Esempio n. 1
0
void initialiseIO()
{
	//Led Fault
	mPORTBSetPinsDigitalOut(BIT_8);
	PORTSetBits(IOPORT_B, BIT_8);
	//Led Alert
	mPORTBSetPinsDigitalOut(BIT_9);
	PORTSetBits(IOPORT_B, BIT_9);

	//Relais 1
	mPORTDSetPinsDigitalOut(BIT_1);
	PORTSetBits(IOPORT_D, BIT_1);
	
	//Relais 2
	mPORTDSetPinsDigitalOut(BIT_2);
	PORTSetBits(IOPORT_D, BIT_2);
	
	//Address
	mPORTESetPinsDigitalIn(BIT_0);
	mPORTESetPinsDigitalIn(BIT_1);
	mPORTESetPinsDigitalIn(BIT_2);
	mPORTESetPinsDigitalIn(BIT_3);
	mPORTESetPinsDigitalIn(BIT_4);
	mPORTESetPinsDigitalIn(BIT_5);
	mPORTESetPinsDigitalIn(BIT_6);
	mPORTESetPinsDigitalIn(BIT_7);	
}
Esempio n. 2
0
int main(void)
{
    long i;

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    // Configure the device for maximum performance but do not change the PBDIV
    // Given the options, this function will change the flash wait states, RAM
    // wait state and enable prefetch cache but will not change the PBDIV.
    // The PBDIV value is already set via the pragma FPBDIV option above..
    SYSTEMConfig(SYS_FREQ, SYS_CFG_WAIT_STATES | SYS_CFG_PCACHE);


    // Explorer16 LEDs are on lower 8-bits of PORTA and to use all LEDs, JTAG port must be disabled.
    mJTAGPortEnable(DEBUG_JTAGPORT_OFF);

    // Make all lower 8-bits of PORTA as output. Turn them off before changing
    // direction so that we don't have unexpected flashes
    mPORTDClearBits(BIT_2 | BIT_1 | BIT_0 );

    mPORTDSetPinsDigitalOut(BIT_2 | BIT_1 | BIT_0 );

    while (1) 
    {
        BlinkLeds();                            
        i = 1024*1024*30;
        while(i--);
    //                i = 1024*1024*1024;
    //    while(i--);
    }


}
Esempio n. 3
0
void MyCyclone_Init(void)
{
    // Configure Reset Pin = GPIO_2[10] = RD7
    mPORTDClearBits(RST_FPGA);
    mPORTDSetPinsDigitalOut(RST_FPGA);

    // Do a Reset
    mPORTDSetBits(RST_FPGA);
    mPORTDClearBits(RST_FPGA);

    // Do Interrupts Initialization
    // Set RD8/INT1 and RD9/INT2 as inputs
    mPORTDSetPinsDigitalIn(BIT_8 | BIT_9);
    // Clear corresponding bits in INTCON for falling edge trigger
    INTCONCLR = _INTCON_INT1EP_MASK | _INTCON_INT2EP_MASK;
    // Set up interrupt prioirty and sub-priority
    INTSetVectorPriority(INT_EXTERNAL_1_VECTOR, My_INT_EXTERNAL_1_PRIORITY);
    INTSetVectorSubPriority(INT_EXTERNAL_1_VECTOR, My_INT_EXTERNAL_1_SUB_PRIORITY);
    INTSetVectorPriority(INT_EXTERNAL_2_VECTOR, My_INT_EXTERNAL_2_PRIORITY);
    INTSetVectorSubPriority(INT_EXTERNAL_2_VECTOR, My_INT_EXTERNAL_2_SUB_PRIORITY);
    // Clear the interrupt flags
    INTClearFlag(INT_INT1);
    INTClearFlag(INT_INT2);
    // Enable INT1 & INT2
    INTEnable(INT_INT1, INT_ENABLED);
    INTEnable(INT_INT2, INT_ENABLED);
    // Enable KEY0 and KEY1 interrupts and IOs of the MyExpansionBoard_IO_v2
    MyCyclone_Write(CYCLONE_CONFIG,CYCLONE_ENABLE_INT_KEY0 | CYCLONE_ENABLE_INT_KEY1 | CYCLONE_ENABLE_IO_AB | CYCLONE_ENABLE_IO_CD);
}
Esempio n. 4
0
int main(void){
    mPORTBSetPinsAnalogIn(0xFFFF);             //Enable all analog
    mPORTDClearBits(BIT_0 |BIT_1 | BIT_8);
    mPORTDSetPinsDigitalOut(BIT_0 | BIT_1 | BIT_8);

    SYSTEMConfig(SYS_FREQ, SYS_CFG_WAIT_STATES | SYS_CFG_PCACHE);
    CloseADC10();
    SetChanADC10(INITCH);
    OpenADC10(CONFIG1, CONFIG2, CONFIG3, CFGPORT, CFGSCAN);
    ConfigIntADC10(CFGINT);
    EnableADC10();

    mPMPOpen(PMP_CONTROL, PMP_MODE, PMP_PORT, PMP_INT);
    mPMPEnable();

    //mPORTDClearBits(BIT_0 |BIT_1 | BIT_8);
    INTEnableSystemMultiVectoredInt();

    OpenTimer2(T2_ON | T2_PS_1_64, 256);
    ConfigIntTimer2(T2_INT_ON | T2_INT_PRIOR_5 | T2_INT_SUB_PRIOR_2);
    EnableIntT2;
    
    mPORTDToggleBits(BIT_0);

    while(1){
        //Blink so we know we're still running
        noteOn(67, 100);
        //delayMs(1000);
        mPORTDToggleBits(BIT_0);
        //noteOff(67);
        DelayMs(1000);
        //mPORTDToggleBits(BIT_0);
    }
    return 0;
}
Esempio n. 5
0
void InitLEDs(void)
{
  	// Config PORTD pins RD0, RD1 and RD2 as outputs, and clear
    // (MMc: These macros from "ports.h" are kinda useless, imho)
    //
	mPORTDSetPinsDigitalOut(BIT_0 | BIT_1 | BIT_2); // Same as TRISDCLR = 0x0007
	mPORTDClearBits(BIT_0 | BIT_1 | BIT_2);         // Same as LATDCLR = 0x0007
}
Esempio n. 6
0
void InitializeIO(void)
{
    //Initializing CSN and CE pins as output
    mPORTFSetPinsDigitalOut(BIT_0 | BIT_1);
    mPORTFClearBits(BIT_0 | BIT_1);
    //Initializing IRQ pin as input
    mPORTDSetPinsDigitalIn(BIT_13);
    mPORTDClearBits(BIT_13);
    //Setting CSN bit active
    LATFbits.LATF1 = 1;
    //Initializing LEDs
    mPORTDSetPinsDigitalOut(BIT_1 | BIT_2);
    mPORTDClearBits(BIT_1 | BIT_2);
    //Initializing MOSI/SDO1 and SCK as output
    mPORTDSetPinsDigitalOut(BIT_10);
    mPORTDSetPinsDigitalOut(BIT_0);
    //Initializing MISO/SDI1 as input
    mPORTCSetPinsDigitalIn(BIT_4);
}
Esempio n. 7
0
void chip_select(void)
{
	mPORTDSetPinsDigitalOut(BIT_12);        	//chip select for eeprom
	mPORTDSetBits(BIT_12);  
	mPORTGSetPinsDigitalOut(BIT_8 | BIT_6);     //master out slave in  & SCK
	mPORTGClearBits(BIT_6 | BIT_8);           /* SCK(RG6) and SDO(RG8) low */
	mPORTGSetPinsDigitalIn(BIT_7);    	        //master in slav out
	mPORTGSetBits(BIT_7);
	mPORTDSetPinsDigitalOut(BIT_8);             //write protect
	mPORTDSetBits(BIT_8);        

//config SPI2....!!!!
	SPI2CONbits.SIDL 	= 0; 	// Continue module operation in Idle mode
  	SPI2CONbits.DISSDO	= 0;	// SDOx pin is controlled by the module

	SPI2CON=0; 
	SPI2CON=0x00008360;				//enable the spi peripheral-8160
	SPI2BRG=15;            			// use Fpb/10 clock frequency will give 10MHz....40/(2*(1+1))=10Mhz
	IEC1CLR=0xE0;          			// disable all interrupts
	IFS1CLR=0xE0;        			// clear any existing event
    IPC7CLR=0x1f000000;     		// clear the priority
}
Esempio n. 8
0
/*-----------------------------------------------------------*/
static void prvSetupHardware(void)
{
    /* Setup the CPU clocks, and configure the interrupt controller. */
    SYSTEMConfigPerformance(configCPU_CLOCK_HZ);
    mOSCSetPBDIV(OSC_PB_DIV_2);
    INTEnableSystemMultiVectoredInt();

    /* LEDs off. */
    mPORTDClearBits(BIT_0 | BIT_1 | BIT_2);

    /* LEDs are outputs. */
    mPORTDSetPinsDigitalOut(BIT_0 | BIT_1 | BIT_2);
}
void setupHardware()
{
    SYSTEMConfig(SYS_CLOCK, SYS_CFG_WAIT_STATES | SYS_CFG_PCACHE);

    mPORTDSetPinsDigitalOut(BIT_1); //yellow LED
    mPORTGSetPinsDigitalOut(BIT_6); //green LED

    //A1 PIR Input (CN4 module, RB2)
    //A2 STB current consumption (AN3)
    //D0 IR Output
    mPORTDSetPinsDigitalOut(BIT_3); //D1 STB IRF control
    mPORTDSetPinsDigitalIn(BIT_4); //D2 BUT OTG
    mPORTDSetPinsDigitalOut(BIT_5); //D3 SHD RED LED Command OFF acqusition notificaiton
    mPORTDSetPinsDigitalOut(BIT_6); //D4 SHD GREEN LED Command ON acqusition notificaiton
    //D5 IR input (RD7)
    //D6 SHD BUT1
    //D7 SHD BUT2
    mPORTBSetPinsDigitalOut(BIT_14); //D9 monitor relay control

    DDPCONbits.JTAGEN = 0;

    initLEDs();
    initUART();

    initADC();
    setupCNModuleAnd_IR_PIR_Input();
    //setupCNModuleAndPIRInput();
    configureRTC();
    setupIRTransmit();

    switchMonitorOff();
    switchSTBOff();

    INTConfigureSystem(INT_SYSTEM_CONFIG_MULT_VECTOR);
    INTEnableInterrupts();

    T2CONbits.ON = 1;
}
Esempio n. 10
0
void InitializeSystem()
{
	SYSTEMConfigWaitStatesAndPB(CLOCK_FREQ);
	mOSCSetPBDIV(OSC_PB_DIV_4);  // Set to get 20MHz PB clock
  //mOSCSetPBDIV(OSC_PB_DIV_2);
	CheKseg0CacheOn();
	mJTAGPortEnable(0);

	// Initialize the pins to all digital output and driven to ground.
	// Exception is RE7 and RE6 which are switch inputs
	PORTSetPinsDigitalIn(IOPORT_E, BIT_6);
	PORTSetPinsDigitalIn(IOPORT_E, BIT_7);

	mPORTASetPinsDigitalOut(0xFFFF);
	mPORTBSetPinsDigitalOut(0xFFFF);
	mPORTCSetPinsDigitalOut(0xFFFF);
	mPORTDSetPinsDigitalOut(0xFFFF);
	mPORTESetPinsDigitalOut(0xFF3F);
	mPORTFSetPinsDigitalOut(0xFFFF);
	mPORTGSetPinsDigitalOut(0xFFFF);

	mPORTAClearBits(0xFFFF);
	mPORTBClearBits(0xFFFF);
	mPORTCClearBits(0xFFFF);
	mPORTDClearBits(0xFFFF);
	mPORTEClearBits(0xFF3F);
	mPORTESetBits(0x000F);		// LED latches need to be set high for off
	mPORTFClearBits(0xFFFF);
	mPORTGClearBits(0xFFFF);

	INTEnableSystemMultiVectoredInt();

  #ifdef SANITY_CHECK
  mLED_Green_On();
  #endif
	
	//LCD_Initialize();
	//WIFI_Initialize();
	//SPRINKLER_Initialize();
	//RTCC_Initialize(); 
  //SERIALUSB_Initialize();
	SDCARD_Initialize();

