void test_lgamma() { static_assert((std::is_same<decltype(lgamma((double)0)), double>::value), ""); static_assert((std::is_same<decltype(lgammaf(0)), float>::value), ""); static_assert((std::is_same<decltype(lgammal(0)), long double>::value), ""); assert(lgamma(1) == 0); }
double MeanNormalLikelihood::logValue(RefArrayXd modelParameters) { unsigned long n = observations.size(); double lambda0; double lambda; ArrayXd argument; ArrayXd predictions; predictions.resize(n); predictions.setZero(); model.predict(predictions, modelParameters); argument = (observations - predictions); argument = argument.square()*weights; lambda0 = lgammal(n/2.) - log(2) - (n/2.)*log(Functions::PI) + 0.5*weights.log().sum(); lambda = lambda0 - (n/2.)*log(argument.sum()); return lambda; }
static TACommandVerdict lgammal_cmd(TAThread thread,TAInputStream stream) { long double x, res; x = readLongDouble(&stream); START_TARGET_OPERATION(thread); errno = 0; res = lgammal(x); END_TARGET_OPERATION(thread); writeInt(thread, errno); writeLongDouble(thread, res); writeInt(thread, signgam); sendResponse(thread); return taDefaultVerdict; }
void domathl (void) { #ifndef NO_LONG_DOUBLE long double f1; long double f2; int i1; f1 = acosl(0.0); fprintf( stdout, "acosl : %Lf\n", f1); f1 = acoshl(0.0); fprintf( stdout, "acoshl : %Lf\n", f1); f1 = asinl(1.0); fprintf( stdout, "asinl : %Lf\n", f1); f1 = asinhl(1.0); fprintf( stdout, "asinhl : %Lf\n", f1); f1 = atanl(M_PI_4); fprintf( stdout, "atanl : %Lf\n", f1); f1 = atan2l(2.3, 2.3); fprintf( stdout, "atan2l : %Lf\n", f1); f1 = atanhl(1.0); fprintf( stdout, "atanhl : %Lf\n", f1); f1 = cbrtl(27.0); fprintf( stdout, "cbrtl : %Lf\n", f1); f1 = ceill(3.5); fprintf( stdout, "ceill : %Lf\n", f1); f1 = copysignl(3.5, -2.5); fprintf( stdout, "copysignl : %Lf\n", f1); f1 = cosl(M_PI_2); fprintf( stdout, "cosl : %Lf\n", f1); f1 = coshl(M_PI_2); fprintf( stdout, "coshl : %Lf\n", f1); f1 = erfl(42.0); fprintf( stdout, "erfl : %Lf\n", f1); f1 = erfcl(42.0); fprintf( stdout, "erfcl : %Lf\n", f1); f1 = expl(0.42); fprintf( stdout, "expl : %Lf\n", f1); f1 = exp2l(0.42); fprintf( stdout, "exp2l : %Lf\n", f1); f1 = expm1l(0.00042); fprintf( stdout, "expm1l : %Lf\n", f1); f1 = fabsl(-1.123); fprintf( stdout, "fabsl : %Lf\n", f1); f1 = fdiml(1.123, 2.123); fprintf( stdout, "fdiml : %Lf\n", f1); f1 = floorl(0.5); fprintf( stdout, "floorl : %Lf\n", f1); f1 = floorl(-0.5); fprintf( stdout, "floorl : %Lf\n", f1); f1 = fmal(2.1, 2.2, 3.01); fprintf( stdout, "fmal : %Lf\n", f1); f1 = fmaxl(-0.42, 0.42); fprintf( stdout, "fmaxl : %Lf\n", f1); f1 = fminl(-0.42, 0.42); fprintf( stdout, "fminl : %Lf\n", f1); f1 = fmodl(42.0, 3.0); fprintf( stdout, "fmodl : %Lf\n", f1); /* no type-specific variant */ i1 = fpclassify(1.0); fprintf( stdout, "fpclassify : %d\n", i1); f1 = frexpl(42.0, &i1); fprintf( stdout, "frexpl : %Lf\n", f1); f1 = hypotl(42.0, 42.0); fprintf( stdout, "hypotl : %Lf\n", f1); i1 = ilogbl(42.0); fprintf( stdout, "ilogbl : %d\n", i1); /* no type-specific variant */ i1 = isfinite(3.0); fprintf( stdout, "isfinite : %d\n", i1); /* no type-specific variant */ i1 = isgreater(3.0, 3.1); fprintf( stdout, "isgreater : %d\n", i1); /* no type-specific variant */ i1 = isgreaterequal(3.0, 