Esempio n. 1
0
void cholesky_readFromCovarianceFunction(double **m, char* fname,double *resx,double *resy,double *rese,int np, int nc){
   int ndays = ceil((resx[np-1-nc]-resx[0])+1e-10);
   double covarFunc[ndays+1];
   double escaleFactor = 1.0;
   int i;
   FILE* fin;
   logmsg("Parsing '%s' as covariance function",fname);

   logtchk("reading covariance function from disk, ndays = %d",ndays);
   if (!(fin = fopen(fname,"r")))
   {
	  logerr("Unable to open covariance function file: %s",fname);
	  exit(1);
   }
   logdbg("ndays = %d",ndays);
   fscanf(fin,"%lf",&escaleFactor);
   for (i=0;i<=ndays;i++)
   {
	  if (fscanf(fin,"%lf",&covarFunc[i])!=1)
	  {
		 logerr("Incorrect number of days in the Cholesky matrix: %s, trying to read %d days",fname,ndays);
		 exit(1);
	  }
   }
   fclose(fin);
   if(escaleFactor!=1.0){
	  logerr("Ignoring 'error scale factor': %g",escaleFactor);
   }
   logtchk("complete reading covariance function from disk");

   cholesky_covarFunc2matrix(m,covarFunc,ndays,resx,resy,rese,np,nc);

}
Esempio n. 2
0
/**
 * Sort ToAs for one pulsar.
 */
void sortToAs(pulsar* psr){
    if (!psr->sorted){
        logmsg("Sorting ToAs for psr %s",psr->name);
        logtchk("call qsort()");
        qsort(psr->obsn,psr->nobs,sizeof(observation),compareObs);
        psr->sorted=1;
        logtchk("exit qsort()");
    }

}
Esempio n. 3
0
void t2Fit(pulsar *psr,unsigned int npsr, const char *covarFuncFile){

    // if we have a model for the data covariance function, then use it.
    // Otherwise we we will just whiten using the error bars.
    bool haveCovar = (covarFuncFile!=NULL && strcmp(covarFuncFile,"NULL"));

    /**
     * Find out if there are any global parameters and what they are...
     */
    FitInfo global_fitinfo;
    t2Fit_fillGlobalFitInfo(psr,npsr,global_fitinfo);
    logdbg("Nglobal parameters = %d",global_fitinfo.nParams);

    // If we had any global parameters (or constraints) then we need to do a global fit
    // otherwise we can do a fit for each pulsar individually, which is quicker
    // and saves memory.
    bool doGlobalFit = (global_fitinfo.nParams > 0) || (global_fitinfo.nConstraints > 0);

    unsigned long long totalGlobalData=0; // the number of data points across all pulsars
    unsigned int gParams=global_fitinfo.nParams; // the number of global fit parameters
    unsigned int gConstraints=global_fitinfo.nConstraints; // the number of global constraints

    unsigned long long totalGlobalParams=gParams;
    unsigned long long totalGlobalConstraints=gConstraints;

    double** gUinvs[MAX_PSR]; // whitening matrix for each pulsar
    double* gX[MAX_PSR]; // "x" values for each pulsar
    double* gY[MAX_PSR]; // "y" values for each pulsar
    double* gW[MAX_PSR]; // whitened "y" values for each pulsar
    double** gDM[MAX_PSR]; // design matrix for each pulsar
    double** gWDM[MAX_PSR]; // whitened design matrix for each pulsar
    double** gCM[MAX_PSR]; // constraints matrix for each pulsar
    unsigned int gNdata[MAX_PSR]; // number of data points for each pulsar (size of x and y)

    logmsg("NEW fit routine. GlobalFit=%s",doGlobalFit ? "true" : "false");

    /**
     * However we are going to do the fit, we want to loop over all the pulsars
     * to get the input data and design matricies etc.
     */
    for (size_t ipsr=0; ipsr < npsr; ipsr++) {

        double *psr_x   = (double*)malloc(sizeof(double)*psr[ipsr].nobs);
        double *psr_y   = (double*)malloc(sizeof(double)*psr[ipsr].nobs);
        double *psr_white_y   = (double*)malloc(sizeof(double)*psr[ipsr].nobs);
        double *psr_e   = (double*)malloc(sizeof(double)*psr[ipsr].nobs);
        int *psr_toaidx = (int*)malloc(sizeof(int)*psr[ipsr].nobs); // mapping from fit data to observation number
        double** uinv; // the whitening matrix.