  TCPIP_Initialize();
}
int main(void)
{
	unsigned int temp;

	// Configure the device for maximum performance but do not change the PBDIV
	// Given the options, this function will change the flash wait states, RAM
	// wait state and enable prefetch cache but will not change the PBDIV.
	// The PBDIV value is already set via the pragma FPBDIV option above..
	SYSTEMConfig(GetSystemClock(), SYS_CFG_WAIT_STATES | SYS_CFG_PCACHE);

/*PORT CONFIGURATION for UART*/
	// Blinky LED for Uart activity
	//mPORTAClearBits(BIT_7);
	//mPORTASetPinsDigitalOut(BIT_7);

// PINS used for the buttons
    PORTSetPinsDigitalIn(IOPORT_B, BIT_2 | BIT_3 | BIT_4);
	#define CONFIG          (CN_ON | CN_IDLE_CON)
	#define INTERRUPT       (CHANGE_INT_ON | CHANGE_INT_PRI_2)
	mCNOpen(CONFIG, CN4_ENABLE | CN5_ENABLE | CN6_ENABLE,
			CN4_PULLUP_ENABLE | CN5_PULLUP_ENABLE | CN6_PULLUP_ENABLE);
	temp = mPORTBRead();

//Analog input
	CloseADC10();
	#define PARAM1 ADC_MODULE_ON | ADC_FORMAT_INTG32 | ADC_CLK_AUTO | ADC_AUTO_SAMPLING_ON
	#define PARAM2 ADC_VREF_AVDD_AVSS | ADC_SCAN_ON | ADC_SAMPLES_PER_INT_2 | ADC_BUF_16 | ADC_ALT_INPUT_OFF
	#define PARAM3 ADC_CONV_CLK_INTERNAL_RC | ADC_SAMPLE_TIME_5
	#define PARAM4	ENABLE_AN0_ANA | ENABLE_AN1_ANA
	#define PARAM5	SKIP_SCAN_AN2 | SKIP_SCAN_AN3 | SKIP_SCAN_AN4 | SKIP_SCAN_AN5 | SKIP_SCAN_AN6 | SKIP_SCAN_AN7 | SKIP_SCAN_AN8 | SKIP_SCAN_AN9 | SKIP_SCAN_AN10 | SKIP_SCAN_AN11 | SKIP_SCAN_AN12 | SKIP_SCAN_AN13 | SKIP_SCAN_AN14 | SKIP_SCAN_AN15
	SetChanADC10( ADC_CH0_NEG_SAMPLEA_NVREF | ADC_CH0_POS_SAMPLEA_AN0);
	OpenADC10( PARAM1, PARAM2, PARAM3, PARAM4, PARAM5 );
	EnableADC10();

//PORT D for motors
	mPORTDClearBits(BIT_0 | BIT_1 | BIT_2 | BIT_3 |
					BIT_4 | BIT_5 | BIT_6 | BIT_7 |
					BIT_8 | BIT_9 | BIT_10 | BIT_11 |
					BIT_12 | BIT_13 | BIT_14 | BIT_15); 		// Turn off PORTD on startup.
	mPORTDSetPinsDigitalOut(BIT_0 | BIT_1 | BIT_2 | BIT_3 |
					BIT_4 | BIT_5 | BIT_6 | BIT_7 |
					BIT_8 | BIT_9 | BIT_10 | BIT_11 |
					BIT_12 | BIT_13 | BIT_14 | BIT_15);	// Make PORTD output.


	// Explorer-16 uses UART2 to connect to the PC.
	// This initialization assumes 36MHz Fpb clock. If it changes,
	// you will have to modify baud rate initializer.
    UARTConfigure(UART2, UART_ENABLE_PINS_TX_RX_ONLY);
    UARTSetFifoMode(UART2, UART_INTERRUPT_ON_TX_NOT_FULL | UART_INTERRUPT_ON_RX_NOT_EMPTY);
    UARTSetLineControl(UART2, UART_DATA_SIZE_8_BITS | UART_PARITY_NONE | UART_STOP_BITS_1);
    UARTSetDataRate(UART2, GetPeripheralClock(), DESIRED_BAUDRATE);
    UARTEnable(UART2, UART_ENABLE_FLAGS(UART_PERIPHERAL | UART_RX | UART_TX));

	// Configure UART2 RX Interrupt
	INTEnable(INT_SOURCE_UART_RX(UART2), INT_ENABLED);
    INTSetVectorPriority(INT_VECTOR_UART(UART2), INT_PRIORITY_LEVEL_2);
    INTSetVectorSubPriority(INT_VECTOR_UART(UART2), INT_SUB_PRIORITY_LEVEL_0);


	// Congifure Change/Notice Interrupt Flag
	ConfigIntCN(INTERRUPT);

    // configure for multi-vectored mode
    INTConfigureSystem(INT_SYSTEM_CONFIG_MULT_VECTOR);

    // enable interrupts
    INTEnableInterrupts();


	WriteString("*** UART Interrupt-driven Example ***\r\n");

	unsigned int channel1, channel2;
	unsigned int motor1Time, motor2Time;
	// Let interrupt handler do the work
	while (1) {
		
		while ( ! mAD1GetIntFlag() );

		channel1 = ReadADC10(0);
		channel2 = ReadADC10(1);
		motor1Time = (channel1*(60000)/(1023) + 80000);
		motor2Time = (channel2*(60000)/(1023) + 80000);
		//maximo valor de motorTime = 140000

		//use motor time for stepping delay		
		if (MotorsON) {
			if (M1forward) {
				adelante(1, motor1Time, 1);
			} else {
				atras(1, motor1Time, 1);
			}

			if (M2forward) {
				adelante(1, motor2Time, 3);
			} else {
				atras(1, motor2Time, 3);
			}

		}
	
			mAD1ClearIntFlag();
		}
			
		return 0;
}
int main(void)
{
//LOCALS
	unsigned int temp;
	unsigned int channel1, channel2;
	M1_stepPeriod = M2_stepPeriod = M3_stepPeriod = M4_stepPeriod = 50; // in tens of u-seconds
	unsigned char M1_state = 0, M2_state = 0, M3_state = 0, M4_state = 0;

	SYSTEMConfig(GetSystemClock(), SYS_CFG_WAIT_STATES | SYS_CFG_PCACHE);

/* TIMER1 - now configured to interrupt at 10 khz (every 100us) */
	OpenTimer1(T1_ON | T1_SOURCE_INT | T1_PS_1_1, T1_TICK);
	ConfigIntTimer1(T1_INT_ON | T1_INT_PRIOR_2);
/* TIMER2 - 100 khz interrupt for distance measure*/
	OpenTimer2(T2_ON | T2_SOURCE_INT | T2_PS_1_1, T2_TICK);
	ConfigIntTimer2(T2_INT_ON | T2_INT_PRIOR_3); //It is off until trigger

/* PORTA b2 and b3 for servo-PWM */
	mPORTAClearBits(BIT_2 | BIT_3);
	mPORTASetPinsDigitalOut(BIT_2 | BIT_3);

/* ULTRASONICS: some bits of PORTB for ultrasonic sensors */
	PORTResetPins(IOPORT_B, BIT_8 | BIT_9| BIT_10 | BIT_11 );	
	PORTSetPinsDigitalOut(IOPORT_B, BIT_8 | BIT_9| BIT_10 | BIT_11); //trigger
/* Input Capture pins for echo signals */
	//interrupt on every risging/falling edge starting with a rising edge
	PORTSetPinsDigitalIn(IOPORT_D, BIT_8| BIT_9| BIT_10| BIT_11); //INC1, INC2, INC3, INC4 Pin
	mIC1ClearIntFlag();
	OpenCapture1(  IC_EVERY_EDGE | IC_INT_1CAPTURE | IC_TIMER2_SRC | IC_ON );//front
	ConfigIntCapture1(IC_INT_ON | IC_INT_PRIOR_4 | IC_INT_SUB_PRIOR_3);
	OpenCapture2(  IC_EVERY_EDGE | IC_INT_1CAPTURE | IC_TIMER2_SRC | IC_ON );//back
	ConfigIntCapture2(IC_INT_ON | IC_INT_PRIOR_4 | IC_INT_SUB_PRIOR_3);
	OpenCapture3(  IC_EVERY_EDGE | IC_INT_1CAPTURE | IC_TIMER2_SRC | IC_ON );//left
	ConfigIntCapture3(IC_INT_ON | IC_INT_PRIOR_4 | IC_INT_SUB_PRIOR_3);
	OpenCapture4(  IC_EVERY_EDGE | IC_INT_1CAPTURE | IC_TIMER2_SRC | IC_ON );//right
	ConfigIntCapture4(IC_INT_ON | IC_INT_PRIOR_4 | IC_INT_SUB_PRIOR_3);

/* PINS used for the START (RD13) BUTTON */
    PORTSetPinsDigitalIn(IOPORT_D, BIT_13);
	#define CONFIG          (CN_ON | CN_IDLE_CON)
	#define INTERRUPT       (CHANGE_INT_ON | CHANGE_INT_PRI_2)
	mCNOpen(CONFIG, CN19_ENABLE, CN19_PULLUP_ENABLE);
	temp = mPORTDRead();

/* PORT D and E for motors */
	//motor 1
	mPORTDSetBits(BIT_4 | BIT_5 | BIT_6 | BIT_7); 		// Turn on PORTD on startup.
	mPORTDSetPinsDigitalOut(BIT_4 | BIT_5 | BIT_6 | BIT_7);	// Make PORTD output.
	//motor 2
	mPORTCSetBits(BIT_1 | BIT_2 | BIT_3 | BIT_4); 		// Turn on PORTC on startup.
	mPORTCSetPinsDigitalOut(BIT_1 | BIT_2 | BIT_3 | BIT_4);	// Make PORTC output.
	//motor 3 and 4
	mPORTESetBits(BIT_0 | BIT_1 | BIT_2 | BIT_3 |
					BIT_4 | BIT_5 | BIT_6 | BIT_7); 		// Turn on PORTE on startup.
	mPORTESetPinsDigitalOut(BIT_0 | BIT_1 | BIT_2 | BIT_3 |
					BIT_4 | BIT_5 | BIT_6 | BIT_7);	// Make PORTE output.

// UART2 to connect to the PC.
	// This initialization assumes 36MHz Fpb clock. If it changes,
	// you will have to modify baud rate initializer.
    UARTConfigure(UART2, UART_ENABLE_PINS_TX_RX_ONLY);
    UARTSetFifoMode(UART2, UART_INTERRUPT_ON_TX_NOT_FULL | UART_INTERRUPT_ON_RX_NOT_EMPTY);
    UARTSetLineControl(UART2, UART_DATA_SIZE_8_BITS | UART_PARITY_NONE | UART_STOP_BITS_1);
    UARTSetDataRate(UART2, GetPeripheralClock(), BAUD);
    UARTEnable(UART2, UART_ENABLE_FLAGS(UART_PERIPHERAL | UART_RX | UART_TX));
	// Configure UART2 RX Interrupt
	INTEnable(INT_SOURCE_UART_RX(UART2), INT_ENABLED);
    INTSetVectorPriority(INT_VECTOR_UART(UART2), INT_PRIORITY_LEVEL_2);
    INTSetVectorSubPriority(INT_VECTOR_UART(UART2), INT_SUB_PRIORITY_LEVEL_0);


/* PORTD for LEDs - DEBUGGING */
	mPORTDClearBits(BIT_0 | BIT_1 | BIT_2);
	mPORTDSetPinsDigitalOut(BIT_0 | BIT_1 | BIT_2);

	

// Congifure Change/Notice Interrupt Flag
	ConfigIntCN(INTERRUPT);
// configure for multi-vectored mode
    INTConfigureSystem(INT_SYSTEM_CONFIG_MULT_VECTOR);
// enable interrupts
    INTEnableInterrupts();


	counterDistanceMeasure=600; //measure ULTRASONICS distance each 60 ms

	while (1) {
	
/***************** Robot MAIN state machine *****************/
		unsigned char ret = 0;
		switch (Robo_State) {
			case 0:
				MotorsON = 0;
				Robo_State = 0;

