int CClp_opt(CClp *lp, int method) { /* CALLS designated LP solution method. */ int stat, ret; if (MSGLEV >= 1) { int m = lpx_get_num_rows(lp->lp); int n = lpx_get_num_cols(lp->lp); int nz = lpx_get_num_nz(lp->lp); print("CClp_opt: %-11s m = %d; n = %d; nz = %d", method == CClp_METHOD_DUAL ? "(dual)" : "(primal)", m, n, nz); } lpx_set_int_parm(lp->lp, LPX_K_DUAL, method == CClp_METHOD_DUAL); switch (MSGLEV) { case 0: lpx_set_int_parm(lp->lp, LPX_K_MSGLEV, 0); lpx_set_int_parm(lp->lp, LPX_K_OUTFRQ, 1000000); lpx_set_real_parm(lp->lp, LPX_K_OUTDLY, 1e6); break; case 1: lpx_set_int_parm(lp->lp, LPX_K_MSGLEV, 2); lpx_set_int_parm(lp->lp, LPX_K_OUTFRQ, 200); lpx_set_real_parm(lp->lp, LPX_K_OUTDLY, 5.0); break; case 2: lpx_set_int_parm(lp->lp, LPX_K_MSGLEV, 3); lpx_set_int_parm(lp->lp, LPX_K_OUTFRQ, 200); lpx_set_real_parm(lp->lp, LPX_K_OUTDLY, 0.0); break; default: insist(MSGLEV != MSGLEV); } ret = lpx_simplex(lp->lp); if (ret == LPX_E_FAULT) { if (MSGLEV >= 1) print("CClp_opt: restarting from advanced bas" "is..."); lpx_adv_basis(lp->lp); ret = lpx_simplex(lp->lp); } if (ret != LPX_E_OK) { print("CClp_opt: lpx_simplex failed; return code = %d", ret); ret = 1; goto done; } stat = lpx_get_status(lp->lp); if (stat == LPX_OPT) ret = 0; else if (stat == LPX_NOFEAS) ret = 2; else { print("CClp_opt: optimization status = %d", stat); ret = 1; } done: return ret; }
static void show_status(LPX *prob, int prob_m, int prob_nz) { int n, j, count; double x, tol_int; /* determine the number of structural variables of integer kind whose current values are still fractional */ n = lpx_get_num_cols(prob); tol_int = lpx_get_real_parm(prob, LPX_K_TOLINT); count = 0; for (j = 1; j <= n; j++) { if (lpx_get_col_kind(prob, j) != LPX_IV) continue; x = lpx_get_col_prim(prob, j); if (fabs(x - floor(x + 0.5)) <= tol_int) continue; count++; } print("&%6d: obj = %17.9e frac = %5d cuts = %5d (%d)", lpx_get_int_parm(prob, LPX_K_ITCNT), lpx_get_obj_val(prob), count, lpx_get_num_rows(prob) - prob_m, lpx_get_num_nz(prob) - prob_nz); return; }
LPX *lpp_build_prob(LPP *lpp) { LPX *prob; LPPROW *row; LPPCOL *col; struct load_info info; int i, j, typx; /* count number of rows and columns in the resultant problem */ lpp->m = lpp->n = 0; for (row = lpp->row_ptr; row != NULL; row = row->next) lpp->m++; for (col = lpp->col_ptr; col != NULL; col = col->next) lpp->n++; /* allocate two arrays to save reference numbers assigned to rows and columns of the resultant problem */ lpp->row_ref = ucalloc(1+lpp->m, sizeof(int)); lpp->col_ref = ucalloc(1+lpp->n, sizeof(int)); /* create LP problem object */ prob = lpx_create_prob(); /* the resultant problem should have the same optimization sense as the original problem */ lpx_set_obj_dir(prob, lpp->orig_dir); /* set the constant term of the objective function */ lpx_set_obj_c0(prob, lpp->orig_dir == LPX_MIN ? + lpp->c0 : - lpp->c0); /* create rows of the resultant problem */ insist(lpp->m > 0); lpx_add_rows(prob, lpp->m); for (i = 1, row = lpp->row_ptr; i <= lpp->m; i++, row = row->next) { insist(row != NULL); lpp->row_ref[i] = row->i; row->i = i; if (row->lb == -DBL_MAX && row->ub == +DBL_MAX) typx = LPX_FR; else if (row->ub == +DBL_MAX) typx = LPX_LO; else if (row->lb == -DBL_MAX) typx = LPX_UP; else if (row->lb != row->ub) typx = LPX_DB; else typx = LPX_FX; lpx_set_row_bnds(prob, i, typx, row->lb, row->ub); } insist(row == NULL); /* create columns of the resultant problem */ insist(lpp->n > 0); lpx_add_cols(prob, lpp->n); for (j = 1, col = lpp->col_ptr; j <= lpp->n; j++, col = col->next) { insist(col != NULL); lpp->col_ref[j] = col->j; col->j = j; if (col->lb == -DBL_MAX && col->ub == +DBL_MAX) typx = LPX_FR; else if (col->ub == +DBL_MAX) typx = LPX_LO; else if (col->lb == -DBL_MAX) typx = LPX_UP; else if (col->lb != col->ub) typx = LPX_DB; else typx = LPX_FX; lpx_set_col_bnds(prob, j, typx, col->lb, col->ub); lpx_set_col_coef(prob, j, lpp->orig_dir == LPX_MIN ? + col->c : - col->c); } insist(col == NULL); /* create the constraint matrix of the resultant problem */ info.lpp = lpp; info.row = NULL; info.aij = NULL; lpx_load_mat(prob, &info, next_aij); /* count number of non-zeros in the resultant problem */ lpp->nnz = lpx_get_num_nz(prob); /* internal data structures that represnts the resultant problem are no longer needed, so free them */ dmp_delete_pool(lpp->row_pool), lpp->row_pool = NULL; dmp_delete_pool(lpp->col_pool), lpp->col_pool = NULL; dmp_delete_pool(lpp->aij_pool), lpp->aij_pool = NULL; lpp->row_ptr = NULL, lpp->col_ptr = NULL; lpp->row_que = NULL, lpp->col_que = NULL; /* return a pointer to the built LP problem object */ return prob; }
void lpp_load_orig(LPP *lpp, LPX *orig) { LPPROW *row; LPPCOL *col, **map; int i, j, t, len, typx, *ndx; double lb, ub, temp, *c, *val; /* save some information about the original problem */ lpp->orig_m = lpx_get_num_rows(orig); lpp->orig_n = lpx_get_num_cols(orig); lpp->orig_nnz = lpx_get_num_nz(orig); lpp->orig_dir = lpx_get_obj_dir(orig); /* allocate working arrays */ c = ucalloc(1+lpp->orig_n, sizeof(double)); ndx = ucalloc(1+lpp->orig_n, sizeof(int)); val = ucalloc(1+lpp->orig_n, sizeof(double)); /* auxiliary variables (i.e. rows) in the original problem may have non-zero objective coefficients; so, we substitute these auxiliary variables into the objective function in order that it depends only on structural variables (i.e. columns); the resultant vector of objective coefficients is accumulated in the working array c */ for (j = 1; j <= lpp->orig_n; j++) c[j] = lpx_get_col_coef(orig, j); for (i = 1; i <= lpp->orig_m; i++) { /* obtain an objective coefficient at i-th row */ temp = lpx_get_row_coef(orig, i); /* substitute i-th row into the objective function */ if (temp != 0.0) { len = lpx_get_mat_row(orig, i, ndx, val); for (t = 1; t <= len; t++) c[ndx[t]] += val[t] * temp; } } /* copy rows of the original problem into the workspace; each row created in the workspace is assigned a reference number, which is its ordinal number in the original problem */ for (i = 1; i <= lpp->orig_m; i++) { lpx_get_row_bnds(orig, i, &typx, &lb, &ub); if (typx == LPX_FR || typx == LPX_UP) lb = -DBL_MAX; if (typx == LPX_FR || typx == LPX_LO) ub = +DBL_MAX; if (typx == LPX_FX) ub = lb; lpp_add_row(lpp, lb, ub); } /* copy columns of the original problem into the workspace; each column created in the workspace is assigned a reference number, which its ordinal number in the original problem */ for (j = 1; j <= lpp->orig_n; j++) { lpx_get_col_bnds(orig, j, &typx, &lb, &ub); if (typx == LPX_FR || typx == LPX_UP) lb = -DBL_MAX; if (typx == LPX_FR || typx == LPX_LO) ub = +DBL_MAX; if (typx == LPX_FX) ub = lb; lpp_add_col(lpp, lb, ub, c[j]); } /* copy the constant term of the original objective function */ lpp->c0 = lpx_get_obj_c0(orig); /* if the original problem is maximization, change the sign of the objective function, because the transformed problem to be processed by the presolver must be minimization */ if (lpp->orig_dir == LPX_MAX) { for (col = lpp->col_ptr; col != NULL; col = col->next) col->c = - col->c; lpp->c0 = - lpp->c0; } /* build an auxiliary array to map column ordinal numbers to the corresponding pointers */ insist(sizeof(LPPCOL *) <= sizeof(double)); map = (LPPCOL **)c; for (col = lpp->col_ptr; col != NULL; col = col->next) map[col->j] = col; /* copy the original constraint matrix into the workspace */ for (row = lpp->row_ptr; row != NULL; row = row->next) #if 1 { len = lpx_get_mat_row(orig, row->i, ndx, val); for (t = 1; t <= len; t++) lpp_add_aij(lpp, row, map[ndx[t]], val[t]); } #else /* 27/XI-2003 (the problem persists) */ { double big, eps; len = lpx_get_mat_row(orig, row->i, ndx, val); big = 0.0; for (t = 1; t <= len; t++) if (big < fabs(val[t])) big = fabs(val[t]); eps = 1e-10 * big; for (t = 1; t <= len; t++) { if (fabs(val[t]) < eps) continue; lpp_add_aij(lpp, row, map[ndx[t]], val[t]); } } #endif /* free working arrays */ ufree(c); ufree(ndx); ufree(val); return; }