        /**
         * Working out which data contributes to the fit is done in this routine.
         * Basically gets values for all observations within START and FINISH which are
         * not deleted.
         *
         * returns the number of data points.
         */
        const unsigned int psr_ndata = t2Fit_getFitData(psr+ipsr,psr_x,psr_y,psr_e,psr_toaidx);
        assert(psr_ndata > 0u);
        psr[ipsr].nFit = psr_ndata; // pulsar.nFit is the number of data points used in the fit.

        /**
         * Now we work out which parameters are being fit for, how many parameters,
         * and determine the gradient functions for the design matrix and the update functions
         * which update the pulsar struct.
         */
        t2Fit_fillFitInfo(psr+ipsr,psr[ipsr].fitinfo,global_fitinfo);


        /**
         * The whitening matrix behaves diferently if we have a covariance matrix.
         * If we have a covariance matrix, uinv is an ndata x ndata triangular matrix.
         * Otherwise, it only has diagonal elements, so we efficiently store it as 
         * a 1-d ndata array.
         */
        if (haveCovar) {
            // ToAs must be sorted for covariance function code
            sortToAs(psr+ipsr);

            // malloc_uinv does a blas-compatible allocation of a 2-d array.
            uinv = malloc_uinv(psr_ndata);
            psr[ipsr].fitMode=1; // Note: forcing this to 1 as the Cholesky fit is a weighted fit
            logmsg("Doing a FULL COVARIANCE MATRIX fit");
        } else {
            // Here the whitening matrix is just a diagonal
            // weighting matrix. Store diagonal matrix as 1xN
            // so that types match later.
            uinv=malloc_blas(1,psr_ndata); 
            if(psr[ipsr].fitMode == 0){
                // if we are doing an unweighted fit then we should set the errors to 1.0
                // to give uniform weighting.
                logdbg("Doing an UNWEIGHTED fit");
                for (unsigned int i=0; i < psr_ndata; i++){
                    psr_e[i]=1.0;
                }
            } else {
                logdbg("Doing a WEIGHTED fit");
            }
        }
        assert(uinv!=NULL);

        /**
         * Now we form the whitening matrix, uinv.
         * Note that getCholeskyMatrix() is clever enough to see that we 
         * have created a 1 x ndata matrix if we have only diagonal elements.
         */
        getCholeskyMatrix(uinv,covarFuncFile,psr+ipsr,
                psr_x,psr_y,psr_e,
                psr_ndata,0,psr_toaidx);

        logtchk("got Uinv");

        // define some convinience variables
        const unsigned nParams=psr[ipsr].fitinfo.nParams;
        const unsigned nConstraints=psr[ipsr].fitinfo.nConstraints;


        /**
         * The design matrix is the matrix of gradients for the least-squares.
         * If the design matrix is M, parameters p, and data d, we are solving
         * M.p = d
         * It is ndata x nparams in size. We also allocate the whitened DM here.
         */
        double** designMatrix = malloc_blas(psr_ndata,nParams);
        double** white_designMatrix = malloc_blas(psr_ndata,nParams);
        for (unsigned int idata =0; idata < psr_ndata; ++idata){
            // t2Fit_buildDesignMatrix is a replacement for the old FITfuncs routine.
            // it fills one row of the design matrix.
            t2Fit_buildDesignMatrix(psr,ipsr,psr_x[idata], psr_toaidx[idata], designMatrix[idata]);
        }


        logtchk("made design matrix");

