;
     if(argc>5){ sscanf(argv[5],"%lf",&Mtp);    assignValW("Mtp",Mtp);      }
     if(argc>6){ sscanf(argv[6],"%lf",&MbMb);   assignValW("MbMb",MbMb);    }
     if(argc>7){ sscanf(argv[7],"%lf",&alfSMZ); assignValW("alfSMZ",alfSMZ);}
  }

  err= AMSBMODEL(RGE)(m0,m32,tb,sgn);
 
}
#elif defined(EWSB)
{ 
   printf("\n========= EWSB scale input =========\n");
   PRINTRGE(RGE);

   if(argc <2) 
   {  printf("The program needs one argument:the name of file with MSSM parameters.\n"
            "Example: ./main mssm1.par \n");
      exit(1);
   }  
   
   printf("Initial file  \"%s\"\n",argv[1]);
     
   err=readVarMSSM(argv[1]);
          
   if(err==-1)     { printf("Can not open the file\n"); exit(2);}
   else if(err>0)  { printf("Wrong file contents at line %d\n",err);exit(3);}

   err=EWSBMODEL(RGE)();
}
#else
{
   printf("\n========= SLHA file input =========\n");

   if(argc <2) 
   {  printf("The program needs one argument:the name of SLHA input file.\n"
            "Example: ./main suspect2_lha.out \n");
      exit(1);
   }  
   
   printf("Initial file  \"%s\"\n",argv[1]);
   err=lesHinput(argv[1]);
   if(err) exit(2);
}
#endif
          
    if(err==-1)     { printf("Can not open the file\n"); exit(2);}
    else if(err>0)  { printf("Wrong file contents at line %d\n",err);exit(3);}
  
  { int nw;
    printf("Warnings from spectrum calculator:\n");
    nw=slhaWarnings(stdout);
    if(nw==0) printf(" .....none\n");
  } 

  if(err) exit(1);
  err=sortOddParticles(cdmName);
  if(err) { printf("Can't calculate %s\n",cdmName); return 1;}

  qNumbers(cdmName,&spin2, &charge3, &cdim);
  printf("\nDark matter candidate is '%s' with spin=%d/2  mass=%.2E\n",
  cdmName,       spin2, Mcdm); 
  
  if(charge3) { printf("Dark Matter has electric charge %d/3\n",charge3); exit(1);}
  if(cdim!=1) { printf("Dark Matter is a color particle\n"); exit(1);}
  if(strcmp(cdmName,"~o1")) printf(" ~o1 is not CDM\n"); 
                              else o1Contents(stdout);
                             
#ifdef MASSES_INFO
{
  printf("\n=== MASSES OF HIGGS AND SUSY PARTICLES: ===\n");
  printHiggs(stdout);
  printMasses(stdout,1);
}
#endif

#ifdef CONSTRAINTS
{ double SMbsg,dmunu;
  printf("\n\n==== Physical Constraints: =====\n"); 
  printf("deltartho=%.2E\n",deltarho());
  printf("gmuon=%.2E\n", gmuon());
  printf("bsgnlo=%.2E ", bsgnlo(&SMbsg)); printf("( SM %.2E )\n",SMbsg);

  printf("bsmumu=%.2E\n", bsmumu());
  printf("btaunu=%.2E\n", btaunu());

  printf("dtaunu=%.2E  ", dtaunu(&dmunu)); printf("dmunu=%.2E\n", dmunu);   
  printf("Rl23=%.3E\n", Rl23());
  
  if(masslimits()==0) printf("MassLimits OK\n");
}
#endif

#ifdef SUPERISO
    slhaWrite("slha.in");
    system( SUPERISO "/slha.x slha.in >/dev/null");
    slhaRead("output.flha",1);
    unlink("slha.in");
    printf("superIsoBSG=%.3E\n", slhaValFormat("FOBS",0., " 5 1  %lf 0 2 3 22"));    
#endif 

#ifdef HIGGSBOUNDS
   if(access(HIGGSBOUNDS "/HiggsBounds",X_OK )) system( "cd " HIGGSBOUNDS "; ./configure; make ");
   slhaWrite("slha.in");
   system("cp slha.in HB.slha");
   HBblocks("HB.slha");
   System("%s/HiggsBounds  LandH SLHA 3 1 HB.slha",HIGGSBOUNDS);
   slhaRead("HB.slha",1+4);
    printf("HB result= %.0E  obsratio=%.2E\n",slhaValFormat("HiggsBoundsResults",0.,"1 2 %lf"), slhaValFormat("HiggsBoundsResults",0.,"1 3 %lf" )  );
   { char hbInfo[100];
    if(0==slhaSTRFormat("HiggsBoundsResults","1 5 ||%[^|]||",hbInfo)) printf("Channel: %s\n",hbInfo);
   }  
   slhaRead("slha.in",0);
   unlink("slha.in");
#endif