LPX *lpx_read_cpxlp(const char *fname) { /* read problem data in CPLEX LP format */ struct dsa _dsa, *dsa = &_dsa; if (setjmp(dsa->jump)) goto fail; dsa->lp = NULL; dsa->fname = fname; dsa->fp = NULL; dsa->count = 0; dsa->c = '\n'; dsa->token = T_EOF; dsa->image[0] = '\0'; dsa->imlen = 0; dsa->value = 0.0; dsa->n_max = 100; dsa->map = xcalloc(1+dsa->n_max, sizeof(int)); memset(&dsa->map[1], 0, dsa->n_max * sizeof(int)); dsa->ind = xcalloc(1+dsa->n_max, sizeof(int)); dsa->val = xcalloc(1+dsa->n_max, sizeof(double)); dsa->lb = xcalloc(1+dsa->n_max, sizeof(double)); dsa->ub = xcalloc(1+dsa->n_max, sizeof(double)); print("lpx_read_cpxlp: reading problem data from `%s'...", dsa->fname); dsa->fp = xfopen(dsa->fname, "r"); if (dsa->fp == NULL) { print("lpx_read_cpxlp: unable to open `%s' - %s", dsa->fname, strerror(errno)); goto fail; } dsa->lp = lpx_create_prob(); lpx_create_index(dsa->lp); #if 0 /* read very first character */ read_char(dsa); #endif /* scan very first token */ scan_token(dsa); /* parse definition of the objective function */ if (!(dsa->token == T_MINIMIZE || dsa->token == T_MAXIMIZE)) fatal(dsa, "`minimize' or `maximize' keyword missing"); parse_objective(dsa); /* parse constraints section */ if (dsa->token != T_SUBJECT_TO) fatal(dsa, "constraints section missing"); parse_constraints(dsa); /* parse optional bounds section */ if (dsa->token == T_BOUNDS) parse_bounds(dsa); /* parse optional general, integer, and binary sections */ while (dsa->token == T_GENERAL || dsa->token == T_INTEGER || dsa->token == T_BINARY) parse_integer(dsa); /* check for the keyword 'end' */ if (dsa->token == T_END) scan_token(dsa); else if (dsa->token == T_EOF) print("%s:%d: warning: keyword `end' missing", dsa->fname, dsa->count); else fatal(dsa, "symbol `%s' in wrong position", dsa->image); /* nothing must follow the keyword 'end' (except comments) */ if (dsa->token != T_EOF) fatal(dsa, "extra symbol(s) detected beyond `end'"); /* set bounds of variables */ { int j, type; double lb, ub; for (j = lpx_get_num_cols(dsa->lp); j >= 1; j--) { lb = dsa->lb[j]; ub = dsa->ub[j]; if (lb == +DBL_MAX) lb = 0.0; /* default lb */ if (ub == -DBL_MAX) ub = +DBL_MAX; /* default ub */ if (lb == -DBL_MAX && ub == +DBL_MAX) type = LPX_FR; else if (ub == +DBL_MAX) type = LPX_LO; else if (lb == -DBL_MAX) type = LPX_UP; else if (lb != ub) type = LPX_DB; else type = LPX_FX; lpx_set_col_bnds(dsa->lp, j, type, lb, ub); } } /* print some statistics */ { int m = lpx_get_num_rows(dsa->lp); int n = lpx_get_num_cols(dsa->lp); int nnz = lpx_get_num_nz(dsa->lp); print("lpx_read_cpxlp: %d row%s, %d column%s, %d non-zero%s", m, m == 1 ? "" : "s", n, n == 1 ? "" : "s", nnz, nnz == 1 ? "" : "s"); } if (lpx_get_class(dsa->lp) == LPX_MIP) { int ni = lpx_get_num_int(dsa->lp); int nb = lpx_get_num_bin(dsa->lp); char s[50]; if (nb == 0) strcpy(s, "none of"); else if (ni == 1 && nb == 1) strcpy(s, ""); else if (nb == 1) strcpy(s, "one of"); else if (nb == ni) strcpy(s, "all of"); else sprintf(s, "%d of", nb); print("lpx_read_cpxlp: %d integer column%s, %s which %s binary" , ni, ni == 1 ? "" : "s", s, nb == 1 ? "is" : "are"); } print("lpx_read_cpxlp: %d lines were read", dsa->count); xfclose(dsa->fp); xfree(dsa->map); xfree(dsa->ind); xfree(dsa->val); xfree(dsa->lb); xfree(dsa->ub); lpx_delete_index(dsa->lp); lpx_order_matrix(dsa->lp); return dsa->lp; fail: if (dsa->lp != NULL) lpx_delete_prob(dsa->lp); if (dsa->fp != NULL) xfclose(dsa->fp); if (dsa->map != NULL) xfree(dsa->map); if (dsa->ind != NULL) xfree(dsa->ind); if (dsa->val != NULL) xfree(dsa->val); if (dsa->lb != NULL) xfree(dsa->lb); if (dsa->ub != NULL) xfree(dsa->ub); return NULL; }
int lpx_print_prob(LPX *lp, const char *fname) { XFILE *fp; int m, n, mip, i, j, len, t, type, *ndx; double coef, lb, ub, *val; char *str, name[255+1]; xprintf("lpx_write_prob: writing problem data to `%s'...\n", fname); fp = xfopen(fname, "w"); if (fp == NULL) { xprintf("lpx_write_prob: unable to create `%s' - %s\n", fname, strerror(errno)); goto fail; } m = lpx_get_num_rows(lp); n = lpx_get_num_cols(lp); mip = (lpx_get_class(lp) == LPX_MIP); str = (void *)lpx_get_prob_name(lp); xfprintf(fp, "Problem: %s\n", str == NULL ? "(unnamed)" : str); xfprintf(fp, "Class: %s\n", !mip ? "LP" : "MIP"); xfprintf(fp, "Rows: %d\n", m); if (!mip) xfprintf(fp, "Columns: %d\n", n); else xfprintf(fp, "Columns: %d (%d integer, %d binary)\n", n, lpx_get_num_int(lp), lpx_get_num_bin(lp)); xfprintf(fp, "Non-zeros: %d\n", lpx_get_num_nz(lp)); xfprintf(fp, "\n"); xfprintf(fp, "*** OBJECTIVE FUNCTION ***\n"); xfprintf(fp, "\n"); switch (lpx_get_obj_dir(lp)) { case LPX_MIN: xfprintf(fp, "Minimize:"); break; case LPX_MAX: xfprintf(fp, "Maximize:"); break; default: xassert(lp != lp); } str = (void *)lpx_get_obj_name(lp); xfprintf(fp, " %s\n", str == NULL ? "(unnamed)" : str); coef = lpx_get_obj_coef(lp, 0); if (coef != 0.0) xfprintf(fp, "%*.*g %s\n", DBL_DIG+7, DBL_DIG, coef, "(constant term)"); for (i = 1; i <= m; i++) #if 0 { coef = lpx_get_row_coef(lp, i); #else { coef = 0.0; #endif if (coef != 0.0) xfprintf(fp, "%*.*g %s\n", DBL_DIG+7, DBL_DIG, coef, row_name(lp, i, name)); } for (j = 1; j <= n; j++) { coef = lpx_get_obj_coef(lp, j); if (coef != 0.0) xfprintf(fp, "%*.*g %s\n", DBL_DIG+7, DBL_DIG, coef, col_name(lp, j, name)); } xfprintf(fp, "\n"); xfprintf(fp, "*** ROWS (CONSTRAINTS) ***\n"); ndx = xcalloc(1+n, sizeof(int)); val = xcalloc(1+n, sizeof(double)); for (i = 1; i <= m; i++) { xfprintf(fp, "\n"); xfprintf(fp, "Row %d: %s", i, row_name(lp, i, name)); lpx_get_row_bnds(lp, i, &type, &lb, &ub); switch (type) { case LPX_FR: xfprintf(fp, " free"); break; case LPX_LO: xfprintf(fp, " >= %.*g", DBL_DIG, lb); break; case LPX_UP: xfprintf(fp, " <= %.*g", DBL_DIG, ub); break; case LPX_DB: xfprintf(fp, " >= %.*g <= %.*g", DBL_DIG, lb, DBL_DIG, ub); break; case LPX_FX: xfprintf(fp, " = %.*g", DBL_DIG, lb); break; default: xassert(type != type); } xfprintf(fp, "\n"); #if 0 coef = lpx_get_row_coef(lp, i); #else coef = 0.0; #endif if (coef != 0.0) xfprintf(fp, "%*.*g %s\n", DBL_DIG+7, DBL_DIG, coef, "(objective)"); len = lpx_get_mat_row(lp, i, ndx, val); for (t = 1; t <= len; t++) xfprintf(fp, "%*.*g %s\n", DBL_DIG+7, DBL_DIG, val[t], col_name(lp, ndx[t], name)); } xfree(ndx); xfree(val); xfprintf(fp, "\n"); xfprintf(fp, "*** COLUMNS (VARIABLES) ***\n"); ndx = xcalloc(1+m, sizeof(int)); val = xcalloc(1+m, sizeof(double)); for (j = 1; j <= n; j++) { xfprintf(fp, "\n"); xfprintf(fp, "Col %d: %s", j, col_name(lp, j, name)); if (mip) { switch (lpx_get_col_kind(lp, j)) { case LPX_CV: break; case LPX_IV: xfprintf(fp, " integer"); break; default: xassert(lp != lp); } } lpx_get_col_bnds(lp, j, &type, &lb, &ub); switch (type) { case LPX_FR: xfprintf(fp, " free"); break; case LPX_LO: xfprintf(fp, " >= %.*g", DBL_DIG, lb); break; case LPX_UP: xfprintf(fp, " <= %.*g", DBL_DIG, ub); break; case LPX_DB: xfprintf(fp, " >= %.*g <= %.*g", DBL_DIG, lb, DBL_DIG, ub); break; case LPX_FX: xfprintf(fp, " = %.*g", DBL_DIG, lb); break; default: xassert(type != type); } xfprintf(fp, "\n"); coef = lpx_get_obj_coef(lp, j); if (coef != 0.0) xfprintf(fp, "%*.*g %s\n", DBL_DIG+7, DBL_DIG, coef, "(objective)"); len = lpx_get_mat_col(lp, j, ndx, val); for (t = 1; t <= len; t++) xfprintf(fp, "%*.