        /**
         * The constraints matrix is similar to the design matrix, but here we are solving:
         * B.p = 0
         * Where B is the constraints matrix and p is the parameters. we solve both this
         * and the DM equation set simultaniously. TKleastSquares will do this for us.
         *
         * If there are no constraints we leave it as NULL, which is detected in TKfit as
         * no constraints anyway.
         */
        double** constraintsMatrix =NULL;
        if(psr[ipsr].fitinfo.nConstraints > 0){

            computeConstraintWeights(psr+ipsr);
            constraintsMatrix = malloc_blas(nConstraints,nParams);
            for (unsigned int iconstraint =0; iconstraint < nConstraints; ++iconstraint){
                // similar to t2Fit_buildDesignMatrix, t2Fit_buildConstraintsMatrix
                // creates one row of the constraints matrix.
                t2Fit_buildConstraintsMatrix(psr, ipsr, iconstraint, constraintsMatrix[iconstraint]);
            }
        }

        logtchk("made constraints matrix");

        /**
         * Now we multiply the design matrix and the data vector by the whitening matrix.
         * If we just have variances (uinv is diagonal) then we do it traditionally, otherwise
         * we use TKmultMatrix as this is usually backed by LAPACK and so is fast :)
         */
        if(haveCovar){
            TKmultMatrixVec(uinv,psr_y,psr_ndata,psr_ndata,psr_white_y);
            TKmultMatrix_sq(uinv,designMatrix,psr_ndata,nParams,white_designMatrix);
        } else {
            for(unsigned i=0;i<psr_ndata;++i){
                psr_white_y[i]=psr_y[i]*uinv[0][i];
                for(unsigned j=0;j<nParams;++j){
                    white_designMatrix[i][j] = designMatrix[i][j]*uinv[0][i];
                }
            }
        }

        free_blas(uinv);
        free(psr_e);
        free(psr_toaidx);

        logtchk("done whitening");
        /*
         * Now - if we are going to do a global fit, we store all the above for later
         *       otherwise
         */
        if (doGlobalFit){
            // we are going to do a global fit, so need to store the values for later
            gX[ipsr] = psr_x;
            gY[ipsr] = psr_y;
            gW[ipsr] = psr_white_y;
            gDM[ipsr] = designMatrix;
            gWDM[ipsr] = white_designMatrix;
            gCM[ipsr] = constraintsMatrix;
            gNdata[ipsr] = psr_ndata;
            totalGlobalData += psr_ndata;
            totalGlobalParams += nParams - gParams;
            totalGlobalConstraints += nConstraints - gConstraints;
        } else {
            // NOT GLOBAL
            // so do one fit at a time...

            double chisq; // the post-fit chi-squared

            // allocate memory for the output of TKleastSquares
            double* parameterEstimates = (double*)malloc(sizeof(double)*nParams);
            double* errorEstimates = (double*)malloc(sizeof(double)*nParams);

            /*
             * Call TKleastSquares, or in fact, TKrobustConstrainedLeastSquares,
             * since we might want robust fitting and/or constraints/
             *
             * The arguments here are explained in TKfit.C
             *
             */
            chisq = TKrobustConstrainedLeastSquares(psr_y,psr_white_y,
                    designMatrix,white_designMatrix,constraintsMatrix,
                    psr_ndata,nParams,nConstraints,
                    T2_SVD_TOL,1,parameterEstimates,errorEstimates,psr[ipsr].covar,
                    psr[ipsr].robust);

            // update the pulsar struct as appropriate
            psr[ipsr].fitChisq = chisq;
            psr[ipsr].fitNfree = psr_ndata + nConstraints - nParams;

            logdbg("Updating the parameters");
            logtchk("updating the parameter values");
            /*
             * This routine calls the appropriate update functions to apply the result of the fit
             * to the origianal (non-linearised) pulsar parameters.
             */
            t2Fit_updateParameters(psr,ipsr,parameterEstimates,errorEstimates);
            logtchk("complete updating the parameter values");
            logdbg("Completed updating the parameters");