3.1); fprintf( stdout, "isgreaterequal : %d\n", i1); /* no type-specific variant */ i1 = isinf(3.0); fprintf( stdout, "isinf : %d\n", i1); /* no type-specific variant */ i1 = isless(3.0, 3.1); fprintf( stdout, "isless : %d\n", i1); /* no type-specific variant */ i1 = islessequal(3.0, 3.1); fprintf( stdout, "islessequal : %d\n", i1); /* no type-specific variant */ i1 = islessgreater(3.0, 3.1); fprintf( stdout, "islessgreater : %d\n", i1); /* no type-specific variant */ i1 = isnan(0.0); fprintf( stdout, "isnan : %d\n", i1); /* no type-specific variant */ i1 = isnormal(3.0); fprintf( stdout, "isnormal : %d\n", i1); /* no type-specific variant */ f1 = isunordered(1.0, 2.0); fprintf( stdout, "isunordered : %d\n", i1); f1 = j0l(1.2); fprintf( stdout, "j0l : %Lf\n", f1); f1 = j1l(1.2); fprintf( stdout, "j1l : %Lf\n", f1); f1 = jnl(2,1.2); fprintf( stdout, "jnl : %Lf\n", f1); f1 = ldexpl(1.2,3); fprintf( stdout, "ldexpl : %Lf\n", f1); f1 = lgammal(42.0); fprintf( stdout, "lgammal : %Lf\n", f1); f1 = llrintl(-0.5); fprintf( stdout, "llrintl : %Lf\n", f1); f1 = llrintl(0.5); fprintf( stdout, "llrintl : %Lf\n", f1); f1 = llroundl(-0.5); fprintf( stdout, "lroundl : %Lf\n", f1); f1 = llroundl(0.5); fprintf( stdout, "lroundl : %Lf\n", f1); f1 = logl(42.0); fprintf( stdout, "logl : %Lf\n", f1); f1 = log10l(42.0); fprintf( stdout, "log10l : %Lf\n", f1); f1 = log1pl(42.0); fprintf( stdout, "log1pl : %Lf\n", f1); f1 = log2l(42.0); fprintf( stdout, "log2l : %Lf\n", f1); f1 = logbl(42.0); fprintf( stdout, "logbl : %Lf\n", f1); f1 = lrintl(-0.5); fprintf( stdout, "lrintl : %Lf\n", f1); f1 = lrintl(0.5); fprintf( stdout, "lrintl : %Lf\n", f1); f1 = lroundl(-0.5); fprintf( stdout, "lroundl : %Lf\n", f1); f1 = lroundl(0.5); fprintf( stdout, "lroundl : %Lf\n", f1); f1 = modfl(42.0,&f2); fprintf( stdout, "lmodfl : %Lf\n", f1); f1 = nanl(""); fprintf( stdout, "nanl : %Lf\n", f1); f1 = nearbyintl(1.5); fprintf( stdout, "nearbyintl : %Lf\n", f1); f1 = nextafterl(1.5,2.0); fprintf( stdout, "nextafterl : %Lf\n", f1); f1 = powl(3.01, 2.0); fprintf( stdout, "powl : %Lf\n", f1); f1 = remainderl(3.01,2.0); fprintf( stdout, "remainderl : %Lf\n", f1); f1 = remquol(29.0,3.0,&i1); fprintf( stdout, "remquol : %Lf\n", f1); f1 = rintl(0.5); fprintf( stdout, "rintl : %Lf\n", f1); f1 = rintl(-0.5); fprintf( stdout, "rintl : %Lf\n", f1); f1 = roundl(0.5); fprintf( stdout, "roundl : %Lf\n", f1); f1 = roundl(-0.5); fprintf( stdout, "roundl : %Lf\n", f1); f1 = scalblnl(1.2,3); fprintf( stdout, "scalblnl : %Lf\n", f1); f1 = scalbnl(1.2,3); fprintf( stdout, "scalbnl : %Lf\n", f1); /* no type-specific variant */ i1 = signbit(1.0); fprintf( stdout, "signbit : %i\n", i1); f1 = sinl(M_PI_4); fprintf( stdout, "sinl : %Lf\n", f1); f1 = sinhl(M_PI_4); fprintf( stdout, "sinhl : %Lf\n", f1); f1 = sqrtl(9.0); fprintf( stdout, "sqrtl : %Lf\n", f1); f1 = tanl(M_PI_4); fprintf( stdout, "tanl : %Lf\n", f1); f1 = tanhl(M_PI_4); fprintf( stdout, "tanhl : %Lf\n", f1); f1 = tgammal(2.1); fprintf( stdout, "tgammal : %Lf\n", f1); f1 = truncl(3.5); fprintf( stdout, "truncl : %Lf\n", f1); f1 = y0l(1.2); fprintf( stdout, "y0l : %Lf\n", f1); f1 = y1l(1.2); fprintf( stdout, "y1l : %Lf\n", f1); f1 = ynl(3,1.2); fprintf( stdout, "ynl : %Lf\n", f1); #endif }