*g %s\n", DBL_DIG+7, DBL_DIG, val[t], row_name(lp, ndx[t], name)); } xfree(ndx); xfree(val); xfprintf(fp, "\n"); xfprintf(fp, "End of output\n"); xfflush(fp); if (xferror(fp)) { xprintf("lpx_write_prob: write error on `%s' - %s\n", fname, strerror(errno)); goto fail; } xfclose(fp); return 0; fail: if (fp != NULL) xfclose(fp); return 1; } #undef row_name #undef col_name /*---------------------------------------------------------------------- -- lpx_print_sol - write LP problem solution in printable format. -- -- *Synopsis* -- -- #include "glplpx.h" -- int lpx_print_sol(LPX *lp, char *fname); -- -- *Description* -- -- The routine lpx_print_sol writes the current basic solution of an LP -- problem, which is specified by the pointer lp, to a text file, whose -- name is the character string fname, in printable format. -- -- Information reported by the routine lpx_print_sol is intended mainly -- for visual analysis. -- -- *Returns* -- -- If the operation was successful, the routine returns zero. Otherwise -- the routine prints an error message and returns non-zero. */ int lpx_print_sol(LPX *lp, const char *fname) { XFILE *fp; int what, round; xprintf( "lpx_print_sol: writing LP problem solution to `%s'...\n", fname); fp = xfopen(fname, "w"); if (fp == NULL) { xprintf("lpx_print_sol: can't create `%s' - %s\n", fname, strerror(errno)); goto fail; } /* problem name */ { const char *name; name = lpx_get_prob_name(lp); if (name == NULL) name = ""; xfprintf(fp, "%-12s%s\n", "Problem:", name); } /* number of rows (auxiliary variables) */ { int nr; nr = lpx_get_num_rows(lp); xfprintf(fp, "%-12s%d\n", "Rows:", nr); } /* number of columns (structural variables) */ { int nc; nc = lpx_get_num_cols(lp); xfprintf(fp, "%-12s%d\n", "Columns:", nc); } /* number of non-zeros (constraint coefficients) */ { int nz; nz = lpx_get_num_nz(lp); xfprintf(fp, "%-12s%d\n", "Non-zeros:", nz); } /* solution status */ { int status; status = lpx_get_status(lp); xfprintf(fp, "%-12s%s\n", "Status:", status == LPX_OPT ? "OPTIMAL" : status == LPX_FEAS ? "FEASIBLE" : status == LPX_INFEAS ? "INFEASIBLE (INTERMEDIATE)" : status == LPX_NOFEAS ? "INFEASIBLE (FINAL)" : status == LPX_UNBND ? "UNBOUNDED" : status == LPX_UNDEF ? "UNDEFINED" : "???"); } /* objective function */ { char *name; int dir; double obj; name = (void *)lpx_get_obj_name(lp); dir = lpx_get_obj_dir(lp); obj = lpx_get_obj_val(lp); xfprintf(fp, "%-12s%s%s%.10g %s\n", "Objective:", name == NULL ? "" : name, name == NULL ? "" : " = ", obj, dir == LPX_MIN ? "(MINimum)" : dir == LPX_MAX ? "(MAXimum)" : "(" "???" ")"); } /* main sheet */ for (what = 1; what <= 2; what++) { int mn, ij; xfprintf(fp, "\n"); xfprintf(fp, " No. %-12s St Activity Lower bound Upp" "er bound Marginal\n", what == 1 ? " Row name" : "Column name"); xfprintf(fp, "------ ------------ -- ------------- -----------" "-- ------------- -------------\n"); mn = (what == 1 ? lpx_get_num_rows(lp) : lpx_get_num_cols(lp)); for (ij = 1; ij <= mn; ij++) { const char *name; int typx, tagx; double lb, ub, vx, dx; if (what == 1) { name = lpx_get_row_name(lp, ij); if (name == NULL) name = ""; lpx_get_row_bnds(lp, ij, &typx, &lb, &ub); round = lpx_get_int_parm(lp, LPX_K_ROUND); lpx_set_int_parm(lp, LPX_K_ROUND, 1); lpx_get_row_info(lp, ij, &tagx, &vx, &dx); lpx_set_int_parm(lp, LPX_K_ROUND, round); } else { name = lpx_get_col_name(lp, ij); if (name == NULL) name = ""; lpx_get_col_bnds(lp, ij, &typx, &lb, &ub); round = lpx_get_int_parm(lp, LPX_K_ROUND); lpx_set_int_parm(lp, LPX_K_ROUND, 1); lpx_get_col_info(lp, ij, &tagx, &vx, &dx); lpx_set_int_parm(lp, LPX_K_ROUND, round); } /* row/column ordinal number */ xfprintf(fp, "%6d ", ij); /* row column/name */ if (strlen(name) <= 12) xfprintf(fp, "%-12s ", name); else xfprintf(fp, "%s\n%20s", name, ""); /* row/column status */ xfprintf(fp, "%s ", tagx == LPX_BS ? "B " : tagx == LPX_NL ? "NL" : tagx == LPX_NU ? "NU" : tagx == LPX_NF ? "NF" : tagx == LPX_NS ? "NS" : "??"); /* row/column primal activity */ xfprintf(fp, "%13.6g ", vx); /* row/column lower bound */ if (typx == LPX_LO || typx == LPX_DB || typx == LPX_FX) xfprintf(fp, "%13.6g ", lb); else xfprintf(fp, "%13s ", ""); /* row/column upper bound */ if (typx == LPX_UP || typx == LPX_DB) xfprintf(fp, "%13.6g ", ub); else if (typx == LPX_FX) xfprintf(fp, "%13s ", "="); else xfprintf(fp, "%13s ", ""); /* row/column dual activity */ if (tagx != LPX_BS) { if (dx == 0.0) xfprintf(fp, "%13s", "< eps"); else xfprintf(fp, "%13.6g", dx); } /* end of line */ xfprintf(fp, "\n"); } } xfprintf(fp, "\n"); #if 1 if (lpx_get_prim_stat(lp) != LPX_P_UNDEF && lpx_get_dual_stat(lp) != LPX_D_UNDEF) { int m = lpx_get_num_rows(lp); LPXKKT kkt; xfprintf(fp, "Karush-Kuhn-Tucker optimality conditions:\n\n"); lpx_check_kkt(lp, 1, &kkt); xfprintf(fp, "KKT.PE: max.abs.err. = %.2e on row %d\n", kkt.pe_ae_max, kkt.pe_ae_row); xfprintf(fp, " max.rel.err. = %.2e on row %d\n", kkt.pe_re_max, kkt.pe_re_row); switch (kkt.pe_quality) { case 'H': xfprintf(fp, " High quality\n"); break; case 'M': xfprintf(fp, " Medium quality\n"); break; case 'L': xfprintf(fp, " Low quality\n"); break; default: xfprintf(fp, " PRIMAL SOLUTION IS WRONG\n"); break; } xfprintf(fp, "\n"); xfprintf(fp, "KKT.PB: max.abs.err. = %.2e on %s %d\n", kkt.pb_ae_max, kkt.pb_ae_ind <= m ? "row" : "column", kkt.pb_ae_ind <= m ? kkt.pb_ae_ind : kkt.pb_ae_ind - m); xfprintf(fp, " max.rel.err. = %.2e on %s %d\n", kkt.pb_re_max, kkt.pb_re_ind <= m ? "row" : "column", kkt.pb_re_ind <= m ? kkt.pb_re_ind : kkt.pb_re_ind - m); switch (kkt.pb_quality) { case 'H': xfprintf(fp, " High quality\n"); break; case 'M': xfprintf(fp, " Medium quality\n"); break; case 'L': xfprintf(fp, " Low quality\n"); break; default: xfprintf(fp, " PRIMAL SOLUTION IS INFEASIBLE\n"); break; } xfprintf(fp, "\n"); xfprintf(fp, "KKT.DE: max.abs.err. = %.2e on column %d\n", kkt.de_ae_max, kkt.de_ae_col); xfprintf(fp, " max.rel.err. = %.2e on column %d\n", kkt.de_re_max, kkt.de_re_col); switch (kkt.de_quality) { case 'H': xfprintf(fp, " High quality\n"); break; case 'M': xfprintf(fp, " Medium quality\n"); break; case 'L': xfprintf(fp, " Low quality\n"); break; default: xfprintf(fp, " DUAL SOLUTION IS WRONG\n"); break; } xfprintf(fp, "\n"); xfprintf(fp, "KKT.DB: max.abs.err. = %.2e on %s %d\n", kkt.db_ae_max, kkt.db_ae_ind <= m ? "row" : "column", kkt.db_ae_ind <= m ? kkt.db_ae_ind : kkt.db_ae_ind - m); xfprintf(fp, " max.rel.err. = %.2e on %s %d\n", kkt.db_re_max, kkt.db_re_ind <= m ? "row" : "column", kkt.db_re_ind <= m ? kkt.db_re_ind : kkt.db_re_ind - m); switch (kkt.db_quality) { case 'H': xfprintf(fp, " High quality\n"); break; case 'M': xfprintf(fp, " Medium quality\n"); break; case 'L': xfprintf(fp, " Low quality\n"); break; default: xfprintf(fp, " DUAL SOLUTION IS INFEASIBLE\n"); break; } xfprintf(fp, "\n"); } #endif #if 1 if (lpx_get_status(lp) == LPX_UNBND) { int m = lpx_get_num_rows(lp); int k = lpx_get_ray_info(lp); xfprintf(fp, "Unbounded ray: %s %d\n", k <= m ? "row" : "column", k <= m ? k : k - m); xfprintf(fp, "\n"); } #endif xfprintf(fp, "End of output\n"); xfflush(fp); if (xferror(fp)) { xprintf("lpx_print_sol: can't write to `%s' - %s\n", fname, strerror(errno)); goto fail; } xfclose(fp); return 0; fail: if (fp != NULL) xfclose(fp); return 1; }