				InvInitialOrientation(RESET);
				TestDog(RESET);
				GoToRoom4short(RESET);
				BackToStart(RESET);
				InitialOrientation(RESET);
				GoToCenter(RESET);
				GoToRoom4long(RESET);
				break;
			case 1:
				ret = InvInitialOrientation(GO);
				if (ret == 1) {
					Robo_State = 2;
				}
				break;
			case 2:
				ret = TestDog(GO);
				if (ret == 1) {
					Robo_State = 3;		//DOG not found
				} else if (ret == 2) {
					Robo_State = 4;		//DOG found
				}
				break;
			case 3:
				ret = GoToRoom4short(GO);
				if (ret == 1) {
					Robo_State = 0;
				}
				break;
			case 4:
				ret = BackToStart(GO);
				if (ret == 1) {
					Robo_State = 5;
				}
				break;
			case 5:
				ret = GoToCenter(GO);
				if (ret == 1) {
					Robo_State = 6;
				}
				break;
			case 6:
				ret = GoToRoom4long(GO);
				if (ret == 1) {
					Robo_State = 0;
				}
				break;
		}

		if (frontDistance < 30 || backDistance < 30 || leftDistance < 30 || rightDistance < 30)
			mPORTDSetBits(BIT_0);
		else 
			mPORTDClearBits(BIT_0);
/***************************************************************/


/***************** Motors State Machine ************************/

		if (MotorsON) {
			/****************************
			MOTOR MAP
				M1 O-------------O M2   ON EVEN MOTORS, STEPS MUST BE INVERTED
					|	 /\		|			i.e. FORWARD IS BACKWARD
					|	/  \	|
					|	 || 	|
					|	 ||		|
				M3 O-------------O M4
			*****************************/
			if (M1_counter == 0) {
				switch (M1_state) {
					case 0: // set 0011
						step (0x3 , 1);
						if (M1forward)
							M1_state = 1;
						else
							M1_state = 3;
						break;
					case 1: // set 1001
						step (0x9 , 1);
						if (M1forward)
							M1_state = 2;
						else
							M1_state = 0;
						break;
					case 2: // set 1100
						step (0xC , 1);
						if (M1forward)
							M1_state = 3;
						else
							M1_state = 1;
						break;
					case 3: // set 0110
					default:
						step (0x6 , 1);
						if (M1forward)
							M1_state = 0;
						else
							M1_state = 2;
						break;	
				}
				M1_counter = M1_stepPeriod;
				step_counter[0]--;
				if (directionNow == countingDirection)
					step_counter[1]--;
			}
			
			if (M2_counter == 0) {
				switch (M2_state) {
					case 0: // set 0011
						step (0x3 , 2);
						if (M2forward)
							M2_state = 1;
						else
							M2_state = 3;
						break;
					case 1: // set 0110
						step (0x6 , 2);
						if (M2forward)
							M2_state = 2;
						else
							M2_state = 0;
						break;
					case 2: // set 1100
						step (0xC , 2);
						if (M2forward)
							M2_state = 3;
						else
							M2_state = 1;
						break;
					case 3: // set 1001
					default:
						step (0x9 , 2);
						if (M2forward)
							M2_state = 0;
						else
							M2_state = 2;
						break;	
				}
				M2_counter = M2_stepPeriod;
			}

			if (M3_counter == 0) {
				switch (M3_state) {
					case 0: // set 0011
						step (0x3 , 3);
						if (M3forward)
							M3_state = 1;
						else
							M3_state = 3;
						break;
					case 1: // set 1001
						step (0x9 , 3);
						if (M3forward)
							M3_state = 2;
						else
							M3_state = 0;
						break;
					case 2: // set 1100
						step (0xC , 3);
						if (M3forward)
							M3_state = 3;
						else
							M3_state = 1;
						break;
					case 3: // set 0110
					default:
						step (0x6 , 3);
						if (M3forward)
							M3_state = 0;
						else
							M3_state = 2;
						break;	
				}
				M3_counter = M3_stepPeriod;
			}
			
			if (M4_counter == 0) {
				switch (M4_state) {
					case 0: // set 0011
						step (0x3 , 4);
						if (M4forward)
							M4_state = 1;
						else
							M4_state = 3;
						break;
					case 1: // set 0110
						step (0x6 , 4);
						if (M4forward)
							M4_state = 2;
						else
							M4_state = 0;
						break;
					case 2: // set 1100
						step (0xC , 4);
						if (M4forward)
							M4_state = 3;
						else
							M4_state = 1;
						break;
					case 3: // set 1001
					default:
						step (0x9 , 4);
						if (M4forward)
							M4_state = 0;
						else
							M4_state = 2;
						break;	
				}
				M4_counter = M4_stepPeriod;
			}
		} else {
			//motors off
			mPORTDSetBits(BIT_4 | BIT_5 | BIT_6 | BIT_7);
			mPORTCSetBits(BIT_1 | BIT_2 | BIT_3 | BIT_4);
			mPORTESetBits(BIT_0 | BIT_1 | BIT_2 | BIT_3 |
					BIT_4 | BIT_5 | BIT_6 | BIT_7);
		}
/************************************************************/
		

/******* TEST CODE, toggles the servos (from 90 deg. to -90 deg.) every 1 s. ********/
/*		if (auxcounter == 0) {
			
			servo1_angle = 0;

			if (servo2_angle == 90)
				servo2_angle = -90;
			else
				servo2_angle = 90;

			auxcounter = 20000;		// toggle angle every 2 s.
		}
*/

		servo1_angle = 0;
		servo2_angle = -90;
	/*
		if (frontDistance > 13 && frontDistance < 17) {
			servo2_angle = 90;
		}
		else
			servo2_angle = -90;
	*/
/*******************************************************************/


/****************** SERVO CONTROL ******************/
		/*
			Changing the global servoX_angle at any point in the code will 
			move the servo to the desired angle.
		*/
		servo1_counter = (servo1_angle + 90)*(18)/180 + 6; // between 600 and 2400 us
		if (servo1_period == 0) {
			mPORTASetBits(BIT_2);
			servo1_period = SERVOMAXPERIOD; 		/* 200 * 100us = 20000us period  */
		}

		servo2_counter = (servo2_angle + 90)*(18)/180 + 6; // between 600 and 2400 us
		if (servo2_period == 0) {
			mPORTASetBits(BIT_3);
			servo2_period = SERVOMAXPERIOD; 		/* 200 * 100us = 20000us period  */
		}
/*****************************************************/
	
	} /* end of while(1)  */
		
	return 0;
}
Esempio n. 13
0
/****************************************************************************
  Function:
    static void InitializeBoard(void)

  Description:
    This routine initializes the hardware.  It is a generic initialization
    routine for many of the Microchip development boards, using definitions
    in HardwareProfile.h to determine specific initialization.

  Precondition:
    None

  Parameters:
    None - None

  Returns:
    None

  Remarks:
    None
 ***************************************************************************/
static void InitializeBoard(void) {
    // WiFi Module hardware Initialization handled by Library

    // Enable multi-vectored interrupts
    INTEnableSystemMultiVectoredInt();

    // Enable optimal performance
    SYSTEMConfigPerformance(GetSystemClock());
    mOSCSetPBDIV(OSC_PB_DIV_1); // Use 1:1 CPU Core:Peripheral clocks

    // Disable JTAG port so we get our I/O pins back, but first
    // wait 50ms so if you want to reprogram the part with
    // JTAG, you'll still have a tiny window before JTAG goes away.
    // The PIC32 Starter Kit debuggers use JTAG and therefore must not
    // disable JTAG.
    DelayMs(50);
    DDPCONbits.JTAGEN = 0;

    // LEDs
    LEDS_OFF();
    mPORTESetPinsDigitalOut(BIT_5 | BIT_6 | BIT_7);

    // Switches
    mPORTDSetPinsDigitalIn(BIT_4 | BIT_5 | BIT_6);
    ConfigCNPullups(CN13_PULLUP_ENABLE | CN14_PULLUP_ENABLE | CN15_PULLUP_ENABLE);

    // LCD
    mPORTESetPinsDigitalOut(BIT_0 | BIT_1 | BIT_2 | BIT_3);
    //Configure LCD SPI pins
    mPORTFSetPinsDigitalOut(BIT_8);
    mPORTDSetPinsDigitalOut(BIT_15);

    //SPI Flash
    mPORTDSetPinsDigitalOut(BIT_14);


    //UART
    mPORTFSetPinsDigitalOut(BIT_5);
    mPORTFSetPinsDigitalIn(BIT_4);

    //MiWi
#if defined(MRF24J40) || defined(MRF49XA)
    PHY_CS = 1;
    mPORTDSetPinsDigitalOut(BIT_9);

    PHY_RESETn = 1;
    mPORTDSetPinsDigitalOut(BIT_11);
#endif

#if defined(MRF49XA)
    nFSEL_TRIS = 0;
    FINT_TRIS = 1;

    nFSEL = 1;
#elif defined(MRF24J40)
    PHY_WAKE = 1;
    mPORTBSetPinsDigitalOut(BIT_9);
#else
    Data_nCS_TRIS = 0;
    Config_nCS_TRIS = 0;
    Data_nCS = 1;
    Config_nCS = 1;
    IRQ1_INT_TRIS = 1;
    IRQ0_INT_TRIS = 1;

#endif

    /* Set the Port Directions of SDO, SDI, Clock & Slave Select Signal */
    /* Set SCK port pin to output */
    mPORTDSetPinsDigitalOut(BIT_10);
    /* Set SDO port pin to output */
    mPORTDSetPinsDigitalOut(BIT_0);
    /* Set SDI port pin to input */
    mPORTCSetPinsDigitalIn(BIT_4);
    /* Set INT1, INT2 port pins to input */
    mPORTESetPinsDigitalIn(BIT_8 | BIT_9);

    /* Clear SPI1CON register */
    SPI1CONCLR = 0xFFFFFFFF;

#ifdef HARDWARE_SPI
    unsigned int pbFreq;

    /* Enable SPI1, Set to Master Mode & Set CKE bit : Serial output data changes on transition
      from active clock state to Idle clock state */
    SPI1CON = 0x00008120;
    /* Peripheral Bus Frequency = System Clock / PB Divider */
    pbFreq = (DWORD) CLOCK_FREQ / (1 << mOSCGetPBDIV());

    /* PB Frequency can be maximum 40 MHz */
    if (pbFreq > (2 * MAX_SPI_CLK_FREQ_FOR_P2P)) {
        {
            unsigned int SPI_Clk_Freq;

            unsigned char SPI_Brg1 = 1;

            //For the SPI1
            /* Continue the loop till you find SPI Baud Rate Register Value */
            while (1) {
                /* SPI Clock Calculation as per PIC32 Manual */
                SPI_Clk_Freq = pbFreq / (2 * (SPI_Brg1 + 1));

                if (SPI_Clk_Freq <= MAX_SPI_CLK_FREQ_FOR_P2P) {
                    break;
                }

                SPI_Brg1++;
            }



            mSpiChnSetBrg(1, SPI_Brg1);

        }
    } else {
        /* Set SPI1 Baud Rate */
        mSpiChnSetBrg(1, 0);

    }

#endif

    /* Set the Interrupt Priority */
    mINT2SetIntPriority(4);

#if defined(MRF89XA)
    mINT1SetIntPriority(4);
#endif

    /* Set Interrupt Subpriority Bits for INT2 */
    mINT2SetIntSubPriority(2);

#if defined(MRF89XA)
    mINT2SetIntSubPriority(1);
#endif

    /* Set INT2 to falling edge */
    mINT2SetEdgeMode(0);

#if defined(MRF89XA)
    mINT1SetEdgeMode(1);
    mINT2SetEdgeMode(1);
#endif

    /* Enable INT2 */
    mINT2IntEnable(1);

#if defined(MRF89XA)
    mINT2IntEnable(1);
#endif

    /* Enable Multi Vectored Interrupts */
    //    INTEnableSystemMultiVectoredInt();

#if defined(MRF89XA)
    PHY_IRQ1 = 0;
    PHY_IRQ0 = 0;
    PHY_RESETn_TRIS = 1;
#else
    RFIF = 0;
    if (RF_INT_PIN == 0) {
        RFIF = 1;
    }
#endif

    // Initialize the EEPROM
    XEEInit();

    // UART Initialization
#if defined(STACK_USE_UART)
    UARTTX_TRIS = 0;
    UARTRX_TRIS = 1;
    UMODE = 0x8000; // Set UARTEN.  Note: this must be done before setting UTXEN
    USTA = 0x00001400; // RXEN set, TXEN set
#define CLOSEST_UBRG_VALUE ((GetPeripheralClock()+8ul*BAUD_RATE)/16/BAUD_RATE-1)
#define BAUD_ACTUAL (GetPeripheralClock()/16/(CLOSEST_UBRG_VALUE+1))

#define BAUD_ERROR ((BAUD_ACTUAL > BAUD_RATE) ? BAUD_ACTUAL-BAUD_RATE : BAUD_RATE-BAUD_ACTUAL)
#define BAUD_ERROR_PRECENT	((BAUD_ERROR*100+BAUD_RATE/2)/BAUD_RATE)
#if (BAUD_ERROR_PRECENT > 3)
#warning UART frequency error is worse than 3%
#elif (BAUD_ERROR_PRECENT > 2)
#warning UART frequency error is worse than 2%
#endif

    UBRG = CLOSEST_UBRG_VALUE;
#endif


}
//********************************
//********************************
//********** INITIALISE **********
//********************************
//********************************
void initialise (void)
{
	BYTE data;
	
	//##### GENERAL NOTE ABOUT PIC32'S #####
	//Try and use the peripheral libraries instead of special function registers for everything (literally everything!) to avoid
	//bugs that can be caused by the pipeline and interrupts.
	