long double lgammal(long double x) { long double p, q, w, z, nx; int i, nn; signgam = 1; if (! finite (x)) return x * x; if (x == 0.0L) { if (signbit (x)) signgam = -1; return one / fabsl (x); } if (x < 0.0L) { q = -x; p = floorl (q); if (p == q) return (one / (p - p)); i = p; if ((i & 1) == 0) signgam = -1; else signgam = 1; z = q - p; if (z > 0.5L) { p += 1.0L; z = p - q; } z = q * sinl (PIL * z); if (z == 0.0L) return (signgam * huge * huge); w = lgammal (q); z = logl (PIL / z) - w; return (z); } if (x < 13.5L) { p = 0.0L; nx = floorl (x + 0.5L); nn = nx; switch (nn) { case 0: /* log gamma (x + 1) = log(x) + log gamma(x) */ if (x <= 0.125) { p = x * neval (x, RN1, NRN1) / deval (x, RD1, NRD1); } else if (x <= 0.375) { z = x - 0.25L; p = z * neval (z, RN1r25, NRN1r25) / deval (z, RD1r25, NRD1r25); p += lgam1r25b; p += lgam1r25a; } else if (x <= 0.625) { z = x + (1.0L - x0a); z = z - x0b; p = neval (z, RN1r5, NRN1r5) / deval (z, RD1r5, NRD1r5); p = p * z * z; p = p + y0b; p = p + y0a; } else if (x <= 0.875) { z = x - 0.75L; p = z * neval (z, RN1r75, NRN1r75) / deval (z, RD1r75, NRD1r75); p += lgam1r75b; p += lgam1r75a; } else { z = x - 1.0L; p = z * neval (z, RN2, NRN2) / deval (z, RD2, NRD2); } p = p - logl (x); break; case 1: if (x < 0.875L) { if (x <= 0.625) { z = x + (1.0L - x0a); z = z - x0b; p = neval (z, RN1r5, NRN1r5) / deval (z, RD1r5, NRD1r5); p = p * z * z; p = p + y0b; p = p + y0a; } else if (x <= 0.875) { z = x - 0.75L; p = z * neval (z, RN1r75, NRN1r75) / deval (z, RD1r75, NRD1r75); p += lgam1r75b; p += lgam1r75a; } else { z = x - 1.0L; p = z * neval (z, RN2, NRN2) / deval (z, RD2, NRD2); } p = p - logl (x); } else if (x < 1.0L) { z = x - 1.0L; p = z * neval (z, RNr9, NRNr9) / deval (z, RDr9, NRDr9); } else if (x == 1.0L) p = 0.0L; else if (x <= 1.125L) { z = x - 1.0L; p = z * neval (z, RN1, NRN1) / deval (z, RD1, NRD1); } else if (x <= 1.375) { z = x - 1.25L; p = z * neval (z, RN1r25, NRN1r25) / deval (z, RD1r25, NRD1r25); p += lgam1r25b; p += lgam1r25a; } else { /* 1.375 <= x+x0 <= 1.625 */ z = x - x0a; z = z - x0b; p = neval (z, RN1r5, NRN1r5) / deval (z, RD1r5, NRD1r5); p = p * z * z; p = p + y0b; p = p + y0a; } break; case 2: if (x < 1.625L) { z = x - x0a; z = z - x0b; p = neval (z, RN1r5, NRN1r5) / deval (z, RD1r5, NRD1r5); p = p * z * z; p = p + y0b; p = p + y0a; } else if (x < 1.875L) { z = x - 1.75L; p = z * neval (z, RN1r75, NRN1r75) / deval (z, RD1r75, NRD1r75); p += lgam1r75b; p += lgam1r75a; } else if (x == 2.0L) p = 0.0L; else if (x < 2.375L) { z = x - 2.0L; p = z * neval (z, RN2, NRN2) / deval (z, RD2, NRD2); } else { z = x - 2.5L; p = z * neval (z, RN2r5, NRN2r5) / deval (z, RD2r5, NRD2r5); p += lgam2r5b; p += lgam2r5a; } break; case 3: if (x < 2.75) { z = x - 2.5L; p = z * neval (z, RN2r5, NRN2r5) / deval (z, RD2r5, NRD2r5); p += lgam2r5b; p += lgam2r5a; } else { z = x - 3.0L; p = z * neval (z, RN3, NRN3) / deval (z, RD3, NRD3); p += lgam3b; p += lgam3a; } break; case 4: z = x - 4.0L; p = z * neval (z, RN4, NRN4) / deval (z, RD4, NRD4); p += lgam4b; p += lgam4a; break; case 5: z = x - 5.0L; p = z * neval (z, RN5, NRN5) / deval (z, RD5, NRD5); p += lgam5b; p += lgam5a; break; case 6: z = x - 6.0L; p = z * neval (z, RN6, NRN6) / deval (z, RD6, NRD6); p += lgam6b; p += lgam6a; break; case 7: z = x - 7.0L; p = z * neval (z, RN7, NRN7) / deval (z, RD7, NRD7); p += lgam7b; p += lgam7a; break; case 8: z = x - 8.0L; p = z * neval (z, RN8, NRN8) / deval (z, RD8, NRD8); p += lgam8b; p += lgam8a; break; case 9: z = x - 9.0L; p = z * neval (z, RN9, NRN9) / deval (z, RD9, NRD9); p += lgam9b; p += lgam9a; break; case 10: z = x - 10.0L; p = z * neval (z, RN10, NRN10) / deval (z, RD10, NRD10); p += lgam10b; p += lgam10a; break; case 11: z = x - 11.0L; p = z * neval (z, RN11, NRN11) / deval (z, RD11, NRD11); p += lgam11b; p += lgam11a; break; case 12: z = x - 12.0L; p = z * neval (z, RN12, NRN12) / deval (z, RD12, NRD12); p += lgam12b; p += lgam12a; break; case 13: z = x - 13.0L; p = z * neval (z, RN13, NRN13) / deval (z, RD13, NRD13); p += lgam13b; p += lgam13a; break; } return p; } if (x > MAXLGM) return (signgam * huge * huge); q = ls2pi - x; q = (x - 0.5L) * logl (x) + q; if (x > 1.0e18L) return (q); p = 1.0L / (x * x); q += neval (p, RASY, NRASY) / x; return (q); }
TEST(math, lgammal) { ASSERT_DOUBLE_EQ(logl(24.0L), lgammal(5.0L)); }
TEST(math, lgammal) { ASSERT_FLOAT_EQ(logl(24.0), lgammal(5.0)); }
static int testl(long double long_double_x, int int_x, long long_x) { int r = 0; r += __finitel(long_double_x); r += __fpclassifyl(long_double_x); r += __isinfl(long_double_x); r += __isnanl(long_double_x); r += __signbitl(long_double_x); r += acoshl(long_double_x); r += acosl(long_double_x); r += asinhl(long_double_x); r += asinl(long_double_x); r += atan2l(long_double_x, long_double_x); r += atanhl(long_double_x); r += atanl(long_double_x); r += cbrtl(long_double_x); r += ceill(long_double_x); r += copysignl(long_double_x, long_double_x); r += coshl(long_double_x); r += cosl(long_double_x); r += erfcl(long_double_x); r += erfl(long_double_x); r += exp2l(long_double_x); r += expl(long_double_x); r += expm1l(long_double_x); r += fabsl(long_double_x); r += fdiml(long_double_x, long_double_x); r += floorl(long_double_x); r += fmal(long_double_x, long_double_x, long_double_x); r += fmaxl(long_double_x, long_double_x); r += fminl(long_double_x, long_double_x); r += fmodl(long_double_x, long_double_x); r += frexpl(long_double_x, &int_x); r += hypotl(long_double_x, long_double_x); r += ilogbl(long_double_x); r += ldexpl(long_double_x, int_x); r += lgammal(long_double_x); r += llrintl(long_double_x); r += llroundl(long_double_x); r += log10l(long_double_x); r += log1pl(long_double_x); r += log2l(long_double_x); r += logbl(long_double_x); r += logl(long_double_x); r += lrintl(long_double_x); r += lroundl(long_double_x); r += modfl(long_double_x, &long_double_x); r += nearbyintl(long_double_x); r += nextafterl(long_double_x, long_double_x); r += nexttowardl(long_double_x, long_double_x); r += powl(long_double_x, long_double_x); r += remainderl(long_double_x, long_double_x); r += remquol(long_double_x, long_double_x, &int_x); r += rintl(long_double_x); r += roundl(long_double_x); r += scalblnl(long_double_x, long_x); r += scalbnl(long_double_x, int_x); r += sinhl(long_double_x); r += sinl(long_double_x); r += sqrtl(long_double_x); r += tanhl(long_double_x); r += tanl(long_double_x); r += tgammal(long_double_x); r += truncl(long_double_x); return r; }