int lpx_print_mip(LPX *lp, const char *fname) { XFILE *fp; int what, round; #if 0 if (lpx_get_class(lp) != LPX_MIP) fault("lpx_print_mip: error -- not a MIP problem"); #endif xprintf( "lpx_print_mip: writing MIP problem solution to `%s'...\n", fname); fp = xfopen(fname, "w"); if (fp == NULL) { xprintf("lpx_print_mip: can't create `%s' - %s\n", fname, strerror(errno)); goto fail; } /* problem name */ { const char *name; name = lpx_get_prob_name(lp); if (name == NULL) name = ""; xfprintf(fp, "%-12s%s\n", "Problem:", name); } /* number of rows (auxiliary variables) */ { int nr; nr = lpx_get_num_rows(lp); xfprintf(fp, "%-12s%d\n", "Rows:", nr); } /* number of columns (structural variables) */ { int nc, nc_int, nc_bin; nc = lpx_get_num_cols(lp); nc_int = lpx_get_num_int(lp); nc_bin = lpx_get_num_bin(lp); xfprintf(fp, "%-12s%d (%d integer, %d binary)\n", "Columns:", nc, nc_int, nc_bin); } /* number of non-zeros (constraint coefficients) */ { int nz; nz = lpx_get_num_nz(lp); xfprintf(fp, "%-12s%d\n", "Non-zeros:", nz); } /* solution status */ { int status; status = lpx_mip_status(lp); xfprintf(fp, "%-12s%s\n", "Status:", status == LPX_I_UNDEF ? "INTEGER UNDEFINED" : status == LPX_I_OPT ? "INTEGER OPTIMAL" : status == LPX_I_FEAS ? "INTEGER NON-OPTIMAL" : status == LPX_I_NOFEAS ? "INTEGER EMPTY" : "???"); } /* objective function */ { char *name; int dir; double mip_obj; name = (void *)lpx_get_obj_name(lp); dir = lpx_get_obj_dir(lp); mip_obj = lpx_mip_obj_val(lp); xfprintf(fp, "%-12s%s%s%.10g %s\n", "Objective:", name == NULL ? "" : name, name == NULL ? "" : " = ", mip_obj, dir == LPX_MIN ? "(MINimum)" : dir == LPX_MAX ? "(MAXimum)" : "(" "???" ")"); } /* main sheet */ for (what = 1; what <= 2; what++) { int mn, ij; xfprintf(fp, "\n"); xfprintf(fp, " No. %-12s Activity Lower bound Upp" "er bound\n", what == 1 ? " Row name" : "Column name"); xfprintf(fp, "------ ------------ ------------- -----------" "-- -------------\n"); mn = (what == 1 ? lpx_get_num_rows(lp) : lpx_get_num_cols(lp)); for (ij = 1; ij <= mn; ij++) { const char *name; int kind, typx; double lb, ub, vx; if (what == 1) { name = lpx_get_row_name(lp, ij); if (name == NULL) name = ""; kind = LPX_CV; lpx_get_row_bnds(lp, ij, &typx, &lb, &ub); round = lpx_get_int_parm(lp, LPX_K_ROUND); lpx_set_int_parm(lp, LPX_K_ROUND, 1); vx = lpx_mip_row_val(lp, ij); lpx_set_int_parm(lp, LPX_K_ROUND, round); } else { name = lpx_get_col_name(lp, ij); if (name == NULL) name = ""; kind = lpx_get_col_kind(lp, ij); lpx_get_col_bnds(lp, ij, &typx, &lb, &ub); round = lpx_get_int_parm(lp, LPX_K_ROUND); lpx_set_int_parm(lp, LPX_K_ROUND, 1); vx = lpx_mip_col_val(lp, ij); lpx_set_int_parm(lp, LPX_K_ROUND, round); } /* row/column ordinal number */ xfprintf(fp, "%6d ", ij); /* row column/name */ if (strlen(name) <= 12) xfprintf(fp, "%-12s ", name); else xfprintf(fp, "%s\n%20s", name, ""); /* row/column kind */ xfprintf(fp, "%s ", kind == LPX_CV ? " " : kind == LPX_IV ? "*" : "?"); /* row/column primal activity */ xfprintf(fp, "%13.6g", vx); /* row/column lower and upper bounds */ switch (typx) { case LPX_FR: break; case LPX_LO: xfprintf(fp, " %13.6g", lb); break; case LPX_UP: xfprintf(fp, " %13s %13.6g", "", ub); break; case LPX_DB: xfprintf(fp, " %13.6g %13.6g", lb, ub); break; case LPX_FX: xfprintf(fp, " %13.6g %13s", lb, "="); break; default: xassert(typx != typx); } /* end of line */ xfprintf(fp, "\n"); } } xfprintf(fp, "\n"); #if 1 if (lpx_mip_status(lp) != LPX_I_UNDEF) { int m = lpx_get_num_rows(lp); LPXKKT kkt; xfprintf(fp, "Integer feasibility conditions:\n\n"); lpx_check_int(lp, &kkt); xfprintf(fp, "INT.PE: max.abs.err. = %.2e on row %d\n", kkt.pe_ae_max, kkt.pe_ae_row); xfprintf(fp, " max.rel.err. = %.2e on row %d\n", kkt.pe_re_max, kkt.pe_re_row); switch (kkt.pe_quality) { case 'H': xfprintf(fp, " High quality\n"); break; case 'M': xfprintf(fp, " Medium quality\n"); break; case 'L': xfprintf(fp, " Low quality\n"); break; default: xfprintf(fp, " SOLUTION IS WRONG\n"); break; } xfprintf(fp, "\n"); xfprintf(fp, "INT.PB: max.abs.err. = %.2e on %s %d\n", kkt.pb_ae_max, kkt.pb_ae_ind <= m ? "row" : "column", kkt.pb_ae_ind <= m ? kkt.pb_ae_ind : kkt.pb_ae_ind - m); xfprintf(fp, " max.rel.err. = %.2e on %s %d\n", kkt.pb_re_max, kkt.pb_re_ind <= m ? "row" : "column", kkt.pb_re_ind <= m ? kkt.pb_re_ind : kkt.pb_re_ind - m); switch (kkt.pb_quality) { case 'H': xfprintf(fp, " High quality\n"); break; case 'M': xfprintf(fp, " Medium quality\n"); break; case 'L': xfprintf(fp, " Low quality\n"); break; default: xfprintf(fp, " SOLUTION IS INFEASIBLE\n"); break; } xfprintf(fp, "\n"); } #endif xfprintf(fp, "End of output\n"); xfflush(fp); if (xferror(fp)) { xprintf("lpx_print_mip: can't write to `%s' - %s\n", fname, strerror(errno)); goto fail; } xfclose(fp); return 0; fail: if (fp != NULL) xfclose(fp); return 1; }
int lpx_print_ips(LPX *lp, const char *fname) { XFILE *fp; int what, round; xprintf("lpx_print_ips: writing LP problem solution to `%s'...\n", fname); fp = xfopen(fname, "w"); if (fp == NULL) { xprintf("lpx_print_ips: can't create `%s' - %s\n", fname, strerror(errno)); goto fail; } /* problem name */ { const char *name; name = lpx_get_prob_name(lp); if (name == NULL) name = ""; xfprintf(fp, "%-12s%s\n", "Problem:", name); } /* number of rows (auxiliary variables) */ { int nr; nr = lpx_get_num_rows(lp); xfprintf(fp, "%-12s%d\n", "Rows:", nr); } /* number of columns (structural variables) */ { int nc; nc = lpx_get_num_cols(lp); xfprintf(fp, "%-12s%d\n", "Columns:", nc); } /* number of non-zeros (constraint coefficients) */ { int nz; nz = lpx_get_num_nz(lp); xfprintf(fp, "%-12s%d\n", "Non-zeros:", nz); } /* solution status */ { int status; status = lpx_ipt_status(lp); xfprintf(fp, "%-12s%s\n", "Status:", status == LPX_T_UNDEF ? "INTERIOR UNDEFINED" : status == LPX_T_OPT ? "INTERIOR OPTIMAL" : "???"); } /* objective function */ { char *name; int dir; double obj; name = (void *)lpx_get_obj_name(lp); dir = lpx_get_obj_dir(lp); obj = lpx_ipt_obj_val(lp); xfprintf(fp, "%-12s%s%s%.10g %s\n", "Objective:", name == NULL ? "" : name, name == NULL ? "" : " = ", obj, dir == LPX_MIN ? "(MINimum)" : dir == LPX_MAX ? "(MAXimum)" : "(" "???" ")"); } /* main sheet */ for (what = 1; what <= 2; what++) { int mn, ij; xfprintf(fp, "\n"); xfprintf(fp, " No. %-12s Activity Lower bound Upp" "er bound Marginal\n", what == 1 ? " Row name" : "Column name"); xfprintf(fp, "------ ------------ ------------- -----------" "-- ------------- -------------\n"); mn = (what == 1 ? lpx_get_num_rows(lp) : lpx_get_num_cols(lp)); for (ij = 1; ij <= mn; ij++) { const char *name; int typx /*, tagx */; double lb, ub, vx, dx; if (what == 1) { name = lpx_get_row_name(lp, ij); if (name == NULL) name = ""; lpx_get_row_bnds(lp, ij, &typx, &lb, &ub); round = lpx_get_int_parm(lp, LPX_K_ROUND); lpx_set_int_parm(lp, LPX_K_ROUND, 1); vx = lpx_ipt_row_prim(lp, ij); dx = lpx_ipt_row_dual(lp, ij); lpx_set_int_parm(lp, LPX_K_ROUND, round); } else { name = lpx_get_col_name(lp, ij); if (name == NULL) name = ""; lpx_get_col_bnds(lp, ij, &typx, &lb, &ub); round = lpx_get_int_parm(lp, LPX_K_ROUND); lpx_set_int_parm(lp, LPX_K_ROUND, 1); vx = lpx_ipt_col_prim(lp, ij); dx = lpx_ipt_col_dual(lp, ij); lpx_set_int_parm(lp, LPX_K_ROUND, round); } /* row/column ordinal number */ xfprintf(fp, "%6d ", ij); /* row column/name */ if (strlen(name) <= 12) xfprintf(fp, "%-12s ", name); else xfprintf(fp, "%s\n%20s", name, ""); /* two positions are currently not used */ xfprintf(fp, " "); /* row/column primal activity */ xfprintf(fp, "%13.6g ", vx); /* row/column lower bound */ if (typx == LPX_LO || typx == LPX_DB || typx == LPX_FX) xfprintf(fp, "%13.6g ", lb); else xfprintf(fp, "%13s ", ""); /* row/column upper bound */ if (typx == LPX_UP || typx == LPX_DB) xfprintf(fp, "%13.6g ", ub); else if (typx == LPX_FX) xfprintf(fp, "%13s ", "="); else xfprintf(fp, "%13s ", ""); /* row/column dual activity */ xfprintf(fp, "%13.6g", dx); /* end of line */ xfprintf(fp, "\n"); } } xfprintf(fp, "\n"); xfprintf(fp, "End of output\n"); xfflush(fp); if (xferror(fp)) { xprintf("lpx_print_ips: can't write to `%s' - %s\n", fname, strerror(errno)); goto fail; } xfclose(fp); return 0; fail: if (fp != NULL) xfclose(fp); return 1; }