#ifdef OMEGA
{ int fast=1;
  double Beps=1.E-5, cut=0.01;
  double Omega,Xf; 
  
// to exclude processes with virtual W/Z in DM   annihilation      
   VZdecay=0; VWdecay=0; cleanDecayTable(); 

// to include processes with virtual W/Z  also  in co-annihilation 
//   VZdecay=2; VWdecay=2; cleanDecayTable(); 
    
  printf("\n==== Calculation of relic density =====\n");  

  sortOddParticles(cdmName);
  Omega=darkOmega(&Xf,fast,Beps);
  
  printf("Xf=%.2e Omega=%.2e\n",Xf,Omega);
  printChannels(Xf,cut,Beps,1,stdout);
// direct access for annihilation channels 
/*
if(omegaCh){
  int i; 
  for(i=0; omegaCh[i].weight>0  ;i++)
  printf(" %.2E %s %s -> %s %s\n", omegaCh[i].weight, omegaCh[i].prtcl[0],
  omegaCh[i].prtcl[1],omegaCh[i].prtcl[2],omegaCh[i].prtcl[3]); 
}  
*/  
// to restore VZdecay and VWdecay switches 

   VZdecay=1; VWdecay=1; cleanDecayTable();   

}
#endif


#ifdef INDIRECT_DETECTION
{ 
  int err,i;
  double Emin=1,SMmev=320;/*Energy cut in GeV and solar potential in MV*/
  double  sigmaV;
  double vcs_gz,vcs_gg;
  char txt[100];
  double SpA[NZ],SpE[NZ],SpP[NZ];
  double FluxA[NZ],FluxE[NZ],FluxP[NZ];
  double SpNe[NZ],SpNm[NZ],SpNl[NZ];  
//  double * SpNe=NULL,*SpNm=NULL,*SpNl=NULL;
  double Etest=Mcdm/2;
 
/* default DarkSUSY parameters */

/*
    K_dif=0.036;
    L_dif=4;  
    Delta_dif=0.6; 
    Vc_dif=10;
    Rdisk=30;
    SMmev=320;
*/                        
  
printf("\n==== Indirect detection =======\n");  

  sigmaV=calcSpectrum( 2+4,SpA,SpE,SpP,SpNe,SpNm,SpNl ,&err);
    /* Returns sigma*v in cm^3/sec.     SpX - calculated spectra of annihilation.
       Use SpectdNdE(E, SpX) to calculate energy distribution in  1/GeV units.
       
       First parameter 1-includes W/Z polarization
                       2-includes gammas for 2->2+gamma
                       4-print cross sections             
    */

  if(SpA)
  { 
     double fi=0.,dfi=M_PI/180.; /* angle of sight and 1/2 of cone angle in [rad] */ 
                                                   /* dfi corresponds to solid angle 1.E-3sr */                                             
     printf("Photon flux  for angle of sight f=%.2f[rad]\n"
     "and spherical region described by cone with angle %.4f[rad]\n",fi,2*dfi);
     gammaFluxTab(fi,dfi, sigmaV, SpA, FluxA);

#ifdef SHOWPLOTS
     sprintf(txt,"Photon flux for angle of sight %.2f[rad] and cone angle %.2f[rad]",fi,2*dfi);
     displaySpectrum(FluxA,txt,Emin,Mcdm,1);
#endif
     printf("Photon flux = %.2E[cm^2 s GeV]^{-1} for E=%.1f[GeV]\n",SpectdNdE(Etest, FluxA), Etest);       
#ifdef LoopGAMMA
     if(loopGamma(&vcs_gz,&vcs_gg)==0)
     {
         printf("Gamma  ray lines:\n");
         printf("E=%.2E[GeV]  vcs(Z,A)= %.2E[cm^3/s], flux=%.2E[cm^2 s]^{-1}\n",Mcdm-91.19*91.19/4/Mcdm,vcs_gz,
                               gammaFlux(fi,dfi,vcs_gz));  
         printf("E=%.2E[GeV]  vcs(A,A)= %.2E[cm^3/s], flux=%.2E[cm^2 s]^{-1}\n",Mcdm,vcs_gg, 
                             2*gammaFlux(fi,dfi,vcs_gg));
     }
#endif     
  }