	//---------------------------------
	//----- CONFIGURE PERFORMANCE -----
	//---------------------------------
	
	//----- SETUP EVERYTHING FOR OPTIMUM PERFORMANCE -----
	SYSTEMConfigPerformance(80000000ul);		//Note this sets peripheral bus to '1' max speed (regardless of configuration bit setting)
												//Use PBCLK divider of 1:1 to calculate UART baud, timer tick etc


	//----- SET PERIPHERAL BUS DIVISOR -----
	//To minimize dynamic power the PB divisor should be chosen to run the peripherals at the lowest frequency that provides acceptable system performance
	mOSCSetPBDIV(OSC_PB_DIV_2);			//OSC_PB_DIV_1, OSC_PB_DIV_2, OSC_PB_DIV_4, OSC_PB_DIV_8, 

	//----- SETUP INTERRUPTS -----
	INTEnableSystemMultiVectoredInt();

	//-------------------------
	//----- SETUP IO PINS -----
	//-------------------------
	//(Device will powerup with all IO pins as inputs)

	//----- TURN OFF THE JTAG PORT -----
	//(JTAG is on by default)
	//mJTAGPortEnable(0);		//Must be on for Microchip Multimedia Development board

	#define	PORTA_IO	0xc2ff				//Setup the IO pin type (0 = output, 1 = input)
	mPORTAWrite(0xc033);					//Set initial ouput pin states
	mPORTASetPinsDigitalIn(PORTA_IO);		//(Sets high bits as input)
	mPORTASetPinsDigitalOut(~PORTA_IO);		//(Sets high bits as output)
	
	#define	PORTB_IO	0xfbff				//Setup the IO pin type (0 = output, 1 = input)
	mPORTBWrite(0x6d13);					//Set initial ouput pin states
	mPORTBSetPinsDigitalIn(PORTB_IO);		//(Sets high bits as input)
	mPORTBSetPinsDigitalOut(~PORTB_IO);		//(Sets high bits as output)

	mPORTBSetPinsDigitalIn(BIT_0 | BIT_1 | BIT_3 | BIT_4 | BIT_15);			//Joystick inputs

	#define	PORTC_IO	0xf01e				//Setup the IO pin type (0 = output, 1 = input)
	mPORTCWrite(0x3018);					//Set initial ouput pin states
	mPORTCSetPinsDigitalIn(PORTC_IO);		//(Sets high bits as input)
	mPORTCSetPinsDigitalOut(~PORTC_IO);		//(Sets high bits as output)

	#define	PORTD_IO	0x7bfe				//Setup the IO pin type (0 = output, 1 = input)
	mPORTDWrite(0xbdaf);					//Set initial ouput pin states
	mPORTDSetPinsDigitalIn(PORTD_IO);		//(Sets high bits as input)
	mPORTDSetPinsDigitalOut(~PORTD_IO);		//(Sets high bits as output)

	mPORTDSetPinsDigitalOut(BIT_2 | BIT_1);		//LED's 2 and 3
	mPORTDSetPinsDigitalIn(BIT_9);

	#define	PORTE_IO	0x03ff				//Setup the IO pin type (0 = output, 1 = input)
	mPORTEWrite(0x02a2);					//Set initial ouput pin states
	mPORTESetPinsDigitalIn(PORTE_IO);		//(Sets high bits as input)
	mPORTESetPinsDigitalOut(~PORTE_IO);		//(Sets high bits as output)

	#define	PORTF_IO	0x111f				//Setup the IO pin type (0 = output, 1 = input)
	mPORTFWrite(0x0039);					//Set initial ouput pin states
	mPORTFSetPinsDigitalIn(PORTF_IO);		//(Sets high bits as input)
	mPORTFSetPinsDigitalOut(~PORTF_IO);		//(Sets high bits as output)

	#define	PORTG_IO	0xd3cf				//Setup the IO pin type (0 = output, 1 = input)
	mPORTGWrite(0xf203);					//Set initial ouput pin states
	mPORTGSetPinsDigitalIn(PORTG_IO);		//(Sets high bits as input)
	mPORTGSetPinsDigitalOut(~PORTG_IO);		//(Sets high bits as output)



	//Read pins using:
	// mPORTAReadBits(BIT_0);
	//Write pins using:
	// mPORTAClearBits(BIT_0);
	// mPORTASetBits(BIT_0);
	// mPORTAToggleBits(BIT_0);



	//----- INPUT CHANGE NOTIFICATION CONFIGURATION -----
	//EnableCN0();
	ConfigCNPullups(CN2_PULLUP_ENABLE | CN3_PULLUP_ENABLE | CN5_PULLUP_ENABLE | CN6_PULLUP_ENABLE | CN12_PULLUP_ENABLE);		//Joystick pins



	//----- SETUP THE A TO D PINS -----
	ENABLE_ALL_DIG;


	//---------------------
	//----- SETUP USB -----
	//---------------------
	//The USB specifications require that USB peripheral devices must never source current onto the Vbus pin.  Additionally, USB peripherals should not source
	//current on D+ or D- when the host/hub is not actively powering the Vbus line.  When designing a self powered (as opposed to bus powered) USB peripheral
	//device, the firmware should make sure not to turn on the USB module and D+ or D- pull up resistor unless Vbus is actively powered.  Therefore, the
	//firmware needs some means to detect when Vbus is being powered by the host. A 5V tolerant I/O pin can be connected to Vbus (through a resistor), and
	//can be used to detect when Vbus is high (host actively powering), or low (host is shut down or otherwise not supplying power).  The USB firmware
	//can then periodically poll this I/O pin to know when it is okay to turn on the USB module/D+/D- pull up resistor.  When designing a purely bus powered
	//peripheral device, it is not possible to source current on D+ or D- when the host is not actively providing power on Vbus. Therefore, implementing this
	//bus sense feature is optional.  This firmware can be made to use this bus sense feature by making sure "USE_USB_BUS_SENSE_IO" has been defined in the
	//HardwareProfile.h file.    
    //	#if defined(USE_USB_BUS_SENSE_IO)
    //	tris_usb_bus_sense = INPUT_PIN; // See HardwareProfile.h
    //	#endif
    
	//If the host PC sends a GetStatus (device) request, the firmware must respond	and let the host know if the USB peripheral device is currently bus powered
	//or self powered.  See chapter 9 in the official USB specifications for details regarding this request.  If the peripheral device is capable of being both
	//self and bus powered, it should not return a hard coded value for this request.  Instead, firmware should check if it is currently self or bus powered, and
	//respond accordingly.  If the hardware has been configured like demonstrated on the PICDEM FS USB Demo Board, an I/O pin can be polled to determine the
	//currently selected power source.  On the PICDEM FS USB Demo Board, "RA2" is used for	this purpose.  If using this feature, make sure "USE_SELF_POWER_SENSE_IO"
	//has been defined in HardwareProfile.h, and that an appropriate I/O pin has been mapped to it in HardwareProfile.h.
    //	#if defined(USE_SELF_POWER_SENSE_IO)
    //	tris_self_power = INPUT_PIN;	// See HardwareProfile.h
    //	#endif
    
    
    //Enable the USB port now - we will check to see if Vbus is  powered at the end of init and disable it if not.
    //USBDeviceInit();	//usb_device.c.  Initializes USB module SFRs and firmware variables to known states.

	

	//------------------------
	//----- SETUP TIMERS -----
	//------------------------
	//(INCLUDE THE USAGE OF ALL TIMERS HERE EVEN IF NOT SETUP HERE SO THIS IS THE ONE POINT OF
	//REFERENCE TO KNOW WHICH TIMERS ARE IN USE AND FOR WHAT).

	//----- SETUP TIMER 1 -----
	//Used for: Available
	//OpenTimer1((T1_ON | T1_IDLE_CON | T1_GATE_OFF | T1_PS_1_4 | T1_SOURCE_INT), 20000);

	//----- SETUP TIMER 2 -----
	//Used for: 
	//OpenTimer2((T2_ON | T2_IDLE_CON | T2_GATE_OFF | T2_PS_1_1 | T2_SOURCE_INT), 0xffff);		//0xffff = 305Hz

	//----- SETUP TIMER 3 -----
	//Used for: 
	//OpenTimer3((T3_ON | T3_IDLE_CON | T3_GATE_OFF | T3_PS_1_1 | T3_SOURCE_INT), PIEZO_TIMER_PERIOD);

	//----- SETUP TIMER 4 -----
	//Used for: 
	//OpenTimer4((T4_ON | T4_IDLE_CON | T4_GATE_OFF | T4_PS_1_1 | T4_SOURCE_INT), 20000);

	//----- SETUP TIMER 5 -----
	//Used for: Heartbeat
	OpenTimer5((T5_ON | T5_IDLE_CON | T5_GATE_OFF | T5_PS_1_1 | T5_SOURCE_INT), 40000);		//1mS with 80MHz osc and PB_DIV_2
	ConfigIntTimer5(T5_INT_ON | T5_INT_PRIOR_7);											//1=lowest priority to 7=highest priority.  ISR function must specify same value



	//---------------------------------
	//----- SETUP EVAL BOARD CPLD -----
	//---------------------------------
	//Graphics bus width = 16
	mPORTGSetPinsDigitalOut(BIT_14);
	mPORTGSetBits(BIT_14);

	//SPI source select = SPI3 (not used)
	mPORTGSetPinsDigitalOut(BIT_12);
	mPORTGClearBits(BIT_12);
	
	//SPI peripheral destination select = Expansion Slot (not used)
	mPORTASetPinsDigitalOut(BIT_7 | BIT_6);
	mPORTASetBits(BIT_7);
	mPORTAClearBits(BIT_6);


	//--------------------------------------
    //----- PARALLEL MASTER PORT SETUP -----
	//--------------------------------------
    PMMODE = 0;
    PMAEN = 0;
    PMCON = 0;
    PMMODE = 0x0610;
    PMCONbits.PTRDEN = 1;                   //Enable RD line
    PMCONbits.PTWREN = 1;                   //Enable WR line
    PMCONbits.PMPEN = 1;                    //Enable PMP


	//------------------------------
	//----- INITIALISE DISPLAY -----
	//------------------------------
	display_initialise();


	display_test();

	//LOAD OUR GLOBAL HTML STYLES FILE READY FOR DISPLAY HTML PAGES
	BYTE dummy_styles_count;
	DWORD file_size;
	if (display_html_setup_read_file(global_css, 0, &file_size))
	{
		dummy_styles_count = 0;
		display_html_read_styles(&file_size, &dummy_styles_count, 1);			//1 = this is global styles file
	}

}
Esempio n. 15
0
int main(void)
{
	DBINIT();
	DBPRINTF("MAIN.... \n");
   	unsigned int temp;
	int POWER;
	//bool RELAY;