            /*
             * If we are not doing a global fit, we can clean up the memory for this pulsar.
             * Might make a difference for very large datasets.
             */
            logdbg("Free fit memory");
            free(parameterEstimates);
            free(errorEstimates);
            free_blas(designMatrix);
            free_blas(white_designMatrix);
            if (constraintsMatrix) free_blas(constraintsMatrix);
            free(psr_x);
            free(psr_y);
            free(psr_white_y);
        }
    }
    if (doGlobalFit){

        const unsigned int nobs = totalGlobalData;
        double** designMatrix = malloc_blas(nobs,totalGlobalParams);
        double** white_designMatrix = malloc_blas(nobs,totalGlobalParams);

        double** constraintsMatrix = malloc_blas(totalGlobalConstraints,totalGlobalParams);

        double *y   = (double*)malloc(sizeof(double)*nobs);
        double *white_y   = (double*)malloc(sizeof(double)*nobs);

        unsigned int off_f = gParams; // leave space for globals
        unsigned int off_r = 0;
        unsigned int off_c = gConstraints;

        logdbg("Building matricies for global fit... npsr=%u",npsr);
        logdbg("nobs=%u, totalGlobalParams=%u, totalGlobalConstraints=%u",nobs,totalGlobalParams,totalGlobalConstraints);
        logwarn("This mode is not supported yet!!!");


        for (unsigned int ipsr = 0; ipsr < npsr ; ++ipsr){
            unsigned int nLocal = psr[ipsr].fitinfo.nParams-gParams;
            logdbg("ipsr=%u, off_r = %u, off_c=%u, off_f=%u, nlocal=%u",
                    ipsr,off_r,off_c,off_f,nLocal);

            // the fit parameters
            for(unsigned int i=0; i < gNdata[ipsr]; i++){

                // the global params (they go first)
                for(unsigned int g= 0; g < gParams; g++){
                    unsigned int j = g+nLocal;
                    if(ipsr==0 && i==0 && writeResiduals){
                        logmsg("Row %d = %s %s(%d)",g,"global",label_str[global_fitinfo.paramIndex[g]],global_fitinfo.paramCounters[g]);
                    }
                    designMatrix[i+off_r][g] = gDM[ipsr][i][j];
                    white_designMatrix[i+off_r][g] = gWDM[ipsr][i][j];
                }

                for(unsigned int j=0; j < nLocal; j++){
                    if(i==0 && writeResiduals){
                        logmsg("Row %d = %s %s(%d)",j+off_f,psr[ipsr].name,label_str[psr[ipsr].fitinfo.paramIndex[j]],psr[ipsr].fitinfo.paramCounters[j]);
                    }
                    designMatrix[i+off_r][j+off_f] = gDM[ipsr][i][j];
                    white_designMatrix[i+off_r][j+off_f] = gWDM[ipsr][i][j];
                }
            }
            // the data
            for(unsigned int i=0; i < gNdata[ipsr]; ++i){
                y[i+off_r] = gY[ipsr][i];
                white_y[i+off_r] = gW[ipsr][i];
            }

            for(unsigned int i=0; i < psr[ipsr].fitinfo.nConstraints; i++){
                for(unsigned int j=0; j < nLocal; j++){
                    constraintsMatrix[i+off_c][j+off_f] = gCM[ipsr][i][j];
                }

                // the global params (they go first)
                for(unsigned int g= 0; g < gParams; g++){
                    unsigned int j = g+nLocal;
                    constraintsMatrix[i+off_c][g] = gCM[ipsr][i][j];
                }

            }

            off_r += gNdata[ipsr];
            off_f += nLocal;
            off_c += psr[ipsr].fitinfo.nConstraints;

            free(gY[ipsr]);
            free(gW[ipsr]);
            free_blas(gDM[ipsr]);
            if (gCM[ipsr]) free_blas(gCM[ipsr]);
            free_blas(gWDM[ipsr]);
        }

        double chisq; // the post-fit chi-squared

        double* parameterEstimates = (double*)malloc(sizeof(double)*totalGlobalParams);
        double* errorEstimates = (double*)malloc(sizeof(double)*totalGlobalParams);
        chisq = TKrobustConstrainedLeastSquares(y,white_y,
                designMatrix,white_designMatrix,constraintsMatrix,
                nobs,totalGlobalParams,totalGlobalConstraints,
                T2_SVD_TOL,1,parameterEstimates,errorEstimates,psr[0].covar,
                psr[0].robust);
        // for now the CVM ends up in psr[0].covar.