  if(SpE)
  { 
    posiFluxTab(Emin, sigmaV, SpE, FluxE);
    if(SMmev>0)  solarModulation(SMmev,0.0005,FluxE,FluxE);    
#ifdef SHOWPLOTS     
    displaySpectrum(FluxE,"positron flux [cm^2 s sr GeV]^{-1}" ,Emin,Mcdm,1);
#endif
    printf("Positron flux  =  %.2E[cm^2 sr s GeV]^{-1} for E=%.1f[GeV] \n",
    SpectdNdE(Etest, FluxE),  Etest); 
  }
  
  if(SpP)
  {
    pbarFluxTab(Emin, sigmaV, SpP,  FluxP); 
    
    if(SMmev>0)  solarModulation(SMmev,1,FluxP,FluxP);     
#ifdef SHOWPLOTS    
     displaySpectrum(FluxP,"antiproton flux [cm^2 s sr GeV]^{-1}" ,Emin,Mcdm,1);
#endif
    printf("Antiproton flux  =  %.2E[cm^2 sr s GeV]^{-1} for E=%.1f[GeV] \n",
    SpectdNdE(Etest, FluxP),  Etest);     
  }
}  
#endif

#ifdef RESET_FORMFACTORS
{
/* 
   The user has approach to form factors  which specifies quark contents 
   of  proton and nucleon via global parametes like
      <Type>FF<Nucleon><q>
   where <Type> can be "Scalar", "pVector", and "Sigma"; 
         <Nucleon>     "P" or "N" for proton and neutron
         <q>            "d", "u","s"

   calcScalarQuarkFF( Mu/Md, Ms/Md, sigmaPiN[MeV], sigmaS[MeV])  
   calculates and rewrites Scalar form factors
*/

  printf("protonFF (default) d %E, u %E, s %E\n",ScalarFFPd, ScalarFFPu,ScalarFFPs);                               
  printf("neutronFF(default) d %E, u %E, s %E\n",ScalarFFNd, ScalarFFNu,ScalarFFNs);

 
  calcScalarQuarkFF(0.46,27.5,34.,42.);

//  To restore default form factors of  version 2  call 
//  calcScalarQuarkFF(0.553,18.9,55.,243.5);

  printf("protonFF (new)     d %E, u %E, s %E\n",ScalarFFPd, ScalarFFPu,ScalarFFPs);                               
  printf("neutronFF(new)     d %E, u %E, s %E\n",ScalarFFNd, ScalarFFNu,ScalarFFNs);

}
#endif

#ifdef CDM_NUCLEON
{ double pA0[2],pA5[2],nA0[2],nA5[2];
  double Nmass=0.939; /*nucleon mass*/
  double SCcoeff;        

printf("\n==== Calculation of CDM-nucleons amplitudes  =====\n");   
#ifdef TEST_Direct_Detection
printf("         TREE LEVEL\n");

    MSSMDDtest(0, pA0,pA5,nA0,nA5);
    printf("Analitic formulae\n");
    printf("proton:  SI  %.3E  SD  %.3E\n",pA0[0],pA5[0]);
    printf("neutron: SI  %.3E  SD  %.3E\n",nA0[0],nA5[0]); 

    nucleonAmplitudes(NULL, pA0,pA5,nA0,nA5);
    printf("CDM-nucleon micrOMEGAs amplitudes:\n");
    printf("proton:  SI  %.3E  SD  %.3E\n",pA0[0],pA5[0]);
    printf("neutron: SI  %.3E  SD  %.3E\n",nA0[0],nA5[0]); 

printf("         BOX DIAGRAMS\n");  

    MSSMDDtest(1, pA0,pA5,nA0,nA5);
    printf("Analitic formulae\n");
    printf("proton:  SI  %.3E  SD  %.3E\n",pA0[0],pA5[0]);
    printf("neutron: SI  %.3E  SD  %.3E\n",nA0[0],nA5[0]); 

    
#endif

    nucleonAmplitudes(FeScLoop, pA0,pA5,nA0,nA5);
    printf("CDM-nucleon micrOMEGAs amplitudes:\n");
    printf("proton:  SI  %.3E  SD  %.3E\n",pA0[0],pA5[0]);
    printf("neutron: SI  %.3E  SD  %.3E\n",nA0[0],nA5[0]); 