    //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    //STEP 1. Configure cache, wait states and peripheral bus clock
	SYSTEMConfig(SYS_FREQ, SYS_CFG_WAIT_STATES | SYS_CFG_PCACHE);

    //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    // STEP 2. configure the port registers
    mPORTDSetPinsDigitalOut(BIT_0 | BIT_1 | BIT_2 | BIT_9);
	mPORTESetPinsDigitalOut(BIT_0 | BIT_1 | BIT_2);

    //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    // STEP 3. initialize the port pin states = outputs low
    mPORTDClearBits(BIT_0 | BIT_1 | BIT_2);

    //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    // STEP 4. enable change notice, enable discrete pins and weak pullups
    mCNOpen(CONFIG, PINS, PULLUPS);

    //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    // STEP 5. read port(s) to clear mismatch on change notice pins
    temp = mPORTDRead();

    //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    // STEP 6. clear change notice interrupt flag
    ConfigIntCN(INTERRUPT);

    //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    // STEP 7. enable multi-vector interrupts
    INTEnableSystemMultiVectoredInt();

	//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	// STEP 8. configure SPI port and MCP3909
	OpenSPI1(FRAME_ENABLE_ON | ENABLE_SDO_PIN | SPI_MODE32_ON | SPI_CKE_ON | SLAVE_ENABLE_OFF | CLK_POL_ACTIVE_LOW | MASTER_ENABLE_ON , SPI_ENABLE | SPI_FRZ_CONTINUE | SPI_IDLE_STOP | SPI_RX_OVFLOW_CLR);
	CONFIG_3909();

	DBPRINTF("CONFIGURED.... \n");


   while(1)
   {
		// Toggle LED's to signify code is looping
		mPORTDToggleBits(BIT_0);     // toggle LED1 (same as LATDINV = 0x0002)

		SAMPLE();

		POWER = MEASURE_POWER();

		DBPRINTF("power measured! \n");

		DelayMs(1000);

		/************************
		*ETHERNET COMMUNICATIONS*
		************************/

   };

}
Esempio n. 16
0
void Terminal(void)
{
    const char str1[] = {'k',0x00,'e',0x00,'y',0x00,'.',0x00,'b',0x00,'m',0x00,'p',0x00,'\0',0x00};
    const char str2[] = {'\\',0x00,'s',0x00,'y',0x00,'s',0x00,'\0',0x00};
    char KeyBuffer[31]={'Q','W','E','R','T','Y','U','I','O','P','A','S','D','F','G','H','J','K','L','Z','X','C','V','B','N','M',',',' ',' ',' ','.'};
    char SpecialKeyBuffer[31]={'1','2','3','4','5','6','7','8','9','0','!','@','#','$','%','&','*','?','/','Z','"',' ','(',')','-','+',';',' ',' ',' ',':'};
     
    const unsigned short int LetterPosX[4]={93,62,32,1};
    const unsigned short int SpecialCharPosY[6]={1,284,1,39,245,284};
     
    const unsigned short int LetterPosY[31]={1,33,65,97,129,161,193,225,257,289,
                                             17,49,81,113,145,177,209,241,273,
                                                49,81,113,145,177,209,241,
                                                   81,113,145,177,209};
    _Bool NumSp=0,UppLow=0,ReadCmd=0,ErrorSyntax=0,HighApp=0,LowApp=0,SyntaxError=0,ExitApp=0,InitRfApp=0,SendApp=0,StatusRfApp=0,ReadApp=0,SetTime=0,SetDate=0;
    char c[2]={'A',0x00};
    char TextBuffer[10],i=0,b=0,Parametri=0,StringBuffer[50],Nchar=0,Param3[10],Param2[10],Param1[10],Param4[10],Param5[10];
    unsigned short int clu=0, dat=0,DelCount=0,a=0x0000;

    TRFData rfData;

    char  Minuti[3]={0x30,0x30,0x00};///minuti
    char  Ore[3]={0x30,0x31,0x00};///Ore

    
    SSD1289_writeResgiter( 0x0049, 0x000A );///fine della finestra a 10 px
    LCD_CLS(AZZURRO);
    sprintf(TextBuffer,"Loading..");
    LCD_Text57(2,1,TextBuffer,1,BLACK,NONE);
    Xcursor=238;
    Ycursor=2;
    wFSchdir ((unsigned short int *)&str2[0]);
    DrawBmp(0,319,(unsigned short int * )&str1[0],0);

    SSD1289_writeResgiter( 0x0049, 0x013F );
    while(TRUE)
    {
        if(PORTDbits.RD14==0)
        {
            read();
            clu=getX();
            dat=getY();
            clu=(unsigned short int)((((float)6.01/(float)233.01)*(float)clu)+(float)clu);
            dat=(unsigned short int)((((float)10.01/(float)313.01)*(float)dat)+(float)dat);
            b=0;
            for(i=0; i<31; i++)
            {
                ///lettere
                if((LetterPosX[b]<=clu)&&(clu<=(LetterPosX[b]+29))&&((LetterPosY[i]<=dat)&&(dat<=(LetterPosY[i]+29))))//la Q
                {
                    ///se attivo caratteri speciali
                    if(NumSp) c[0]=SpecialKeyBuffer[i];
                    else c[0]=KeyBuffer[i];
                    if((UppLow==1)&&(NumSp==0))
                    {
                        switch(c[0])
                        {
                            case ',':
                                break;
                            case' ':
                                break;
                            case'.':
                                break;
                            default:
                                c[0]+=0x20;
                                break;
                        }
                    }
                     
                    LCD_FastRect(Xcursor-6,Ycursor,Xcursor,Ycursor+5,WHITE);
                    strcpy(TextBuffer,c);
                    StringBuffer[Nchar]=c[0];
                    LCD_Text57Land(Xcursor,Ycursor,TextBuffer,1,BLACK,NONE);
                    Nchar++;
                    //Ycursor+=6;
                    if(Ycursor>=319)
                    {
                        Ycursor=2;
                        Xcursor-=8;
                        Nchar=0;
                    }
                    DelayMs(50);
                }
                if(i==9) b++;
                if(i==18) b++;
                if(i==25) b++;
            }

            ///comandi speciali
            b=2;
            for(i=0; i<6; i++)
            {
                if((LetterPosX[b]<=clu)&&(clu<=(LetterPosX[b]+29))&&((SpecialCharPosY[i]<=dat)&&(dat<=(SpecialCharPosY[i]+34))))//la Q
                {
                    switch(i)
                    {
                        case 0:
                            ///da implementare Upper/lower letter
                            if(UppLow==0)
                            {
                                UppLow=1;
                                LCD_Cercle(53,29,3,1,GRAY);
                            }
                            else
                            {
                                UppLow=0;
                                LCD_Cercle(53,29,3,1,BLUE);
                            }
                            break;
                        case 1:
                            LCD_FastRect(Xcursor-6,Ycursor,Xcursor,Ycursor+5,AZZURRO);
                            Ycursor-=6;
                            Nchar--;
                            if(Ycursor>350) 
                            {
                                Ycursor=314;
                                Xcursor+=8;
                                Nchar=0;
                               if(Xcursor>241) Xcursor=238;
                            }
                            break;
                         case 2:
                            ///da implementare
                            break;
                         case 3:
                            ///da implementare
                            break;
                         case 4:
                            ///da implementare attiva/disattiva numeri+caratteri speciali
                             if(NumSp==0)
                             {
                                 NumSp=1;
                                 LCD_Cercle(22,274,3,1,BLUE);
                             }
                             else
                             {
                                 NumSp=0;
                                 LCD_Cercle(22,274,3,1,GRAY);
                             }
                             break;
                        case 5:
                            ///torna a capo riga (invio)
                            LCD_FastRect(Xcursor-6,Ycursor,Xcursor,Ycursor+5,AZZURRO);
                            NumSp=0;
                            LCD_Cercle(22,274,3,1,GRAY);
                            UppLow=0;
                            LCD_Cercle(53,29,3,1,BLUE);
                            
                            Ycursor=2;
                            Xcursor-=8;
                            if(Xcursor<=136)
                            {
                                LCD_FastRect(121,0,239,319,AZZURRO);
                                Xcursor=238;
                            }
                            ReadCmd=1;
                            StringBuffer[Nchar]=0x00;
                            Nchar=0;
                            break;
                    }
                    DelayMs(50);
                }
                if(i==1) b=3;
            }
        }


        ///Lampeggio cursore
        DelayMs(1);
        DelCount++;
        if(DelCount==200)
        {
            DelCount=0;
            if(a==0x00000) a=0xffff;
            else a=0x0000;
            LCD_FastRect(Xcursor-6,Ycursor,Xcursor,Ycursor+5,a);
         }

        ///Se premuto invio..
        if(ReadCmd==1)
        {
            ReadCmd=0;
            ErrorSyntax=0;
            Parametri=0;
            b=0;

            ///Ciclo per verificare la stringa passata
            ///carica in Param1, Param2, Param3, ogni parola separata da uno spazio
            for(i=0; i<20; i++)
            {
                if(StringBuffer[i]==0x20) {Parametri=1; Param1[i]=0x00; break;}
                if(StringBuffer[i]==0x00) {Parametri=1; Param1[i]=0x00; break;}
                Param1[i]=StringBuffer[i];
            }

            if(StringBuffer[i]!=0x00)
            {
                b=0;
                for(i<20; i++;)
                {
                    if(StringBuffer[i]==0x20) {Parametri=2; Param2[b]=0x00; break;}
                    if(StringBuffer[i]==0x00) {Parametri=2; Param2[b]=0x00; break;}
                    Param2[b]=StringBuffer[i];
                    b++;
                }
            }

            if(StringBuffer[i]!=0x00)
            {
                b=0;
                for(i<20; i++;)
                {
                    if(StringBuffer[i]==0x20) {Parametri=3; Param3[b]=0x00;   break;}
                    if(StringBuffer[i]==0x00) {Parametri=3; Param3[b]=0x00; break;}
                    Param3[b]=StringBuffer[i];
                    b++;
                }
            }

            if(StringBuffer[i]!=0x00)
            {
                b=0;
                for(i<20; i++;)
                {
                    if(StringBuffer[i]==0x20) {Parametri=4; Param4[b]=0x00;   break;}
                    if(StringBuffer[i]==0x00) {Parametri=4; Param4[b]=0x00; break;}
                    Param4[b]=StringBuffer[i];
                    b++;
                }
            }

            if(StringBuffer[i]!=0x00)
            {
                b=0;
                for(i<20; i++;)
                {
                    if(StringBuffer[i]==0x20) {Parametri=5; Param5[b]=0x00;   break;}
                    if(StringBuffer[i]==0x00) {Parametri=5; Param5[b]=0x00; break;}
                    Param5[b]=StringBuffer[i];
                    b++;
                }
            }
            ///Fine ciclo