int CClp_nnonzeros(CClp *lp) { /* RETURNS the number of nonzeros in the LP. */ return lpx_get_num_nz(lp->lp); }
int CClp_limited_dualopt(CClp *lp, int iterationlim, int *status, double *objupperlim) { /* CALLS the dual simplex method with a limit on the number of pivots. - upperbound it is used to cutoff the dual simplex method (when the objective value reaches upperbound); it can be NULL; - status returns the status of the optimization (it can be NULL). */ int stat, ret; insist(iterationlim == iterationlim); insist(objupperlim == objupperlim); if (MSGLEV >= 1) { int m = lpx_get_num_rows(lp->lp); int n = lpx_get_num_cols(lp->lp); int nz = lpx_get_num_nz(lp->lp); print("CClp_limited_dualopt: m = %d; n = %d; nz = %d", m, n, nz); } lpx_set_int_parm(lp->lp, LPX_K_DUAL, 1); switch (MSGLEV) { case 0: lpx_set_int_parm(lp->lp, LPX_K_MSGLEV, 0); lpx_set_int_parm(lp->lp, LPX_K_OUTFRQ, 1000000); lpx_set_real_parm(lp->lp, LPX_K_OUTDLY, 1e6); break; case 1: lpx_set_int_parm(lp->lp, LPX_K_MSGLEV, 2); lpx_set_int_parm(lp->lp, LPX_K_OUTFRQ, 200); lpx_set_real_parm(lp->lp, LPX_K_OUTDLY, 5.0); break; case 2: lpx_set_int_parm(lp->lp, LPX_K_MSGLEV, 3); lpx_set_int_parm(lp->lp, LPX_K_OUTFRQ, 200); lpx_set_real_parm(lp->lp, LPX_K_OUTDLY, 0.0); break; default: insist(MSGLEV != MSGLEV); } ret = lpx_simplex(lp->lp); if (ret == LPX_E_FAULT) { if (MSGLEV >= 1) print("CClp_limited_dualopt: restarting from " "advanced basis..."); lpx_adv_basis(lp->lp); ret = lpx_simplex(lp->lp); } if (ret != LPX_E_OK) { print("CClp_limited_dualopt: lpx_simplex failed; return code =" " %d", ret); if (status) *status = CClp_FAILURE; ret = 1; goto done; } stat = lpx_get_status(lp->lp); if (stat == LPX_OPT) { if (status) *status = CClp_SUCCESS; ret = 0; } else if (stat == LPX_NOFEAS) { if (status) *status = CClp_INFEASIBLE; ret = 0; } else { print("CClp_limited_dualopt: optimization status = %d", stat); if (status) *status = CClp_FAILURE; ret = 1; } done: return ret; }
int lpx_interior(LPX *_lp) { /* easy-to-use driver to the interior-point method */ struct dsa _dsa, *dsa = &_dsa; int ret, status; double *row_pval, *row_dval, *col_pval, *col_dval; /* initialize working area */ dsa->lp = _lp; dsa->orig_m = lpx_get_num_rows(dsa->lp); dsa->orig_n = lpx_get_num_cols(dsa->lp); dsa->ref = NULL; dsa->m = 0; dsa->n = 0; dsa->size = 0; dsa->ne = 0; dsa->ia = NULL; dsa->ja = NULL; dsa->ar = NULL; dsa->b = NULL; dsa->c = NULL; dsa->x = NULL; dsa->y = NULL; dsa->z = NULL; /* check if the problem is empty */ if (!(dsa->orig_m > 0 && dsa->orig_n > 0)) { print("lpx_interior: problem has no rows and/or columns"); ret = LPX_E_FAULT; goto done; } /* issue warning about dense columns */ if (dsa->orig_m >= 200) { int j, len, ndc = 0; for (j = 1; j <= dsa->orig_n; j++) { len = lpx_get_mat_col(dsa->lp, j, NULL, NULL); if ((double)len > 0.30 * (double)dsa->orig_m) ndc++; } if (ndc == 1) print("lpx_interior: WARNING: PROBLEM HAS ONE DENSE COLUMN") ; else if (ndc > 0) print("lpx_interior: WARNING: PROBLEM HAS %d DENSE COLUMNS", ndc); } /* determine dimension of transformed LP */ print("lpx_interior: original LP problem has %d rows and %d colum" "ns", dsa->orig_m, dsa->orig_n); calc_mn(dsa); print("lpx_interior: transformed LP problem has %d rows and %d co" "lumns", dsa->m, dsa->n); /* transform original LP to standard formulation */ dsa->ref = ucalloc(1+dsa->orig_m+dsa->orig_n, sizeof(int)); dsa->size = lpx_get_num_nz(dsa->lp); if (dsa->size < dsa->m) dsa->size = dsa->m; if (dsa->size < dsa->n) dsa->size = dsa->n; dsa->ne = 0; dsa->ia = ucalloc(1+dsa->size, sizeof(int)); dsa->ja = ucalloc(1+dsa->size, sizeof(int)); dsa->ar = ucalloc(1+dsa->size, sizeof(double)); dsa->b = ucalloc(1+dsa->m, sizeof(double)); dsa->c = ucalloc(1+dsa->n, sizeof(double)); transform(dsa); /* solve the transformed LP problem */ { int *A_ptr = ucalloc(1+dsa->m+1, sizeof(int)); int *A_ind = ucalloc(1+dsa->ne, sizeof(int)); double *A_val = ucalloc(1+dsa->ne, sizeof(double)); int i, k, pos, len; /* determine row lengths */ for (i = 1; i <= dsa->m; i++) A_ptr[i] = 0; for (k = 1; k <= dsa->ne; k++) A_ptr[dsa->ia[k]]++; /* set up row pointers */ pos = 1; for (i = 1; i <= dsa->m; i++) len = A_ptr[i], pos += len, A_ptr[i] = pos; A_ptr[dsa->m+1] = pos; insist(pos - 1 == dsa->ne); /* build the matrix */ for (k = 1; k <= dsa->ne; k++) { pos = --A_ptr[dsa->ia[k]]; A_ind[pos] = dsa->ja[k]; A_val[pos] = dsa->ar[k]; } ufree(dsa->ia), dsa->ia = NULL; ufree(dsa->ja), dsa->ja = NULL; ufree(dsa->ar), dsa->ar = NULL; dsa->x = ucalloc(1+dsa->n, sizeof(double)); dsa->y = ucalloc(1+dsa->m, sizeof(double)); dsa->z = ucalloc(1+dsa->n, sizeof(double)); ret = ipm_main(dsa->m, dsa->n, A_ptr, A_ind, A_val, dsa->b, dsa->c, dsa->x, dsa->y, dsa->z); ufree(A_ptr); ufree(A_ind); ufree(A_val); ufree(dsa->b), dsa->b = NULL; ufree(dsa->c), dsa->c = NULL; } /* analyze return code reported by the solver */ switch (ret) { case 0: /* optimal solution found */ ret = LPX_E_OK; break; case 1: /* problem has no feasible (primal or dual) solution */ ret = LPX_E_NOFEAS; break; case 2: /* no convergence */ ret = LPX_E_NOCONV; break; case 3: /* iterations limit exceeded */ ret = LPX_E_ITLIM; break; case 4: /* numerical instability on solving Newtonian system */ ret = LPX_E_INSTAB; break; default: insist(ret != ret); } /* recover solution of original LP */ row_pval = ucalloc(1+dsa->orig_m, sizeof(double)); row_dval = ucalloc(1+dsa->orig_m, sizeof(double)); col_pval = ucalloc(1+dsa->orig_n, sizeof(double)); col_dval = ucalloc(1+dsa->orig_n, sizeof(double)); restore(dsa, row_pval, row_dval, col_pval, col_dval); ufree(dsa->ref), dsa->ref = NULL; ufree(dsa->x), dsa->x = NULL; ufree(dsa->y), dsa->y = NULL; ufree(dsa->z), dsa->z = NULL; /* store solution components into the problem object */ status = (ret == LPX_E_OK ? LPX_T_OPT : LPX_T_UNDEF); lpx_put_ipt_soln(dsa->lp, status, row_pval, row_dval, col_pval, col_dval); ufree(row_pval); ufree(row_dval); ufree(col_pval); ufree(col_dval); done: /* return to the calling program */ return ret; }
void ipp_load_orig(IPP *ipp, LPX *orig) { IPPROW **row; IPPCOL *col; int i, j, k, type, len, *ind; double lb, ub, *val; /* save some information about the original problem */ ipp->orig_m = lpx_get_num_rows(orig); ipp->orig_n = lpx_get_num_cols(orig); ipp->orig_nnz = lpx_get_num_nz(orig); ipp->orig_dir = lpx_get_obj_dir(orig); /* allocate working arrays */ row = xcalloc(1+ipp->orig_m, sizeof(IPPROW *)); ind = xcalloc(1+ipp->orig_m, sizeof(int)); val = xcalloc(1+ipp->orig_m, sizeof(double)); /* copy rows of the original problem into the workspace */ for (i = 1; i <= ipp->orig_m; i++) { type = lpx_get_row_type(orig, i); if (type == LPX_FR || type == LPX_UP) lb = -DBL_MAX; else lb = lpx_get_row_lb(orig, i); if (type == LPX_FR || type == LPX_LO) ub = +DBL_MAX; else ub = lpx_get_row_ub(orig, i); row[i] = ipp_add_row(ipp, lb, ub); } /* copy columns of the original problem into the workspace; each column created in the workspace is assigned a reference number which is its ordinal number in the original problem */ for (j = 1; j <= ipp->orig_n; j++) { type = lpx_get_col_type(orig, j); if (type == LPX_FR || type == LPX_UP) lb = -DBL_MAX; else lb = lpx_get_col_lb(orig, j); if (type == LPX_FR || type == LPX_LO) ub = +DBL_MAX; else ub = lpx_get_col_ub(orig, j); col = ipp_add_col(ipp, lpx_get_col_kind(orig, j) == LPX_IV, lb, ub, lpx_get_obj_coef(orig, j)); len = lpx_get_mat_col(orig, j, ind, val); for (k = 1; k <= len; k++) ipp_add_aij(ipp, row[ind[k]], col, val[k]); } /* copy the constant term of the original objective function */ ipp->c0 = lpx_get_obj_coef(orig, 0); /* if the original problem is maximization, change the sign of the objective function, because the transformed problem to be processed by the presolver must be minimization */ if (ipp->orig_dir == LPX_MAX) { for (col = ipp->col_ptr; col != NULL; col = col->next) col->c = - col->c; ipp->c0 = - ipp->c0; } /* free working arrays */ xfree(row); xfree(ind); xfree(val); return; }