  SCcoeff=4/M_PI*3.8937966E8*pow(Nmass*Mcdm/(Nmass+ Mcdm),2.);
    printf("CDM-nucleon cross sections[pb]:\n");
    printf(" proton  SI %.3E  SD %.3E\n",SCcoeff*pA0[0]*pA0[0],3*SCcoeff*pA5[0]*pA5[0]);
    printf(" neutron SI %.3E  SD %.3E\n",SCcoeff*nA0[0]*nA0[0],3*SCcoeff*nA5[0]*nA5[0]);
}
#endif
  
#ifdef CDM_NUCLEUS
{ double dNdE[300];
  double nEvents;

printf("\n======== Direct Detection ========\n");    

  nEvents=nucleusRecoil(Maxwell,73,Z_Ge,J_Ge73,SxxGe73,FeScLoop,dNdE);

  printf("73Ge: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));
                                                                                                         
#ifdef SHOWPLOTS
    displayRecoilPlot(dNdE,"Distribution of recoil energy of 73Ge",0,199);
#endif

  nEvents=nucleusRecoil(Maxwell,131,Z_Xe,J_Xe131,SxxXe131,FeScLoop,dNdE);

  printf("131Xe: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));                                   
#ifdef SHOWPLOTS
    displayRecoilPlot(dNdE,"Distribution of recoil energy of 131Xe",0,199);
#endif

  nEvents=nucleusRecoil(Maxwell,23,Z_Na,J_Na23,SxxNa23,FeScLoop,dNdE);

  printf("23Na: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));                                   
#ifdef SHOWPLOTS
    displayRecoilPlot(dNdE,"Distribution of recoil energy of 23Na",0,199);
#endif

  nEvents=nucleusRecoil(Maxwell,127,Z_I,J_I127,SxxI127,FeScLoop,dNdE);

  printf("I127: Total number of events=%.2E /day/kg\n",nEvents);
  printf("Number of events in 10 - 50 KeV region=%.2E /day/kg\n",
                                   cutRecoilResult(dNdE,10,50));                                   
#ifdef SHOWPLOTS
    displayRecoilPlot(dNdE,"Distribution of recoil energy of 127I",0,199);
#endif
  
}
#endif 

#ifdef NEUTRINO
{ double nu[NZ], nu_bar[NZ],mu[NZ];
  double Ntot;
  int forSun=1;
  double Emin=0.01;
  
 printf("\n===============Neutrino Telescope=======  for  "); 
 if(forSun) printf("Sun\n"); else printf("Earth\n");  

  err=neutrinoFlux(Maxwell,forSun, nu,nu_bar);
#ifdef SHOWPLOTS
  displaySpectrum(nu,"nu flux from Sun [1/Year/km^2/GeV]",Emin,Mcdm,1);
  displaySpectrum(nu_bar,"nu-bar from Sun [1/Year/km^2/GeV]",Emin,Mcdm,1);
#endif
{ double Ntot;
  double Emin=1; //GeV
  spectrInfo(Emin/Mcdm,nu, &Ntot,NULL);
    printf(" E>%.1E GeV neutrino flux       %.2E [1/Year/km^2] \n",Emin,Ntot);
  spectrInfo(Emin/Mcdm,nu_bar, &Ntot,NULL);
    printf(" E>%.1E GeV anti-neutrino flux  %.2E [1/Year/km^2]\n",Emin,Ntot);  
} 
  
/* Upward events */
  
  muonUpward(nu,nu_bar, mu);
#ifdef SHOWPLOTS  
  displaySpectrum(mu,"Upward muons[1/Year/km^2/GeV]",1,Mcdm/2,1);
#endif
  { double Ntot;
    double Emin=1; //GeV
    spectrInfo(Emin/Mcdm,mu, &Ntot,NULL);
    printf(" E>%.1E GeV Upward muon flux    %.2E [1/Year/km^2]\n",Emin,Ntot);
  } 
  
/* Contained events */
  muonContained(nu,nu_bar,1., mu);
#ifdef SHOWPLOTS  
  displaySpectrum(mu,"Contained  muons[1/Year/km^3/GeV]",Emin,Mcdm,1); 
#endif
  { double Ntot;
    double Emin=1; //GeV
    spectrInfo(Emin/Mcdm,mu, &Ntot,NULL);
    printf(" E>%.1E GeV Contained muon flux %.2E [1/Year/km^3]\n",Emin,Ntot);
  }  
}        
#endif 