            //Verifica le stringhe
            //da completare salta al programma...
            if(strcmp(Param1,"HIGH")==FALSE) HighApp=1;
            if(strcmp(Param1,"LOW")==FALSE) LowApp=1;
            if(strcmp(Param1,"EXIT")==FALSE) ExitApp=1;
            if(strcmp(Param1,"REBOOT")==FALSE) SoftReset();
            if(strcmp(Param1,"SEND")==FALSE) SendApp=1;
            if(strcmp(Param1,"INITRF")==FALSE) InitRfApp=1;
            if(strcmp(Param1,"STATUSRF")==FALSE) StatusRfApp=1;
            if(strcmp(Param1,"READRF")==FALSE) ReadApp=1;
            if(strcmp(Param1,"SETTIME")==FALSE) SetTime=1;
            if(strcmp(Param1,"SETDATE")==FALSE) SetDate=1;


            if((HighApp==0)&&(LowApp==0)&&(ExitApp==0)&&(SendApp==0)&&(InitRfApp==0)&&(StatusRfApp==0)&&(ReadApp==0)&&(SetTime==0)&&(SetDate==0)) SyntaxError=1;

            if(SetTime)
            {
                SetTime=0;
                Ore[0]=Param2[0];
                Ore[1]=Param2[1];
                Minuti[0]=Param3[0];
                Minuti[1]=Param3[1];
                
                if((Ore[0]>=0x32)&&(Ore[1]>=0x34))
                {
                    sprintf(StringBuffer,"Ore invalide!");
                    LCD_Text57Land(Xcursor,Ycursor,StringBuffer,1,RED,NONE);
                }
                else if(Minuti[0]>=0x36)
                {
                    sprintf(StringBuffer,"Minuti  invalidi!");
                    LCD_Text57Land(Xcursor,Ycursor,StringBuffer,1,RED,NONE);
                }
                else{
                    
                    lastTime.hour=atobcd(&Ore[0]);
                    lastTime.min=atobcd(&Minuti[0]);               
                    RtccSetTimeDate(lastTime.l, lastDate.l);
                    sprintf(StringBuffer,"Time updated!");
                    LCD_Text57Land(Xcursor,Ycursor,StringBuffer,1,BLACK,NONE);
                }
            }

            if(StatusRfApp)
            {
                StatusRfApp=0;
                StatusRead();
                sprintf(StringBuffer,"%02x ",TransceiverStatus.bits.RG_FF_IT);
                LCD_Text57Land(Xcursor,Ycursor,StringBuffer,1,BLACK,NONE);
                Ycursor+=16;
                sprintf(StringBuffer,"%02x ",TransceiverStatus.bits.POR);
                LCD_Text57Land(Xcursor,Ycursor,StringBuffer,1,BLACK,NONE);
                Ycursor+=16;
                sprintf(StringBuffer,"%02x ",TransceiverStatus.bits.RGUR_FFOV);
                LCD_Text57Land(Xcursor,Ycursor,StringBuffer,1,BLACK,NONE);
                Ycursor+=16;
                sprintf(StringBuffer,"%02x ",TransceiverStatus.bits.WKUP);
                LCD_Text57Land(Xcursor,Ycursor,StringBuffer,1,BLACK,NONE);
                Ycursor+=16;
                sprintf(StringBuffer,"%02x ",TransceiverStatus.bits.EXT);
                LCD_Text57Land(Xcursor,Ycursor,StringBuffer,1,BLACK,NONE);
                Ycursor+=16;
                sprintf(StringBuffer,"%02x ",TransceiverStatus.bits.LBD);
                LCD_Text57Land(Xcursor,Ycursor,StringBuffer,1,BLACK,NONE);
                Ycursor+=16;
                sprintf(StringBuffer,"%02x ",TransceiverStatus.bits.FFEM);
                LCD_Text57Land(Xcursor,Ycursor,StringBuffer,1,BLACK,NONE);
                Ycursor+=16;
                sprintf(StringBuffer,"%02x ",TransceiverStatus.bits.RSSI_ATS);
                LCD_Text57Land(Xcursor,Ycursor,StringBuffer,1,BLACK,NONE);
                Ycursor+=16;
                sprintf(StringBuffer,"%02x ",TransceiverStatus.bits.DQD);
                LCD_Text57Land(Xcursor,Ycursor,StringBuffer,1,BLACK,NONE);
                Ycursor+=16;
                sprintf(StringBuffer,"%02x ",TransceiverStatus.bits.CRL);
                LCD_Text57Land(Xcursor,Ycursor,StringBuffer,1,BLACK,NONE);
                Ycursor+=16;
                sprintf(StringBuffer,"%02x ",TransceiverStatus.bits.ATGL);
                LCD_Text57Land(Xcursor,Ycursor,StringBuffer,1,BLACK,NONE);
                Ycursor=2;
            }

            if(InitRfApp)
            {
                InitRfApp=0;

                if(strcmp(Param2,"OFF")==FALSE)
                {
                    MRF49XA_Power_Down();
                    sprintf(StringBuffer,"RF Stopped!");
                    LCD_Text57Land(Xcursor,Ycursor,StringBuffer,1,RED,NONE);
                }

                else{
                    initRFPorts();
                    MRF49XA_Init();
                    InitRFData(&rfData);
                    sprintf(StringBuffer,"RF Initialized! %x",RF_IRQ);
                    LCD_Text57Land(Xcursor,Ycursor,StringBuffer,1,BLACK,NONE);

                }
            }

            if(ReadApp)///Test sniff pacchetti
            {
                WORD GENCREG2    = (0x8000|XTAL_LD_CAP_125);
                WORD CFSREG2                             ;
                WORD DRVSREG2                            ;
                WORD RXCREG2                             ;
                WORD PMCREG2 = 0x8201;
                WORD TXCREG2 = 0x9850;
                volatile BOOL RxPacketValid[BANK_SIZE];
                BYTE RxPacket[BANK_SIZE][80];
                volatile BYTE RxPacketLen[BANK_SIZE];
                WORD totalReceived = 0;
                unsigned char FreqBand=0,DataRate=0,Nop=0;
                ReadApp=0;
                sprintf(StringBuffer,"Reading..");
                  LCD_Text57Land(Xcursor,Ycursor,StringBuffer,1,BLACK,AZZURRO);
                //Setta le porte
                mPORTFSetPinsDigitalOut(BIT_5);//SDO
                mPORTFSetPinsDigitalOut(BIT_13);//SCK
                mPORTBSetPinsDigitalOut(BIT_14);//CS
                mPORTBSetPinsDigitalOut(BIT_13);//FSEL
                mPORTESetPinsDigitalIn(BIT_9);//FINT
                mPORTESetPinsDigitalIn(BIT_8);//IRQ
                mPORTFSetPinsDigitalIn(BIT_4);//SDI
                mPORTFSetPinsDigitalIn(BIT_12);//INT

                SPI4CON = 0x0120;
                //SPI1BRG = 0x001F; // 64:1 prescale (slow display update)
                SPI4BRG = 0x0001; // 4:1 prescale (fast display update) 16Mhz spi clock at 72Mhz sys clock
                SPI4CONSET = 0x8000; // enables the spi

                RF_RSCLR;
                DelayUs(10);
                RF_RSSET;
                DelayMs(125);
                RF_CSSET;
                RF_FSELSET;
                //RF_SCKCLR;
                //RF_SDOCLR;
                ///Fine init porte

                i=Param2[0];

                //i=1;
                switch(i)
                {
                    case '1':
                        FreqBand = 1;
                        break;
                    case '2':
                        FreqBand = 2;
                        break;
                    case '3':
                        FreqBand = 3;
                        break;
                }
                GENCREG2 |= ((WORD)FreqBand << 4);

                i=Param3[0];
                //i=1;
                switch(i)
                {
                    case '1':
                        DataRate = 1;
                        DRVSREG2 = 0xC623;
                        break;
                    case '2':
                        DataRate = 2;
                        DRVSREG2 = 0xC611;
                        break;
                    case '3':
                        DataRate = 3;
                        DRVSREG2 = 0xC608;
                        break;
                    case '4':
                        DataRate = 4;
                        DRVSREG2 = 0xC605;
                        break;
                    case '5':
                        DataRate = 5;
                        DRVSREG2 = 0xC602;
                        break;
                }

                i=Param4[0];
                //i=4;
                switch(i)
                {
                    case '1':
                        RXCREG2 = 0x9421;
                        break;

                    case '2':
                        RXCREG2 = 0x9441;
                        break;

                    case '3':
                        RXCREG2 = 0x9461;
                        break;

                    case '4':
                        RXCREG2 = 0x9481;
                        break;

                    case '5':
                        RXCREG2 = 0x94A1;
                        break;

                    case '6':
                        RXCREG2 = 0x94C1;
                        break;
                }

                switch(FreqBand)
                {
                    case 1:
                        CFSREG2 = 0xA640;
                        break;

                    case 2:
                        CFSREG2 = 0xA640;
                        break;

                    case 3:
                        CFSREG2 = 0xA7D0;
                        break;

                    default:
                        break;
                }

                
                
                //Init RF
                SPI_Command(FIFORSTREG);
                SPI_Command( FIFORSTREG | 0x0002);
                SPI_Command(GENCREG2);
                SPI_Command(0xC4F7);
                SPI_Command(CFSREG2);
                SPI_Command(DRVSREG2);
                SPI_Command(PMCREG2);
                SPI_Command(RXCREG2);
                SPI_Command(TXCREG2);
                SPI_Command(PMCREG2 | 0x0020);
                DelayMs(5);
                SPI_Command(PMCREG2 | 0x0080);
                SPI_Command(GENCREG2 | 0x0040);
                SPI_Command(FIFORSTREG);
                SPI_Command( FIFORSTREG | 0x0002);
                SPI_Command(0x0000);

                //InitRFData(&rfData);
                sprintf(StringBuffer,"%x, %x, %x",Param2[0],Param3[0],Param4[0]);
                LCD_Text57Land(Xcursor,Ycursor,StringBuffer,1,BLACK,AZZURRO);
                sprintf(StringBuffer,"%x,%x",RF_IRQ,RF_INT);
                LCD_Text57Land(Xcursor,Ycursor,StringBuffer,1,BLACK,AZZURRO);
                while(TRUE)
                {
                    if((RF_IRQ==0)||(RF_INT==1))
                    {
                        
                        //nCS = 0;
                        RF_CSCLR;
                        Nop++;
                        if( SPI_SDI == 1 )
                        {
                            BYTE RxPacketPtr;
                            BYTE tmpPacketLen;
                            BYTE bIndex;
                            WORD counter;

                            // There is data in RX FIFO
                            //nCS = 1;
                            //nFSEL = 0;                   // FIFO selected
                            RF_CSSET;
                            RF_FSELCLR;

                            tmpPacketLen = SPI_Read();

                            for(bIndex = 0; bIndex < BANK_SIZE; bIndex++)
                            {
                                if( RxPacketValid[bIndex] == FALSE )
                                {
                                    break;
                                }
                            }

                            if( tmpPacketLen >= 80 || tmpPacketLen == 0 || bIndex >= BANK_SIZE )
                            {
                                IGNORE_HERE:
                                //nFSEL = 1;                          // bad packet len received
                                RF_FSELSET;
                                SPI_Command(PMCREG2);                // turn off the transmitter and receiver
                                SPI_Command(FIFORSTREG);            // reset FIFO
                                SPI_Command(GENCREG2);               // disable FIFO, TX_latch
                                SPI_Command(GENCREG2 | 0x0040);      // enable FIFO
                                SPI_Command(PMCREG2 | 0x0080);       // turn on receiver
                                SPI_Command(FIFORSTREG | 0x0002);   // FIFO synchron latch re-enabled
                                goto RETURN_HERE;
                            }

                            RxPacketLen[bIndex] = tmpPacketLen;
                            //RLED = 1;
                            //nFSEL = 1;
                            mPORTDSetBits(BIT_2);
                            RF_FSELSET;

                            RxPacketPtr = 0;
                            counter = 0;

                            while(1)
                            {
                                if( counter++ == 0xFFFF )
                                {
                                    goto IGNORE_HERE;
                                }
                                else if( RF_FINT == 1)
                                    {
                                    //nFSEL = 0;
                                    RF_FSELCLR;
                                    counter = 0;
                                    RxPacket[bIndex][RxPacketPtr++] = SPI_Read();

                                    if( RxPacketPtr >= RxPacketLen[bIndex] )
                                    {
                                        BYTE i;

                                        //nFSEL = 1;
                                        //nCS = 0;
                                        RF_FSELSET;
                                        RF_CSCLR;

                                        //SPI_SDO = 0;
                                        RF_SDOCLR;
                                        Nop++;
                                        for(i = 0; i < 8; i++)
                                        {
                                            //SPI_SCK = 1;
                                            //SPI_SCK = 0;                                       
                                            RF_SCKSET;
                                            Nop++;
                                            RF_SCKCLR;
                                            Nop++;
                                        }


                                        if( SPI_SDI == 0 )
                                        {
                                            goto IGNORE_HERE;
                                        }
                                        //nCS = 1;
                                        RF_CSSET;


                                        SPI_Command(FIFORSTREG);
                                        //RLED = 0;
                                        mPORTDClearBits(BIT_2);
                                        RxPacketValid[bIndex] = TRUE;
                                        SPI_Command(FIFORSTREG | 0x0002);            // FIFO synchron latch re-enable

                                        goto RETURN_HERE;
                                    }
                                    //nFSEL = 1;
                                    RF_FSELSET;
                                    }
                                }
                            }
                            else            // read the rest of the interrupts
                            {
                                SPI_Read();