        int off_p = gParams;
        for (unsigned int ipsr = 0; ipsr < npsr ; ++ipsr){
            // update the pulsar struct as appropriate
            psr[ipsr].fitChisq = chisq;
            psr[ipsr].fitNfree = nobs + totalGlobalConstraints - totalGlobalParams;

            

            double* psr_parameterEstimates = (double*)malloc(sizeof(double)*psr[ipsr].fitinfo.nParams);
            double* psr_errorEstimates = (double*)malloc(sizeof(double)*psr[ipsr].fitinfo.nParams);
            const unsigned np = psr[ipsr].fitinfo.nParams-gParams;

            /* extract the fit output for the individual pulsars. 
             * I.e. detangle the global fit
             * Notice: Globals go at the end of the individual pulsar arrays.
             */
            for (unsigned i = 0; i < np; ++i){
                psr_parameterEstimates[i] = parameterEstimates[off_p];
                psr_errorEstimates[i] = errorEstimates[off_p];
                ++off_p;
            }

            for (unsigned i = 0; i < gParams; ++i){
                psr_parameterEstimates[i+np] = parameterEstimates[i];
                psr_errorEstimates[i] = errorEstimates[off_p];
            }

            logdbg("Updating the parameters");
            logtchk("updating the parameter values");

            /*
             * This routine calls the appropriate update functions to apply the result of the fit
             * to the origianal (non-linearised) pulsar parameters.
             */
            t2Fit_updateParameters(psr,ipsr,psr_parameterEstimates,psr_errorEstimates);
            logtchk("complete updating the parameter values");
            logdbg("Completed updating the parameters");
            free(psr_parameterEstimates);
            free(psr_errorEstimates);
        }
        free(parameterEstimates);
        free(errorEstimates);
        free(white_y);
        free(y);
        free_blas(designMatrix);
        free_blas(white_designMatrix);
        free_blas(constraintsMatrix);


    }
}
Esempio n. 4
0
/**
 * UINV is a lower triangluar matrix.
 * Matricies are row-major order, i.e. uinv[r][c].
 * returns 0 if ok.
 */
int cholesky_formUinv(double **uinv,double** m,int np){
   int i,j,k;
   logtchk("forming Cholesky matrix ... do Cholesky decomposition");
#ifdef ACCEL_UINV
   if(useT2accel){
	  logdbg("Doing ACCELERATED Chol Decomp (M.Keith/LAPACK method)");
	  for(i =0;i<np;i++){
		 memcpy(uinv[i],m[i],np*sizeof(double));
	  }
	  int ret = accel_uinv(uinv[0],np);
      if (ret != 0) return ret;

	  logtchk("forming Cholesky matrix ... complete calculate uinv");
   } else {
#endif


	  double sum;

	  double *cholp  = (double *)malloc(sizeof(double)*(np+1));
	  logmsg("Doing Cholesky decomp and inverting matrix (SLOW method)");
	  if(!cholp)logerr("Could not allocate enough memory");