#ifdef DECAYS
{  
  txtList L;
   double width,br;
   char * pname;
   printf("\n================= Decays ==============\n");

   pname = "h";
   width=pWidth(pname,&L);
   printf("\n%s :   total width=%.2E \n and Branchings:\n",pname,width);
   printTxtList(L,stdout);

   pname = "~o2";
   width=pWidth(pname,&L);
   printf("\n%s :   total width=%.2E \n and Branchings:\n",pname,width);
   printTxtList(L,stdout);
}
#endif


#ifdef CROSS_SECTIONS
{
  double Pcm=250, cosmin=-0.99, cosmax=0.99, cs;
  numout* cc;
printf("\n====== Calculation of cross section ====\n");  

printf(" e^+, e^- annihilation\n");
  Pcm=250.;
  Helicity[0]=0.5;    /* helicity : spin projection on direction of motion   */    
  Helicity[1]=-0.5;   /* helicities ={ 0.5, -0.5} corresponds to vector state */
  printf("Process e,E->2*x at Pcm=%.3E GeV\n",Pcm);
  cc=newProcess("e%,E%->2*x");
  if(cc)
  { int ntot,l;
    char * name[4];
    procInfo1(cc,&ntot,NULL,NULL);
    for(l=1;l<=ntot; l++)
    { int err;
      double cs;
      char txt[100];
      procInfo2(cc,l,name,NULL);
      sprintf(txt,"%3s,%3s -> %3s %3s  ",name[0],name[1],name[2],name[3]);
      cs= cs22(cc,l,Pcm,cosmin,cosmax,&err);
      if(err) printf("%-20.20s    Error\n",txt);
      else if(cs) printf("%-20.20s  %.2E [pb]\n",txt,cs); 
    }
  } 
/*
 { double stot=0;
      int i,j;
   char * sq[25]=
   {"~dL","~dR","~uL","~uR","~sL","~sR","~cL","~cR","~b1","~b2","~t1","~t2",
    "~DL","~DR","~UL","~UR","~SL","~SR","~CL","~CR","~B1","~B2","~T1","~T2",
    "~g"};

    Pcm=4000;

    for(i=0;i<25;i++) for(j=0;j<25;j++)
    {double dcs=hCollider(Pcm,1,0,sq[i],sq[j]);
        stot+=dcs;
        printf("p,p -> %s %s %E\n", sq[i],sq[j],dcs);
    }
    printf("total cross section =%E (without K-factor)\n",stot);
 }
*/
}
#endif

#ifdef CLEAN

  killPlots();
  system("rm -f suspect2_lha.in suspect2_lha.out  suspect2.out HB.slha Key.dat  nngg.in nngg.out output.flha ");

#endif 

return 0;
}
Esempio n. 6
0
int main(int argc,char** argv)
{
	int err;
	char cdmName[10];
	int spin2, charge3,cdim;

	ForceUG=0;  /* to Force Unitary Gauge assign 1 */
// sysTimeLim=1000; 
/*
	if you would like to work with superIso
	setenv("superIso","./superiso_v3.1",1);  
*/
#ifdef SUGRA
	{
		double m0,mhf,a0,tb;
		double gMG1, gMG2, gMG3,  gAl, gAt, gAb,  sgn, gMHu,  gMHd,
  gMl2, gMl3, gMr2, gMr3, gMq2, gMq3, gMu2, gMu3, gMd2, gMd3;
         
  printf("\n========= mSUGRA scenario =====\n");
  PRINTRGE(RGE);

  if(argc<5) 
  { 
	  printf(" This program needs 4 parameters:\n"
			  "   m0      common scalar mass at GUT scale\n"
			  "   mhf     common gaugino mass at GUT scale\n"
			  "   a0      trilinear soft breaking parameter at GUT scale\n"
			  "   tb      tan(beta) \n");
	  printf(" Auxiliary parameters are:\n"
			  "   sgn     +/-1,  sign of Higgsino mass term (default 1)\n"    
			  "   Mtp     top quark pole mass\n"
			  "   MbMb    Mb(Mb) scale independent b-quark mass\n"
			  "   alfSMZ  strong coupling at MZ\n");
	  /*    printf("Example: ./main 70 250 -300 10\n");  */
	  printf("Example: ./main 120 500 -350 10 1 173.1 \n");
	  exit(1); 
  } else  
  {  double Mtp,MbMb,alfSMZ;
  sscanf(argv[1],"%lf",&m0);
  sscanf(argv[2],"%lf",&mhf);
  sscanf(argv[3],"%lf",&a0);
  sscanf(argv[4],"%lf",&tb);
  if(argc>5)sscanf(argv[5],"%lf",&sgn); else sgn=1;
  if(argc>6){ sscanf(argv[6],"%lf",&Mtp);    assignValW("Mtp",Mtp);      }
  if(argc>7){ sscanf(argv[7],"%lf",&MbMb);   assignValW("MbMb",MbMb);    }
  if(argc>8){ sscanf(argv[8],"%lf",&alfSMZ); assignValW("alfSMZ",alfSMZ);}
  }