                                //nCS = 1;
                                RF_CSSET;
                            }

                            RETURN_HERE:
                        Nop++;
                    }
                    
                    for(i = 0; i < BANK_SIZE; i++)
                    {
                        if( RxPacketValid[i] == TRUE )
                        {
                            BYTE j;
                            WORD received_crc;
                            WORD calculated_crc;
                
                            totalReceived++;  
                            //Printf("\r\n");
                            Xcursor-=8;
                            Ycursor=2;

                            sprintf(StringBuffer,"%04x | %04x |",totalReceived,RxPacketLen[i]);
                            LCD_Text57Land(Xcursor,Ycursor,StringBuffer,1,BLACK,NONE);
                            //PrintChar(totalReceived>>8);
                            //PrintChar(totalReceived);

                            //Printf(" | ");
                            //PrintChar(RxPacketLen[i]);
                            //Printf(" | ");

                            for(j = 0; j < RxPacketLen[i]; j++)
                            {
                                sprintf(StringBuffer,"%02x ",RxPacket[i][j]);
                                LCD_Text57Land(Xcursor,Ycursor,StringBuffer,1,BLACK,NONE);
                                Ycursor+=12;
                                //PrintChar(RxPacket[i][j]);
                                //Printf(" ");
                            }
                            received_crc = ((WORD)RxPacket[i][RxPacketLen[i]-1]) + (((WORD)RxPacket[i][RxPacketLen[i]-2]) << 8);
                            calculated_crc = CRC16(RxPacket[i], RxPacketLen[i]-2);
                            if( received_crc != calculated_crc )
                            {
                                //Printf(" * CRC");
                                sprintf(StringBuffer," * CRC");
                                LCD_Text57Land(Xcursor,Ycursor,StringBuffer,1,BLACK,NONE);
                            }
                            RxPacketValid[i] = FALSE;
                
                        }
                    }





















                    //i=MRF49XA_Receive_Packet(&rfData);
                    //DelayUs(50);
                    //if(i==3) break;
                    //if(i==2) break;
                    //if(i==1) break;
                    //sprintf(StringBuffer,"%x,%x,%x",RF_IRQ,RF_FINT,SPI_SDI);
                    //LCD_Text57Land(Xcursor,Ycursor,StringBuffer,1,BLACK,AZZURRO);
                    if(PORTDbits.RD14==0) break;
                }
                Xcursor-=8;

                sprintf(StringBuffer,"Ricevuto! %d, 0x%02x, 0x%02x, 0x%02x, 0x%02x",i,rfData.buffer[0],rfData.buffer[1],rfData.buffer[2],rfData.buffer[3]);
                LCD_Text57Land(Xcursor,Ycursor,StringBuffer,1,BLACK,NONE);


}
            if(SendApp)
            {
                SendApp=0;
                //LCD_FastRect(121,0,239,319,AZZURRO);
                AddRFData(&rfData,Param2[0]);
                MRF49XA_Send_Packet(&rfData);
		InitRFData(&rfData);

                sprintf(StringBuffer,"Dato inviato..");
                LCD_Text57Land(Xcursor,Ycursor,StringBuffer,1,BLACK,NONE);
            }
            if(HighApp)
            {
                HighApp=0;
                if(strcmp(Param2,"D2")==FALSE)
                {
                    sprintf(StringBuffer,"D2 Actived! 1");
                    LCD_Text57Land(Xcursor,Ycursor,StringBuffer,1,GREEN,NONE);
                    mPORTDSetPinsDigitalOut(BIT_2);
                    mPORTDSetBits(BIT_2);
                 }
                 else
                 {
                    sprintf(StringBuffer,"Port Not Found!");
                    LCD_Text57Land(Xcursor,Ycursor,StringBuffer,1,RED,NONE);
                 }
            }
            if(LowApp)
            {
                LowApp=0;
                if(strcmp(Param2,"D2")==FALSE)
                {
                    sprintf(StringBuffer,"D2 Deactived! 0");
                    LCD_Text57Land(Xcursor,Ycursor,StringBuffer,1,GREEN,NONE);
                    mPORTDSetPinsDigitalOut(BIT_2);
                    mPORTDClearBits(BIT_2);
                }
                else
                {
                    sprintf(StringBuffer,"Port Not Found!");
                    LCD_Text57Land(Xcursor,Ycursor,StringBuffer,1,RED,NONE);
                }
            }

            if(SyntaxError)
            {
                SyntaxError=0;
                sprintf(StringBuffer,"Syntax Error!");
                LCD_Text57Land(Xcursor,Ycursor,StringBuffer,1,RED,NONE);
            }

            if(ExitApp==1) break;
            
            Xcursor-=8;
            Ycursor=2;
            
            for(i=0; i<10; i++)
            {
                StringBuffer[i]=0x00;
                Param1[i]=0x00;
                Param2[i]=0x00;
                Param3[i]=0x00;
            }
        }
        if(PORTDbits.RD3==0) break;
    }
}
Esempio n. 17
0
int main() {
    // Initialize Sockets and IP address containers
    //
    SOCKET 	serverSock, clientSock = INVALID_SOCKET;
    IP_ADDR	curr_ip, ip;

    // Initialize buffer length variables
    //
    int rlen, sent, bytesSent;
    
    // Initialize the Send/Recv buffers
    //
    char rbfr[10];

    // Socket struct descriptor
    //
    struct sockaddr_in addr;
    int addrlen = sizeof(struct sockaddr_in);

    // System clock containers
    //
    unsigned int sys_clk, pb_clk;

    // Initialize LED Variables:
    // Setup the LEDs on the PIC32 board
    // RD0, RD1 and RD2 as outputs
    //
    mPORTDSetPinsDigitalOut(BIT_0 | BIT_1 | BIT_2 ); 
    mPORTDClearBits(BIT_0 | BIT_1 | BIT_2); // Clear previous LED status.
    
    // Setup the switches on the PIC32 board as inputs
    //		
    mPORTDSetPinsDigitalIn(BIT_6 | BIT_7 | BIT_13);     // RD6, RD7, RD13 as inputs

    // Setup the system clock to use CPU frequency
    //
    sys_clk = GetSystemClock();
    pb_clk = SYSTEMConfigWaitStatesAndPB(sys_clk);

    // interrupts enabled
    INTEnableSystemMultiVectoredInt();

    // system clock enabled
    SystemTickInit(sys_clk, TICKS_PER_SECOND);

    // Initialize TCP/IP
    //
    TCPIPSetDefaultAddr(DEFAULT_IP_ADDR, DEFAULT_IP_MASK, DEFAULT_IP_GATEWAY,
            DEFAULT_MAC_ADDR);

    if (!TCPIPInit(sys_clk)) return -1;
    DHCPInit();

    // Port to bind socket to
    //
    addr.sin_port = 6653;
    addr.sin_addr.S_un.S_addr = IP_ADDR_ANY;

    // Initialize TCP server socket
    //
    if((serverSock = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)) == 
        SOCKET_ERROR)  return -1;
       
    // Ensure we bound to the socket. End Program if bind fails
    //
    if(bind(serverSock, (struct sockaddr*) &addr, addrlen ) == 
        SOCKET_ERROR)
        return -1;

    // Listen to up to five clients on server socket
    //
    listen(serverSock, 5);

    // We store our desired transfer paragraph 
    //
    char myStr[] = "TCP/IP (Transmission Control Protocol/Internet Protocol) is "
        "the basic  communication language or protocol of the Internet. "
        "It can also be used as a communications protocol in a private "
        "network (either an intranet or an extranet). When you are set up "
        "with direct access to the Internet, your computer is provided "
        "with a copy of the TCP/IP program just as every other computer "
        "that you may send messages to or get information from also has "
        "a copy of TCP/IP. TCP/IP is a two-layer program. The higher "
        "layer, Transmission Control Protocol, manages the assembling "
        "of a message or file into smaller packets that are transmitted "
        "over the Internet and received by a TCP layer that reassembles "
        "the packets into the original message. The lower layer, "
        "Internet Protocol, handles the address part of each packet so "
        "that it gets to the right destination. Each gateway computer on "
        "the network checks this address to see where to forward the "
        "message. Even though some packets from the same message are "
        "routed differently than others, they'll be reassembled at the "
        "destination.\0";
    
    // Chunk up our data
    //
    // Copy our string into our buffer
    //
    int tlen = strlen(myStr);
    
    char tbfr1[tlen1+1];

    // Loop forever
    //
    while(1) {
        // Refresh TCIP and DHCP
        //
        TCPIPProcess();
        DHCPTask();

        // Get the machines IP address and save to variable
        //
        ip.Val = TCPIPGetIPAddr();

        // DHCP server change IP address?
        //
        if(curr_ip.Val != ip.Val) curr_ip.Val = ip.Val;	

        // TCP Server Code
        //
        if(clientSock == INVALID_SOCKET) {
            // Start listening for incoming connections
            //
            clientSock = accept(serverSock, (struct sockaddr*) &addr, &addrlen);

            // Upon connection to a client blink LEDS.
            //
            if(clientSock != INVALID_SOCKET) {
                setsockopt(clientSock, SOL_SOCKET, TCP_NODELAY, 
                    (char*)&tlen, sizeof(int));
                mPORTDSetBits(BIT_0);   // LED1=1
                DelayMsec(50);
                mPORTDClearBits(BIT_0); // LED1=0
                mPORTDSetBits(BIT_1);   // LED2=1
                DelayMsec(50);
                mPORTDClearBits(BIT_1); // LED2=0
                mPORTDSetBits(BIT_2);   // LED3=1
                DelayMsec(50);
                mPORTDClearBits(BIT_2); // LED3=0
            }
        }
        else {
            // We are connected to a client already. We start
            // by receiving the message being sent by the client
            //
            rlen = recvfrom(clientSock, rbfr, sizeof(rbfr), 0, NULL, 
                NULL);

            // Check to see if socket is still alive
            //
            if(rlen > 0) {
                // If the received message first byte is '02' it signifies
                // a start of message
                //
                if (rbfr[0]==2) {
                    //mPORTDSetBits(BIT_0);	// LED1=1

                    // Check to see if message begins with
                    // '0271' to see if the message is a a global reset
                    //
                    if(rbfr[1]==71) {
                        mPORTDSetBits(BIT_0);   // LED1=1
                        DelayMsec(50);
                        mPORTDClearBits(BIT_0); // LED1=0
                    }
                }
                // If the received message starts with a second byte is
                // '84' it signifies a initiate transfer
                //
                if(rbfr[1]==84){
                    mPORTDSetBits(BIT_2);   // LED3=1
                    bytesSent = 0;
                    //sent = 0;
                    while (bytesSent < tlen){
                        memcpy(tbfr1, myStr+bytesSent, tlen1);
                        if (bytesSent > 1049){
                            tbfr1[tlen-bytesSent+1] = '\0';
                            send(clientSock, tbfr1, tlen-bytesSent+1, 0);
                        }
                        else{
                            tbfr1[tlen1] = '\0';
                            // Loop until we send the full message
                            //
                            send(clientSock, tbfr1, tlen1+1, 0);
                        }
                        bytesSent += tlen1;
                        DelayMsec(50);
                    }
                    mPORTDClearBits(BIT_2);	// LED3=0
                }
                mPORTDClearBits(BIT_0); // LED1=0
            }

            // The client has closed the socket so we close as well
            //
            else if(rlen < 0) {
                closesocket(clientSock);
                clientSock = SOCKET_ERROR;
            }
        }
    }
}
Esempio n. 18
0
/*******************************************************************************
 * Function:    BoardInit(void)
 * PreCondition:None
 * Input:       None
 * Output:      None
 * Overview:    SPI pins and SFR, Maintenance Tasks Timer, External Interrupts,
 *              and other board issues initialization.
 * Note:        This routine needs to be called before initialising MiWi stack
 *              or invoking other function that operates on MiWi stack.
 ******************************************************************************/
void BoardInit(void){
    #if defined(__PIC32MX__)