	  T2cholDecomposition(m,np,cholp);
	  logtchk("forming Cholesky matrix ... complete do Cholesky decomposition");
	  // Now calculate uinv
	  logtchk("forming Cholesky matrix ... calculate uinv");
	  for (i=0;i<np;i++)
	  {
		 m[i][i] = 1.0/cholp[i];
		 uinv[i][i] = m[i][i];
		 for (j=0;j<i;j++)
			uinv[j][i] = 0.0;
		 for (j=i+1;j<np;j++)
		 {
			sum=0.0;
			for (k=i;k<j;k++) sum-=m[j][k]*m[k][i];
			m[j][i]=sum/cholp[j];
			uinv[j][i] = m[j][i];
		 }
	  }

	  logtchk("forming Cholesky matrix ... complete calculate uinv");
	  if (debugFlag)
	  {
		 logdbg("uinv = ");
		 for (i=0;i<5;i++)
		 { 
			for (j=0;j<5;j++) fprintf(LOG_OUTFILE,"%10g ",uinv[i][j]); 
			fprintf(LOG_OUTFILE,"\n");
		 }
		 fprintf(LOG_OUTFILE,"\n");
	  }


	  logtchk("forming Cholesky matrix ... free memory");
	  free(cholp);
	  logtchk("forming Cholesky matrix ... complete free memory");

#ifdef ACCEL_UINV
   } // end the if clause when we have the option of accelerated cholesky.
#endif

   if(debugFlag){
	  logdbg("Write uinv");
	  FILE* file=fopen("chol.uinv","w");
	  for(i =0;i<np;i++){
		 for(j =0;j<np;j++){
			fprintf(file,"%d %d %lg\n",i,j,uinv[i][j]);
		 }
		 fprintf(file,"\n");
	  }
	  fclose(file);
   }
   return 0;

}
Esempio n. 5
0
void cholesky_covarFunc2matrix(double** m, double* covarFunc, int ndays,double *resx,double *resy,double *rese,int np, int nc){
   double escaleFactor = 1.0;
   int i,j,k;
   int ix,iy;
   double t0,cint,t;
   int t1,t2;


   logtchk("forming Cholesky matrix ... determing m[ix][iy] = fabs(resx[ix]-resx[iy])");
   for (ix=0;ix<(np);ix++)
   {
	  for (iy=0;iy<(np);iy++)
		 m[ix][iy] = fabs(resx[ix]-resx[iy]);
   }
   logtchk("forming Cholesky matrix ... complete determing m[ix][iy] = fabs(resx[ix]-resx[iy])");
   if (debugFlag==1)
   {
	  logdbg("First m = ");
	  for (i=0;i<5;i++)
	  { 
		 for (j=0;j<5;j++) fprintf(LOG_OUTFILE,"%10g ",m[i][j]); 
		 fprintf(LOG_OUTFILE,"\n");
	  }
	  fprintf(LOG_OUTFILE,"\n");
	  logdbg("CovarFunc = ");
	  for (i=0;i<10;i++)
	  { 
		 fprintf(LOG_OUTFILE,"%10g\n",covarFunc[i]); 
	  }

   }

   // Insert the covariance which depends only on the time difference.
   // Linearly interpolate between elements on the covariance function because
   // valid covariance matrix must have decreasing off diagonal elements.
   // logdbg("Inserting into the covariance matrix");
   logtchk("forming Cholesky matrix ... determing covariance based on time difference");
   for (ix=0;ix<(np);ix++)
   {
	  for (iy=0;iy<(np);iy++)
	  {
		 if (ix >= np-nc || iy >= np-nc)
		 {
			m[ix][iy] = 0;
		 }
		 else
		 {
			t0 = m[ix][iy];
			t1 = (int)floor(t0);
			t2 = t1+1;
			t  = t0-t1;
			if (t1 > ndays || t2 > ndays)
			{
			   logerr("Problem that t1 or t2 > ndays: t1 = %d, t2 = %d, ndays = %d, ix = %d, iy = %d, np = %d",t1,t2,ndays,ix,iy,np);
			   exit(1);
			}
			cint = covarFunc[t1]*(1-t)+covarFunc[t2]*t; // Linear interpolation
			m[ix][iy] = cint;
		 }
	  }
   }
   logtchk("forming Cholesky matrix ... complete determing covariance based on time difference");
   // add the values for the constraints
   // Constraints are not covariant with anything so it's all zero!
   for (i=np-nc; i < np; i++){
	  for (j=0; j < np; j++){
		 m[i][j]=0;
		 m[j][i]=0;
	  }
   }
}