  /*==== simulation of mSUGRA =====*/
  gMG1=mhf, gMG2=mhf,gMG3=mhf;
  gAl=a0,   gAt=a0,  gAb=a0;  gMHu=m0,  gMHd=m0;
  gMl2=m0,  gMl3=m0, gMr2=m0, gMr3=m0;
  gMq2=m0,  gMq3=m0, gMu2=m0, gMd2=m0, gMu3=m0, gMd3=m0;

  err= SUGRAMODEL(RGE) (tb,  
		  gMG1, gMG2, gMG3,  gAl,  gAt, gAb,  sgn, gMHu, gMHd,
    gMl2, gMl3, gMr2, gMr3, gMq2,  gMq3, gMu2, gMu3, gMd2, gMd3); 
	}
#elif defined(SUGRANUH)
	{
		double m0,mhf,a0,tb;
		double gMG1, gMG2, gMG3,  gAl, gAt, gAb,  gMl2, gMl3, gMr2, gMr3, gMq2, gMq3, gMu2, gMu3, gMd2, gMd3,mu,MA;
         
		printf("\n========= mSUGRA non-universal Higgs scenario =====\n");
		PRINTRGE(RGE);

		if(argc<7) 
		{ 
			printf(" This program needs 6 parameters:\n"
					"   m0      common scalar mass at GUT scale\n"
					"   mhf     common gaugino mass at GUT scale\n"
					"   a0      trilinear soft breaking parameter at GUT scale\n"
					"   tb      tan(beta) \n" 
					"   mu      mu(EWSB)\n"
					"   MA      mass of pseudoscalar Higgs\n");     
			printf(" Auxiliary parameters are:\n"
					"   Mtp     top quark pole mass\n"
					"   MbMb    Mb(Mb) scale independent b-quark mass\n"
					"   alfSMZ  strong coupling at MZ\n");
			/*    printf("Example: ./main 70 250 -300 10\n");  */
			printf("Example: ./main 120 500 -350 10 680 760  \n");
			exit(1); 
		} else  
		{  double Mtp,MbMb,alfSMZ;
		sscanf(argv[1],"%lf",&m0);
		sscanf(argv[2],"%lf",&mhf);
		sscanf(argv[3],"%lf",&a0);
		sscanf(argv[4],"%lf",&tb);
		sscanf(argv[5],"%lf",&mu);
		sscanf(argv[6],"%lf",&MA); 
		if(argc>7){ sscanf(argv[7],"%lf",&Mtp);    assignValW("Mtp",Mtp);      }
		if(argc>8){ sscanf(argv[8],"%lf",&MbMb);   assignValW("MbMb",MbMb);    }
		if(argc>9){ sscanf(argv[9],"%lf",&alfSMZ); assignValW("alfSMZ",alfSMZ);}
		}

		/*==== simulation of mSUGRA =====*/
		gMG1=mhf, gMG2=mhf,gMG3=mhf;
		gAl=a0,   gAt=a0,  gAb=a0;
		gMl2=m0,  gMl3=m0, gMr2=m0, gMr3=m0;
		gMq2=m0,  gMq3=m0, gMu2=m0, gMd2=m0, gMu3=m0, gMd3=m0;

		err= SUGRANUHMODEL(RGE) (tb,gMG1,gMG2,gMG3,gAl,gAt,gAb,gMl2,gMl3,gMr2,gMr3,gMq2,gMq3,gMu2,gMu3,gMd2,gMd3,mu,MA); 
	}
#elif defined(AMSB)
	{
		double m0,m32,sgn,tb;