int lpx_intopt(LPX *_mip) { IPP *ipp = NULL; LPX *orig = _mip, *prob = NULL; int orig_m, orig_n, i, j, ret, i_stat; /* the problem must be of MIP class */ if (lpx_get_class(orig) != LPX_MIP) { print("lpx_intopt: problem is not of MIP class"); ret = LPX_E_FAULT; goto done; } /* the problem must have at least one row and one column */ orig_m = lpx_get_num_rows(orig); orig_n = lpx_get_num_cols(orig); if (!(orig_m > 0 && orig_n > 0)) { print("lpx_intopt: problem has no rows/columns"); ret = LPX_E_FAULT; goto done; } /* check that each double-bounded row and column has bounds */ for (i = 1; i <= orig_m; i++) { if (lpx_get_row_type(orig, i) == LPX_DB) { if (lpx_get_row_lb(orig, i) >= lpx_get_row_ub(orig, i)) { print("lpx_intopt: row %d has incorrect bounds", i); ret = LPX_E_FAULT; goto done; } } } for (j = 1; j <= orig_n; j++) { if (lpx_get_col_type(orig, j) == LPX_DB) { if (lpx_get_col_lb(orig, j) >= lpx_get_col_ub(orig, j)) { print("lpx_intopt: column %d has incorrect bounds", j); ret = LPX_E_FAULT; goto done; } } } /* bounds of all integer variables must be integral */ for (j = 1; j <= orig_n; j++) { int type; double lb, ub; if (lpx_get_col_kind(orig, j) != LPX_IV) continue; type = lpx_get_col_type(orig, j); if (type == LPX_LO || type == LPX_DB || type == LPX_FX) { lb = lpx_get_col_lb(orig, j); if (lb != floor(lb)) { print("lpx_intopt: integer column %d has non-integer low" "er bound or fixed value %g", j, lb); ret = LPX_E_FAULT; goto done; } } if (type == LPX_UP || type == LPX_DB) { ub = lpx_get_col_ub(orig, j); if (ub != floor(ub)) { print("lpx_intopt: integer column %d has non-integer upp" "er bound %g", j, ub); ret = LPX_E_FAULT; goto done; } } } /* reset the status of MIP solution */ lpx_put_mip_soln(orig, LPX_I_UNDEF, NULL, NULL); /* create MIP presolver workspace */ ipp = ipp_create_wksp(); /* load the original problem into the presolver workspace */ ipp_load_orig(ipp, orig); /* perform basic MIP presolve analysis */ switch (ipp_basic_tech(ipp)) { case 0: /* no infeasibility is detected */ break; case 1: nopfs: /* primal infeasibility is detected */ print("PROBLEM HAS NO PRIMAL FEASIBLE SOLUTION"); ret = LPX_E_NOPFS; goto done; case 2: /* dual infeasibility is detected */ nodfs: print("LP RELAXATION HAS NO DUAL FEASIBLE SOLUTION"); ret = LPX_E_NODFS; goto done; default: insist(ipp != ipp); } /* reduce column bounds */ switch (ipp_reduce_bnds(ipp)) { case 0: break; case 1: goto nopfs; default: insist(ipp != ipp); } /* perform basic MIP presolve analysis */ switch (ipp_basic_tech(ipp)) { case 0: break; case 1: goto nopfs; case 2: goto nodfs; default: insist(ipp != ipp); } /* replace general integer variables by sum of binary variables, if required */ if (lpx_get_int_parm(orig, LPX_K_BINARIZE)) ipp_binarize(ipp); /* perform coefficient reduction */ ipp_reduction(ipp); /* if the resultant problem is empty, it has an empty solution, which is optimal */ if (ipp->row_ptr == NULL || ipp->col_ptr == NULL) { insist(ipp->row_ptr == NULL); insist(ipp->col_ptr == NULL); print("Objective value = %.10g", ipp->orig_dir == LPX_MIN ? +ipp->c0 : -ipp->c0); print("INTEGER OPTIMAL SOLUTION FOUND BY MIP PRESOLVER"); /* allocate recovered solution segment */ ipp->col_stat = ucalloc(1+ipp->ncols, sizeof(int)); ipp->col_mipx = ucalloc(1+ipp->ncols, sizeof(double)); for (j = 1; j <= ipp->ncols; j++) ipp->col_stat[j] = 0; /* perform MIP postsolve processing */ ipp_postsolve(ipp); /* unload recovered MIP solution and store it in the original problem object */ ipp_unload_sol(ipp, orig, LPX_I_OPT); ret = LPX_E_OK; goto done; } /* build resultant MIP problem object */ prob = ipp_build_prob(ipp); /* display some statistics */ { int m = lpx_get_num_rows(prob); int n = lpx_get_num_cols(prob); int nnz = lpx_get_num_nz(prob); int ni = lpx_get_num_int(prob); int nb = lpx_get_num_bin(prob); char s[50]; print("lpx_intopt: presolved MIP has %d row%s, %d column%s, %d" " non-zero%s", m, m == 1 ? "" : "s", n, n == 1 ? "" : "s", nnz, nnz == 1 ? "" : "s"); if (nb == 0) strcpy(s, "none of"); else if (ni == 1 && nb == 1) strcpy(s, ""); else if (nb == 1) strcpy(s, "one of"); else if (nb == ni) strcpy(s, "all of"); else sprintf(s, "%d of", nb); print("lpx_intopt: %d integer column%s, %s which %s binary", ni, ni == 1 ? "" : "s", s, nb == 1 ? "is" : "are"); } /* inherit some control parameters and statistics */ lpx_set_int_parm(prob, LPX_K_PRICE, lpx_get_int_parm(orig, LPX_K_PRICE)); lpx_set_real_parm(prob, LPX_K_RELAX, lpx_get_real_parm(orig, LPX_K_RELAX)); lpx_set_real_parm(prob, LPX_K_TOLBND, lpx_get_real_parm(orig, LPX_K_TOLBND)); lpx_set_real_parm(prob, LPX_K_TOLDJ, lpx_get_real_parm(orig, LPX_K_TOLDJ)); lpx_set_real_parm(prob, LPX_K_TOLPIV, lpx_get_real_parm(orig, LPX_K_TOLPIV)); lpx_set_int_parm(prob, LPX_K_ITLIM, lpx_get_int_parm(orig, LPX_K_ITLIM)); lpx_set_int_parm(prob, LPX_K_ITCNT, lpx_get_int_parm(orig, LPX_K_ITCNT)); lpx_set_real_parm(prob, LPX_K_TMLIM, lpx_get_real_parm(orig, LPX_K_TMLIM)); lpx_set_int_parm(prob, LPX_K_BRANCH, lpx_get_int_parm(orig, LPX_K_BRANCH)); lpx_set_int_parm(prob, LPX_K_BTRACK, lpx_get_int_parm(orig, LPX_K_BTRACK)); lpx_set_real_parm(prob, LPX_K_TOLINT, lpx_get_real_parm(orig, LPX_K_TOLINT)); lpx_set_real_parm(prob, LPX_K_TOLOBJ, lpx_get_real_parm(orig, LPX_K_TOLOBJ)); /* build an advanced initial basis */ lpx_adv_basis(prob); /* solve LP relaxation */ print("Solving LP relaxation..."); switch (lpx_simplex(prob)) { case LPX_E_OK: break; case LPX_E_ITLIM: ret = LPX_E_ITLIM; goto done; case LPX_E_TMLIM: ret = LPX_E_TMLIM; goto done; default: print("lpx_intopt: cannot solve LP relaxation"); ret = LPX_E_SING; goto done; } /* analyze status of the basic solution */ switch (lpx_get_status(prob)) { case LPX_OPT: break; case LPX_NOFEAS: ret = LPX_E_NOPFS; goto done; case LPX_UNBND: ret = LPX_E_NODFS; goto done; default: insist(prob != prob); } /* generate cutting planes, if necessary */ if (lpx_get_int_parm(orig, LPX_K_USECUTS)) { ret = generate_cuts(prob); if (ret != LPX_E_OK) goto done; } /* call the branch-and-bound solver */ ret = lpx_integer(prob); /* determine status of MIP solution */ i_stat = lpx_mip_status(prob); if (i_stat == LPX_I_OPT || i_stat == LPX_I_FEAS) { /* load MIP solution of the resultant problem into presolver workspace */ ipp_load_sol(ipp, prob); /* perform MIP postsolve processing */ ipp_postsolve(ipp); /* unload recovered MIP solution and store it in the original problem object */ ipp_unload_sol(ipp, orig, i_stat); } else { /* just set the status of MIP solution */ lpx_put_mip_soln(orig, i_stat, NULL, NULL); } done: /* copy back statistics about spent resources */ if (prob != NULL) { lpx_set_int_parm(orig, LPX_K_ITLIM, lpx_get_int_parm(prob, LPX_K_ITLIM)); lpx_set_int_parm(orig, LPX_K_ITCNT, lpx_get_int_parm(prob, LPX_K_ITCNT)); lpx_set_real_parm(orig, LPX_K_TMLIM, lpx_get_real_parm(prob, LPX_K_TMLIM)); } /* delete the resultant problem object */ if (prob != NULL) lpx_delete_prob(prob); /* delete MIP presolver workspace */ if (ipp != NULL) ipp_delete_wksp(ipp); return ret; }