		printf("\n========= AMSB scenario =====\n");
		PRINTRGE(RGE);
		if(argc<4) 
		{ 
			printf(" This program needs 3 parameters:\n"
					"   m0      common scalar mass at GUT scale\n"
					"   m3/2    gravitino mass\n"
					"   tb      tan(beta) \n");
			printf(" Auxiliary parameters are:\n"
					"   sgn     +/-1,  sign of Higgsino mass term (default 1)\n"    
					"   Mtp     top quark pole mass\n"
					"   MbMb    Mb(Mb) scale independent b-quark mass\n"
					"   alfSMZ  strong coupling at MZ\n");
			printf("Example: ./main 450  60000 10\n");                                                                          
			exit(1); 
		} else  
		{  double Mtp,MbMb,alfSMZ;
		sscanf(argv[1],"%lf",&m0);
		sscanf(argv[2],"%lf",&m32);
		sscanf(argv[3],"%lf",&tb);
		if(argc>4)sscanf(argv[4],"%lf",&sgn); else sgn=1;
		if(argc>5){ sscanf(argv[5],"%lf",&Mtp);    assignValW("Mtp",Mtp);      }
		if(argc>6){ sscanf(argv[6],"%lf",&MbMb);   assignValW("MbMb",MbMb);    }
		if(argc>7){ sscanf(argv[7],"%lf",&alfSMZ); assignValW("alfSMZ",alfSMZ);}
		}

		err= AMSBMODEL(RGE)(m0,m32,tb,sgn);
 
	}
#elif defined(EWSB)
	{ 
		printf("\n========= EWSB scale input =========\n");
		PRINTRGE(RGE);

		if(argc <2) 
		{  printf("The program needs one argument:the name of file with MSSM parameters.\n"
				"Example: ./main mssm1.par \n");
				exit(1);
		}  
   
		printf("Initial file  \"%s\"\n",argv[1]);
     
		err=readVarMSSM(argv[1]);
          
		if(err==-1)     { printf("Can not open the file\n"); exit(2);}
		else if(err>0)  { printf("Wrong file contents at line %d\n",err);exit(3);}

		err=EWSBMODEL(RGE)();
	}
#else
	{
		printf("\n========= SLHA file input =========\n");

		if(argc <2) 
		{  printf("The program needs one argument:the name of SLHA input file.\n"
				"Example: ./main suspect2_lha.out \n");
				exit(1);
		}  
   
		printf("Initial file  \"%s\"\n",argv[1]);
		err=lesHinput(argv[1]);
		if(err) exit(2);
	}
#endif
#ifdef OBTAIN_LSP          
	if(err==-1)     { printf("Can not open the file\n"); exit(2);}
	else if(err>0)  { printf("Wrong file contents at line %d\n",err);exit(3);}
  
	{ int nw;
	printf("Warnings from spectrum calculator:\n");
	nw=slhaWarnings(stdout);
	if(nw==0) printf(" .....none\n");
	} 

	if(err) exit(1);
	err=sortOddParticles(cdmName);
	if(err) { printf("Can't calculate %s\n",cdmName); return 1;}

	qNumbers(cdmName,&spin2, &charge3, &cdim);
	printf("\nDark matter candidate is '%s' with spin=%d/2  mass=%.2E\n",
	       cdmName,       spin2, Mcdm); 
  
	if(charge3) { printf("Dark Matter has electric charge %d/3\n",charge3); exit(1);}
	if(cdim!=1) { printf("Dark Matter is a color particle\n"); exit(1);}
	if(strcmp(cdmName,"~o1")) printf(" ~o1 is not CDM\n"); 
	else o1Contents(stdout);
#endif
#ifdef OBTAIN_CROSS_SECTION
{ 
  int err,i;
  double Emin=1,SMmev=320;/*Energy cut in GeV and solar potential in MV*/
  double  sigmaV;
  double vcs_gz,vcs_gg;
  char txt[100];
  double SpA[NZ],SpE[NZ],SpP[NZ];
  double FluxA[NZ],FluxE[NZ],FluxP[NZ];
  double SpNe[NZ],SpNm[NZ],SpNl[NZ];  
//  double * SpNe=NULL,*SpNm=NULL,*SpNl=NULL;
  double Etest=Mcdm/2;
 
/* default DarkSUSY parameters */

/*
    K_dif=0.036;
    L_dif=4;  
    Delta_dif=0.6; 
    Vc_dif=10;
    Rdisk=30;
    SMmev=320;
*/                        
  
printf("\n==== Indirect detection =======\n");  

  sigmaV=calcSpectrum( 2+4,SpA,SpE,SpP,SpNe,SpNm,SpNl ,&err);
    /* Returns sigma*v in cm^3/sec.     SpX - calculated spectra of annihilation.
       Use SpectdNdE(E, SpX) to calculate energy distribution in  1/GeV units.
       
       First parameter 1-includes W/Z polarization
                       2-includes gammas for 2->2+gamma
                       4-print cross sections             
    */
  printf("sigmav=%.2E[cm^3/s]\n",sigmaV);
  //sigma_v = Sigma_v(sigmaV);

  if(SpA)
  { 
     double fi=0.,dfi=M_PI/180.; /* angle of sight and 1/2 of cone angle in [rad] */ 
                                                   /* dfi corresponds to solid angle 1.E-3sr */                                             
     printf("Photon flux  for angle of sight f=%.2f[rad]\n"
     "and spherical region described by cone with angle %.4f[rad]\n",fi,2*dfi);
     gammaFluxTab(fi,dfi, sigmaV, SpA, FluxA);

#ifdef SHOWPLOTS
     sprintf(txt,"Photon flux for angle of sight %.2f[rad] and cone angle %.2f[rad]",fi,2*dfi);
     displaySpectrum(FluxA,txt,Emin,Mcdm,1);
#endif
     printf("Photon flux = %.2E[cm^2 s GeV]^{-1} for E=%.1f[GeV]\n",SpectdNdE(Etest, FluxA), Etest);       
#ifdef LoopGAMMA
     if(loopGamma(&vcs_gz,&vcs_gg)==0)
     {
         printf("Gamma  ray lines:\n");
         printf("E=%.2E[GeV]  vcs(Z,A)= %.2E[cm^3/s], flux=%.2E[cm^2 s]^{-1}\n",Mcdm-91.19*91.19/4/Mcdm,vcs_gz,
                               gammaFlux(fi,dfi,vcs_gz));  
         printf("E=%.2E[GeV]  vcs(A,A)= %.2E[cm^3/s], flux=%.2E[cm^2 s]^{-1}\n",Mcdm,vcs_gg, 
                             2*gammaFlux(fi,dfi,vcs_gg));
     }
#endif     
  }

  if(SpE)
  { 
    posiFluxTab(Emin, sigmaV, SpE, FluxE);
    if(SMmev>0)  solarModulation(SMmev,0.0005,FluxE,FluxE);    
#ifdef SHOWPLOTS     
    displaySpectrum(FluxE,"positron flux [cm^2 s sr GeV]^{-1}" ,Emin,Mcdm,1);
#endif
    printf("Positron flux  =  %.2E[cm^2 sr s GeV]^{-1} for E=%.1f[GeV] \n",
    SpectdNdE(Etest, FluxE),  Etest); 
  }
  
  if(SpP)
  {
    pbarFluxTab(Emin, sigmaV, SpP,  FluxP); 
    
    if(SMmev>0)  solarModulation(SMmev,1,FluxP,FluxP);     
#ifdef SHOWPLOTS    
     displaySpectrum(FluxP,"antiproton flux [cm^2 s sr GeV]^{-1}" ,Emin,Mcdm,1);
#endif
    printf("Antiproton flux  =  %.2E[cm^2 sr s GeV]^{-1} for E=%.1f[GeV] \n",
    SpectdNdE(Etest, FluxP),  Etest);     
  }
}  
#endif
                             
	
#ifdef CALCULATION_OF_MU
	{
#ifdef 	TAKE_VALUES_FROM_LSP_OF_MICROMEGAS
	{
	mdm = mdm_calc(Mcdm);
	
	}
#endif
	double z = pow(10,5);
	printf("***************** Values used for energy calculation ********************\n");
	printf("H0 - %.2e \n", H0);
	printf("zeq - %.2e \n", zeq);
	printf("Omega_m - %.2e \n", Omega_m);
	printf("Omega_r - %.2e \n", Omega_r);
	printf("Omega_Lambda - %.2e \n", Omega_Lambda);
	printf("Rho_cr - %.2e \n", Rho_cr);
	printf("mdm - %.2e \n", mdm);
	printf("The H_z - is %.2e \n",H(z));
	printf("The ndm_z is %.2e \n",ndm_z(z));
	printf("The sigma_v is %.2e \n",sigma_v);
	printf("The tau is %.2e \n",tau(z));
	printf("*************************************************************************\n");
	double value = dQdz(z) * ( exp(-tau(z))/ H(z));
	printf("For redshift %.2e ", z);
	printf("the energy injection is %.2e \n",value);
	double value_paper = dummy_energy_injection(z)* ( exp (-tau(z))/ H(z));
	printf("While the calculation as in the paper is %.2e \n", value_paper);
	double z_min = 5 * pow(10,4);
	double z_i = 6 * pow(10,6);
	int subdivisions = 1000;
	value = mu_0(z_i, z_min, subdivisions);
	printf("Mu at our time is  %.2e \n", value);
	}
#endif 
	return 0;
}