static int generate_cuts(LPX *prob) { int prob_m, prob_n, prob_nz, msg_lev, dual, nrows, it_cnt, ret; double out_dly, tm_lim, tm_lag = 0.0, tm_beg = utime(); print("Generating cutting planes..."); /* determine the number of rows, columns, and non-zeros on entry to the routine */ prob_m = lpx_get_num_rows(prob); prob_n = lpx_get_num_cols(prob); prob_nz = lpx_get_num_nz(prob); /* save some control parameters */ msg_lev = lpx_get_int_parm(prob, LPX_K_MSGLEV); dual = lpx_get_int_parm(prob, LPX_K_DUAL); out_dly = lpx_get_real_parm(prob, LPX_K_OUTDLY); tm_lim = lpx_get_real_parm(prob, LPX_K_TMLIM); /* and set their new values needed for re-optimization */ lpx_set_int_parm(prob, LPX_K_MSGLEV, 1); lpx_set_int_parm(prob, LPX_K_DUAL, 1); lpx_set_real_parm(prob, LPX_K_OUTDLY, 10.0); lpx_set_real_parm(prob, LPX_K_TMLIM, -1.0); loop: /* main loop starts here */ /* display current status of the problem */ if (utime() - tm_lag >= 5.0 - 0.001) show_status(prob, prob_m, prob_nz), tm_lag = utime(); /* check if the patience has been exhausted */ if (tm_lim >= 0.0 && tm_lim <= utime() - tm_beg) { ret = LPX_E_TMLIM; goto done; } /* not more than 500 cut inequalities are allowed */ if (lpx_get_num_rows(prob) - prob_m >= 500) { ret = LPX_E_OK; goto done; } /* not more than 50,000 cut coefficients are allowed */ if (lpx_get_num_nz(prob) - prob_nz >= 50000) { ret = LPX_E_OK; goto done; } /* try to generate Gomory's mixed integer cut */ nrows = lpx_get_num_rows(prob); gen_gomory_cut(prob, prob_n); if (nrows == lpx_get_num_rows(prob)) { /* nothing has been generated */ ret = LPX_E_OK; goto done; } /* re-optimize current LP relaxation using dual simplex */ it_cnt = lpx_get_int_parm(prob, LPX_K_ITCNT); switch (lpx_simplex(prob)) { case LPX_E_OK: break; case LPX_E_ITLIM: ret = LPX_E_ITLIM; goto done; default: ret = LPX_E_SING; goto done; } if (it_cnt == lpx_get_int_parm(prob, LPX_K_ITCNT)) { ret = LPX_E_OK; goto done; } /* analyze status of the basic solution */ switch (lpx_get_status(prob)) { case LPX_OPT: break; case LPX_NOFEAS: ret = LPX_E_NOPFS; goto done; default: insist(prob != prob); } /* continue generating cutting planes */ goto loop; done: /* display final status of the problem */ show_status(prob, prob_m, prob_nz); switch (ret) { case LPX_E_OK: break; case LPX_E_NOPFS: print("PROBLEM HAS NO INTEGER FEASIBLE SOLUTION"); break; case LPX_E_ITLIM: print("ITERATIONS LIMIT EXCEEDED; SEARCH TERMINATED"); break; case LPX_E_TMLIM: print("TIME LIMIT EXCEEDED; SEARCH TERMINATED"); break; case LPX_E_SING: print("lpx_intopt: cannot re-optimize LP relaxation"); break; default: insist(ret != ret); } /* decrease the time limit by spent amount of the time */ if (tm_lim >= 0.0) { tm_lim -= (utime() - tm_beg); if (tm_lim < 0.0) tm_lim = 0.0; } /* restore some control parameters and update statistics */ lpx_set_int_parm(prob, LPX_K_MSGLEV, msg_lev); lpx_set_int_parm(prob, LPX_K_DUAL, dual); lpx_set_real_parm(prob, LPX_K_OUTDLY, out_dly); lpx_set_real_parm(prob, LPX_K_TMLIM, tm_lim); return ret; }
int lpx_print_sens_bnds(LPX *lp, char *fname) { FILE *fp = NULL; int what, round; print("lpx_print_sens_bnds: writing LP problem solution bounds to" " `%s'...", fname); #if 1 /* added by mao */ /* this routine needs factorization of the current basis matrix which, however, does not exist if the basic solution was obtained by the lp presolver; therefore we should warm up the basis to be sure that the factorization is valid (note that if the factorization exists, lpx_warm_up does nothing) */ lpx_warm_up(lp); #endif #if 0 /* 21/XII-2003 by mao */ if (lp->b_stat == LPX_B_UNDEF) #else if (!lpx_is_b_avail(lp)) #endif { print("lpx_print_sens_bnds: basis information not available (m" "ay be a presolve issue)"); goto fail; } fp = ufopen(fname, "w"); if (fp == NULL) { print("lpx_print_sens_bnds: can't create `%s' - %s", fname, strerror(errno)); goto fail; } /* problem name */ { char *name; name = lpx_get_prob_name(lp); if (name == NULL) name = ""; fprintf(fp, "%-12s%s\n", "Problem:", name); } /* number of rows (auxiliary variables) */ { int nr; nr = lpx_get_num_rows(lp); fprintf(fp, "%-12s%d\n", "Rows:", nr); } /* number of columns (structural variables) */ { int nc; nc = lpx_get_num_cols(lp); fprintf(fp, "%-12s%d\n", "Columns:", nc); } /* number of non-zeros (constraint coefficients) */ { int nz; nz = lpx_get_num_nz(lp); fprintf(fp, "%-12s%d\n", "Non-zeros:", nz); } /* solution status */ { int status; status = lpx_get_status(lp); fprintf(fp, "%-12s%s\n", "Status:", status == LPX_OPT ? "OPTIMAL" : status == LPX_FEAS ? "FEASIBLE" : status == LPX_INFEAS ? "INFEASIBLE (INTERMEDIATE)" : status == LPX_NOFEAS ? "INFEASIBLE (FINAL)" : status == LPX_UNBND ? "UNBOUNDED" : status == LPX_UNDEF ? "UNDEFINED" : "???"); } /* explanation/warning */ { fprintf(fp, "\nExplanation: This file presents amounts by whi" "ch objective coefficients,\n"); fprintf(fp, "constraint bounds, and variable bounds may be cha" "nged in the original problem\n"); fprintf(fp, "while the optimal basis remains the same. Note t" "hat the optimal solution\n"); fprintf(fp, "and objective value may change even though the ba" "sis remains the same.\n"); fprintf(fp, "These bounds assume that all parameters remain fi" "xed except the one in\n"); fprintf(fp, "question. If more than one parameter is changed," " it is possible for the\n"); fprintf(fp, "optimal basis to change even though each paramete" "r stays within its bounds.\n"); fprintf(fp, "For more details, consult a text on linear progra" "mming.\n"); } /* Sensitivity ranges if solution was optimal */ { int status; status = lpx_get_status(lp); if (status == LPX_OPT) { int i,j,k,m,n; int dir; double max_inc, max_dec; int *index; double *val; fprintf(fp, "\nObjective Coefficient Analysis\n"); fprintf(fp, " No. Column name St Value Max incr" "ease Max decrease\n"); fprintf(fp, "------ ------------ -- ------------- ---------" "---- ------------- \n"); n = lpx_get_num_cols(lp); m = lpx_get_num_rows(lp); dir = lpx_get_obj_dir(lp); /* allocate memory for index and val arrays */ index = ucalloc(1+n+m, sizeof(int)); val = ucalloc(1+n+m, sizeof(double)); for (j = 1; j <= n; j++) { char *name; int typx, tagx; double lb, ub, vx, dx; name = lpx_get_col_name(lp, j); if (name == NULL) name = ""; lpx_get_col_bnds(lp, j, &typx, &lb, &ub); #if 0 /* 21/XII-2003 by mao */ round = lp->round, lp->round = 1; lpx_get_col_info(lp, j, &tagx, &vx, &dx); lp->round = round; #else round = lpx_get_int_parm(lp, LPX_K_ROUND); lpx_set_int_parm(lp, LPX_K_ROUND, 1); lpx_get_col_info(lp, j, &tagx, &vx, &dx); lpx_set_int_parm(lp, LPX_K_ROUND, round); #endif /* row/column ordinal number */ fprintf(fp, "%6d ", j); /* row column/name */ if (strlen(name) <= 12) fprintf(fp, "%-12s ", name); else fprintf(fp, "%s\n%20s", name, ""); /* row/column status */ fprintf(fp, "%s ", tagx == LPX_BS ? "B " : tagx == LPX_NL ? "NL" : tagx == LPX_NU ? "NU" : tagx == LPX_NF ? "NF" : tagx == LPX_NS ? "NS" : "??"); /* objective coefficient */ fprintf(fp, "%13.6g ", lpx_get_obj_coef(lp, j)); if (tagx == LPX_NL) { if (dir==LPX_MIN) { /* reduced cost must be positive */ max_inc = DBL_MAX; /* really represents infinity */ max_dec = dx; } else { /* reduced cost must be negative */ max_inc = -dx; max_dec = DBL_MAX; /* means infinity */ } } if (tagx == LPX_NU) { if (dir==LPX_MIN) { /* reduced cost must be negative */ max_inc = -dx; max_dec = DBL_MAX; } else { max_inc = DBL_MAX; max_dec = dx; } } if (tagx == LPX_NF) { /* can't change nonbasic free variables' cost */ max_inc = 0.0; max_dec = 0.0; } if (tagx == LPX_NS) { /* doesn't matter what happens to the cost */ max_inc = DBL_MAX; max_dec = DBL_MAX; } if (tagx == LPX_BS) { int len; /* We need to see how this objective coefficient affects reduced costs of other variables */ len = lpx_eval_tab_row(lp, m+j, index, val); max_inc = DBL_MAX; max_dec = DBL_MAX; for (i = 1; i <= len; i++) { /*int stat;*/ int tagx2; double vx2, dx2; double delta; if (index[i]>m) lpx_get_col_info(lp, index[i]-m, &tagx2, &vx2, &dx2); else lpx_get_row_info(lp, index[i], &tagx2, &vx2, &dx2); if (tagx2 == LPX_NL) { if (val[i] != 0.0) { delta = dx2 / val[i]; if (delta < 0 && -delta < max_inc) max_inc = -delta; else if (delta >0 && delta < max_dec) max_dec = delta; } } if (tagx2 == LPX_NU) { if (val[i] != 0.0) { delta = dx2 / val[i]; if (delta < 0 && -delta < max_inc) max_inc = -delta; else if (delta > 0 && delta < max_dec) max_dec = delta; } } if (tagx2 == LPX_NF) { if (val[i] != 0.0) { max_inc = 0.0; max_dec = 0.0; } } } } if (max_inc == -0.0) max_inc = 0.0; if (max_dec == -0.0) max_dec = 0.0; if (max_inc == DBL_MAX) fprintf(fp, "%13s ", "infinity"); else if (max_inc < 1.0e-12 && max_inc > 0) fprintf(fp, "%13s ", "< eps"); else fprintf(fp, "%13.6g ", max_inc); if (max_dec == DBL_MAX) fprintf(fp, "%13s ", "infinity"); else if (max_dec < 1.0e-12 && max_dec > 0) fprintf(fp, "%13s ", "< eps"); else fprintf(fp, "%13.6g ", max_dec); fprintf(fp, "\n"); } for (what = 1; what <= 2; what++) { int ij, mn; fprintf(fp, "\n"); fprintf(fp, "%s Analysis\n", what==1? "Constraint Bounds":"Variable Bounds"); fprintf(fp, " No. %12s St Value Max increase " " Max decrease\n", what==1 ? " Row name":"Column name"); fprintf(fp, "------ ------------ -- ------------- ------" "------- ------------- \n"); mn = what==1 ? m : n; for (ij = 1; ij <= mn; ij++) { char *name; int typx, tagx; double lb, ub, vx, dx; if (what==1) name = lpx_get_row_name(lp, ij); else name = lpx_get_col_name(lp, ij); if (name == NULL) name = ""; #if 0 /* 21/XII-2003 by mao */ if (what==1) { lpx_get_row_bnds(lp, ij, &typx, &lb, &ub); round = lp->round, lp->round = 1; lpx_get_row_info(lp, ij, &tagx, &vx, &dx); lp->round = round; } else { lpx_get_col_bnds(lp, ij, &typx, &lb, &ub); round = lp->round, lp->round = 1; lpx_get_col_info(lp, ij, &tagx, &vx, &dx); lp->round = round; } #else round = lpx_get_int_parm(lp, LPX_K_ROUND); lpx_set_int_parm(lp, LPX_K_ROUND, 1); if (what==1) { lpx_get_row_bnds(lp, ij, &typx, &lb, &ub); lpx_get_row_info(lp, ij, &tagx, &vx, &dx); } else { lpx_get_col_bnds(lp, ij, &typx, &lb, &ub); lpx_get_col_info(lp, ij, &tagx, &vx, &dx); } lpx_set_int_parm(lp, LPX_K_ROUND, round); #endif /* row/column ordinal number */ fprintf(fp, "%6d ", ij); /* row column/name */ if (strlen(name) <= 12) fprintf(fp, "%-12s ", name); else fprintf(fp, "%s\n%20s", name, ""); /* row/column status */ fprintf(fp, "%s ", tagx == LPX_BS ? "B " : tagx == LPX_NL ? "NL" : tagx == LPX_NU ? "NU" : tagx == LPX_NF ? "NF" : tagx == LPX_NS ? "NS" : "??"); fprintf(fp, "\n"); /* first check lower bound */ if (typx == LPX_LO || typx == LPX_DB || typx == LPX_FX) { int at_lower; at_lower = 0; if (tagx == LPX_BS || tagx == LPX_NU) { max_inc = vx - lb; max_dec = DBL_MAX; } if (tagx == LPX_NS) { max_inc = 0.0; max_dec = 0.0; if (dir == LPX_MIN && dx > 0) at_lower = 1; if (dir == LPX_MAX && dx < 0) at_lower = 1; } if (tagx == LPX_NL || at_lower == 1) { int len; /* we have to see how it affects basic variables */ len = lpx_eval_tab_col(lp, what==1?ij:ij+m, index, val); k = lpx_prim_ratio_test(lp, len, index, val, 1, 10e-7); max_inc = DBL_MAX; if (k != 0) { /*int stat;*/ int tagx2, typx2; double vx2, dx2, lb2, ub2; /*double delta;*/ double alpha; int l; for (l = 1; l <= len; l++) if (index[l] == k) alpha = val[l]; if (k>m) { lpx_get_col_info(lp, k-m, &tagx2, &vx2, &dx2); lpx_get_col_bnds(lp, k-m, &typx2, &lb2, &ub2); } else { lpx_get_row_info(lp, k, &tagx2, &vx2, &dx2); lpx_get_row_bnds(lp, k, &typx2, &lb2, &ub2); } /* Check which direction; remember this is upper bound */ if (alpha > 0) max_inc = (ub2 - vx2)/ alpha; else max_inc = (lb2 - vx2)/ alpha; } /* now check lower bound */ k = lpx_prim_ratio_test(lp, len, index, val, -1, 10e-7); max_dec = DBL_MAX; if (k != 0) { /*int stat;*/ int tagx2, typx2; double vx2, dx2, lb2, ub2; /*double delta;*/ double alpha; int l; for (l = 1; l <= len; l++) if (index[l] == k) alpha = val[l]; if (k>m) { lpx_get_col_info(lp, k-m, &tagx2, &vx2, &dx2); lpx_get_col_bnds(lp, k-m, &typx2, &lb2, &ub2); } else { lpx_get_row_info(lp, k, &tagx2, &vx2, &dx2); lpx_get_row_bnds(lp, k, &typx2, &lb2, &ub2); } /* Check which direction; remember this is lower bound */ if (alpha > 0) max_dec = (vx2 - lb2)/ alpha; else max_dec = (vx2 - ub2)/ alpha; } } /* bound */ if (typx == LPX_DB || typx == LPX_FX) { if (max_inc > ub - lb) max_inc = ub - lb; } fprintf(fp, " LOWER %13.6g ", lb); if (max_inc == -0.0) max_inc = 0.0; if (max_dec == -0.0) max_dec = 0.0; if (max_inc == DBL_MAX) fprintf(fp, "%13s ", "infinity"); else if (max_inc < 1.0e-12 && max_inc > 0) fprintf(fp, "%13s ", "< eps"); else fprintf(fp, "%13.6g ", max_inc); if (max_dec == DBL_MAX) fprintf(fp, "%13s ", "infinity"); else if (max_dec < 1.0e-12 && max_dec > 0) fprintf(fp, "%13s ", "< eps"); else fprintf(fp, "%13.6g ", max_dec); fprintf(fp, "\n"); } /* now check upper bound */ if (typx == LPX_UP || typx == LPX_DB || typx == LPX_FX) { int at_upper; at_upper = 0; if (tagx == LPX_BS || tagx == LPX_NL) { max_inc = DBL_MAX; max_dec = ub - vx; } if (tagx == LPX_NS) { max_inc = 0.0; max_dec = 0.0; if (dir == LPX_MIN && dx < 0) at_upper = 1; if (dir == LPX_MAX && dx > 0) at_upper = 1; } if (tagx == LPX_NU || at_upper == 1) { int len; /* we have to see how it affects basic variables */ len = lpx_eval_tab_col(lp, what==1?ij:ij+m, index, val); k = lpx_prim_ratio_test(lp, len, index, val, 1, 10e-7); max_inc = DBL_MAX; if (k != 0) { /*int stat;*/ int tagx2, typx2; double vx2, dx2, lb2, ub2; /*double delta;*/ double alpha; int l; for (l = 1; l <= len; l++) if (index[l] == k) alpha = val[l]; if (k>m) { lpx_get_col_info(lp, k-m, &tagx2, &vx2, &dx2); lpx_get_col_bnds(lp, k-m, &typx2, &lb2, &ub2); } else { lpx_get_row_info(lp, k, &tagx2, &vx2, &dx2); lpx_get_row_bnds(lp, k, &typx2, &lb2, &ub2); } /* Check which direction; remember this is upper bound */ if (alpha > 0) max_inc = (ub2 - vx2)/ alpha; else max_inc = (lb2 - vx2)/ alpha; } /* now check lower bound */ k = lpx_prim_ratio_test(lp, len, index, val, -1, 10e-7); max_dec = DBL_MAX; if (k != 0) { /*int stat;*/ int tagx2, typx2; double vx2, dx2, lb2, ub2; /*double delta;*/ double alpha; int l; for (l = 1; l <= len; l++) if (index[l] == k) alpha = val[l]; if (k>m) { lpx_get_col_info(lp, k-m, &tagx2, &vx2, &dx2); lpx_get_col_bnds(lp, k-m, &typx2, &lb2, &ub2); } else { lpx_get_row_info(lp, k, &tagx2, &vx2, &dx2); lpx_get_row_bnds(lp, k, &typx2, &lb2, &ub2); } /* Check which direction; remember this is lower bound */ if (alpha > 0) max_dec = (vx2 - lb2)/ alpha; else max_dec = (vx2 - ub2)/ alpha; } } if (typx == LPX_DB || typx == LPX_FX) { if (max_dec > ub - lb) max_dec = ub - lb; } /* bound */ fprintf(fp, " UPPER %13.6g ", ub); if (max_inc == -0.0) max_inc = 0.0; if (max_dec == -0.0) max_dec = 0.0; if (max_inc == DBL_MAX) fprintf(fp, "%13s ", "infinity"); else if (max_inc < 1.0e-12 && max_inc > 0) fprintf(fp, "%13s ", "< eps"); else fprintf(fp, "%13.6g ", max_inc); if (max_dec == DBL_MAX) fprintf(fp, "%13s ", "infinity"); else if (max_dec < 1.0e-12 && max_dec > 0) fprintf(fp, "%13s ", "< eps"); else fprintf(fp, "%13.6g ", max_dec); fprintf(fp, "\n"); } } } /* free the memory we used */ ufree(index); ufree(val); } else fprintf(fp, "No range information since solution is not o" "ptimal.\n"); } fprintf(fp, "\n"); fprintf(fp, "End of output\n"); fflush(fp); if (ferror(fp)) { print("lpx_print_sens_bnds: can't write to `%s' - %s", fname, strerror(errno)); goto fail; } ufclose(fp); return 0; fail: if (fp != NULL) ufclose(fp); return 1; }