    // RADIO INTERFACES & SPI INIT -------------------------------------------//
        #if defined HARDWARE_SPI
            /* Peripheral Bus Frequency = System Clock / PB Divider */
            unsigned int pbFreq;
            pbFreq = (DWORD) CLOCK_FREQ/(1 << mOSCGetPBDIV());

            unsigned int SPI_Clk_Freq;
            unsigned char SPI_Brg;
        #endif

        #if defined MRF24J40
            PHY_CS_TRIS = 0;
            PHY_CS = 1;
            PHY_RESETn_TRIS = 0;
            PHY_RESETn = 1;

            MRF24J40_INT_TRIS = 1;

            SDI_TRIS = 1;
            SDO_TRIS = 0;
            SCK_TRIS = 0;
            SPI_SDO = 0;
            SPI_SCK = 0;

            PHY_WAKE_TRIS = 0;
            PHY_WAKE = 1;

            SPICONCLR = 0xFFFFFFFF;             // Clear SPIxCON register

            #ifdef HARDWARE_SPI
                /* Enable SPI, Set to Master Mode & Set CKE bit : Serial output
                 * data changes on transition from active clock state to Idle
                 * clock state */
                SPICON = 0x00008120;

                /* PB Frequency can be maximum 40 MHz */
                if(pbFreq > (2 * MAX_SPI_CLK_FREQ_FOR_P2P)){
                    SPI_Brg = 1;
                    /* Continue the loop till you find SPI Baud Rate Reg Value */
                    while(1){
                        /* SPI Clock Calculation as per PIC32 Manual */
                        SPI_Clk_Freq = pbFreq / (2 * (SPI_Brg + 1));

                        if(SPI_Clk_Freq <= MAX_SPI_CLK_FREQ_FOR_P2P){
                            break;
                        }
                        SPI_Brg++;
                    }
                    #if defined MRF24J40_IN_SPI1
                    mSpiChnSetBrg (1, SPI_Brg);
                    #elif defined MRF24J40_IN_SPI2
                    mSpiChnSetBrg (2, SPI_Brg);
                    #elif defined MRF24J40_IN_SPI3
                        mSpiChnSetBrg (1A, SPI_Brg);
                    #elif defined MRF24J40_IN_SPI4
                        mSpiChnSetBrg (3A, SPI_Brg);
                    #endif
               }
               else{
                    #if defined MRF24J40_IN_SPI1
                    mSpiChnSetBrg (1, 0);
                    #elif defined MRF24J40_IN_SPI2
                    mSpiChnSetBrg (2, 0);
                    #elif defined MRF24J40_IN_SPI3
                        mSpiChnSetBrg (1A, 0);
                    #elif defined MRF24J40_IN_SPI4
                        mSpiChnSetBrg (3A, SPI_Brg);
                    #endif
               }
            #endif
        #endif
        #if defined(MRF49XA_1)
            //Configuration for Guilja's Expansion Board, Connection SLot 1 --//
            mPORTESetPinsDigitalOut(BIT_1); //nCS
            mPORTBSetPinsDigitalIn(BIT_2);  //FINT      //Juan: Added.
            //----------------------------------------------------------------//

            MRF49XA_1_PHY_CS_TRIS = 0;
            MRF49XA_1_PHY_CS = 1;
            MRF49XA_1_PHY_RESETn_TRIS = 0;
            MRF49XA_1_PHY_RESETn = 1;

            MRF49XA_1_INT_TRIS = 1;

            MRF49XA_1_SDI_TRIS = 1;
            MRF49XA_1_SDO_TRIS = 0;
            MRF49XA_1_SCK_TRIS = 0;
            MRF49XA_1_SPI_SDO = 0;
            MRF49XA_1_SPI_SCK = 0;

            MRF49XA_1_nFSEL_TRIS = 0;
            MRF49XA_1_FINT_TRIS = 1;
            MRF49XA_1_nFSEL = 1;          // nFSEL inactive

            MRF49XA_1_SPICONCLR = 0xFFFFFFFF;       //Clear SPIxCON register

            #ifdef HARDWARE_SPI
                /* Enable SPI1, Set to Master Mode & Set CKE bit : Serial output
                * data changes on transition from active clock state to Idle
                * clock state */
                MRF49XA_1_SPICON = 0x00008120;

                /* PB Frequency can be maximum 40 MHz */
                if(pbFreq > (2 * MAX_SPI_CLK_FREQ_FOR_P2P)){
                    SPI_Brg = 1;
                    /* Continue the loop till you find SPI Baud Rate Reg Value */
                    while(1){
                        /* SPI Clock Calculation as per PIC32 Manual */
                        SPI_Clk_Freq = pbFreq / (2 * (SPI_Brg + 1));
                        if(SPI_Clk_Freq <= MAX_SPI_CLK_FREQ_FOR_P2P){
                            break;
                        }
                        SPI_Brg++;
                    }
                    #if defined MRF49XA_1_IN_SPI1
                    mSpiChnSetBrg (1, SPI_Brg);
                    #elif defined MRF49XA_1_IN_SPI2
                    mSpiChnSetBrg (2, SPI_Brg);
                    #elif defined MRF49XA_1_IN_SPI3
                        mSpiChnSetBrg (1A, SPI_Brg);
                    #endif
               }
               else{
                    #if defined MRF49XA_1_IN_SPI1
                    mSpiChnSetBrg (1, 0);
                    #elif defined MRF49XA_1_IN_SPI2
                    mSpiChnSetBrg (2, 0);
                    #elif defined MRF49XA_1_IN_SPI3
                        mSpiChnSetBrg (1A, 0);
                    #endif
               }
            #endif
        #endif
        #if defined(MRF49XA_2)
            MRF49XA_2_PHY_CS_TRIS = 0;
            MRF49XA_2_PHY_CS = 1;
            MRF49XA_2_PHY_RESETn_TRIS = 0;
            MRF49XA_2_PHY_RESETn = 1;

            MRF49XA_2_INT_TRIS = 1;

            MRF49XA_2_SDI_TRIS = 1;
            MRF49XA_2_SDO_TRIS = 0;
            MRF49XA_2_SCK_TRIS = 0;
            MRF49XA_2_SPI_SDO = 0;
            MRF49XA_2_SPI_SCK = 0;

            MRF49XA_2_nFSEL_TRIS = 0;
            MRF49XA_2_FINT_TRIS = 1;
            MRF49XA_2_nFSEL = 1;          // nFSEL inactive

            MRF49XA_2_SPICONCLR = 0xFFFFFFFF;       // Clear SPIxCON register

            #ifdef HARDWARE_SPI
                /* Enable SPI1, Set to Master Mode & Set CKE bit : Serial output
                * data changes on transition from active clock state to Idle
                * clock state */
                MRF49XA_2_SPICON = 0x00008120;

                /* PB Frequency can be maximum 40 MHz */
                if(pbFreq > (2 * MAX_SPI_CLK_FREQ_FOR_P2P)){
                    SPI_Brg = 1;
                    /* Continue the loop till you find SPI Baud Rate Reg Value */
                    while(1){
                        /* SPI Clock Calculation as per PIC32 Manual */
                        SPI_Clk_Freq = pbFreq / (2 * (SPI_Brg + 1));
                        if(SPI_Clk_Freq <= MAX_SPI_CLK_FREQ_FOR_P2P){
                            break;
                        }
                        SPI_Brg++;
                    }
                    #if defined MRF49XA_2_IN_SPI1
                    mSpiChnSetBrg (1, SPI_Brg);
                    #elif defined MRF49XA_2_IN_SPI2
                    mSpiChnSetBrg (2, SPI_Brg);
                    #elif defined MRF49XA_2_IN_SPI3
                        mSpiChnSetBrg (1A, SPI_Brg);
                    #endif
               }
               else{
                    #if defined MRF49XA_2_IN_SPI1
                    mSpiChnSetBrg (1, 0);
                    #elif defined MRF49XA_2_IN_SPI2
                    mSpiChnSetBrg (2, 0);
                    #elif defined MRF49XA_2_IN_SPI3
                        mSpiChnSetBrg (1A, 0);
                    #endif
               }
            #endif
        #endif
       

    // SPI & EXTERNAL INTERRUPTS PINS AND CONFIGURATION ----------------------//
#if (defined __32MX675F256L__ || defined ____32MX675F512__)
        /* Set the SPI Port Directions (SDO, SDI, SCK) for every SPI module.*/
            #if defined MRF49XA_1_IN_SPI1 || defined MRF49XA_2_IN_SPI1 || \
                defined MRF89XA_IN_SPI1   || defined MRF24J40_IN_SPI1  || \
                defined MRF24WB0M_IN_SPI1
                mPORTDSetPinsDigitalOut(BIT_0);     //SDO1
                mPORTDSetPinsDigitalOut(BIT_10);    //SCK1
                mPORTCSetPinsDigitalIn(BIT_4);      //SDI1
            #endif
            #if defined MRF49XA_1_IN_SPI2 || defined MRF49XA_2_IN_SPI2 || \
                defined MRF89XA_IN_SPI2   || defined MRF24J40_IN_SPI2  || \
                defined MRF24WB0M
                mPORTGSetPinsDigitalOut(BIT_8);     //SDO2
                mPORTGSetPinsDigitalOut(BIT_6);     //SCK2
                mPORTGSetPinsDigitalIn(BIT_7);      //SDI2
            #endif
            #if defined MRF49XA_1_IN_SPI3 || defined MRF49XA_2_IN_SPI3 || \
                defined MRF89XA_IN_SPI3   || defined MRF24J40_IN_SPI3  || \
                defined MRF24WB0M
                mPORTFSetPinsDigitalOut(BIT_8);     //SDO3
                mPORTDSetPinsDigitalOut(BIT_15);    //SCK3
                mPORTFSetPinsDigitalIn(BIT_2);      //SDI3
            #endif
//            #if defined MRF24WB0M_IN_SPI4
//                mPORTFSetPinsDigitalOut(BIT_5);     //SDO4
//                mPORTFSetPinsDigitalOut(BIT_13);    //SCK4
//                mPORTFSetPinsDigitalIn(BIT_4);      //SDI4
//            #endif

   #endif
#endif
       

    // TIMER 1 FOR TIME_SYNC -------------------------------------------------//
        #if defined(ENABLE_TIME_SYNC)   
        //TIMER 1 MAY BE USED FOR SLEEP MODE AND/OR FOR STACKS MAINTENANCE. IT
        //NEEDS ADAPTATION BEFORE ENABLING TIME_SYNC WITH TIMER 1 TOO!
            T1CON = 0;
            T1CON = 0x0012;
            T1CONSET = 0x8000;
            PR1 = 0xFFFF;
            IFS0bits.T1IF = 0;

            mT1IntEnable(1);
            mT1SetIntPriority(4);

            while(T1CONbits.TWIP);
            TMR1 = 0;
        #endif
    // TIMER 1 FOR NODE STACKS AUTO-MAINTENANCE ------------------------------//
        #if defined NODE_DOES_MAINTENANCE_TASKS
            T1CON = 0x0070;             //Disable timer, PBCLK source, PS=256
            TMR1  = 0x0000;             //Reset count
            PR1   = MAINTENANCE_PERIOD; //Set period.

            IPC1SET = 0x00000005;   //Set Priority level 1, Subpriority level 1
            IFS0CLR = 0x00000010;   //Clear T1IF
            IEC0SET = 0x00000010;   //Set T1IE
            //Timer will be triggered after initialization.
        #endif

    // IOPORT CN - For waking up the node manually. --------------------------//
        mPORTDSetPinsDigitalIn(BIT_5); // CN14
        CNCON = 0x8000;         //Module enabled.
        CNEN = 0x00004000;      //Enable CN14
        CNPUE = 0x00004000;     //Enable CN14 weak pull-up.
        ReadBUTTONS();          //Clear PORT mismatch condition.
        IFS1CLR = 0x00000001;   //Clear the CN interrupt flag status bit
        IPC6SET = 0x00180000;   //Set CN priority 6, subpriority 0.
        //It will be enabled only during sleep mode time interval
    //------------------------------------------------------------------------//


        																										// Lo modifico en el wifi config
        #if defined(ENABLE_NVM)     //REVIEW
            //EE_nCS_TRIS = 0;//FERNANDO, CUIDADO NO SE SI LA PILA REALMENTE FUNCIONA CON FLASH MEMORY
            //EE_nCS = 1;
        #endif

    // INTERRUPTION FLAGS AND EXT_INT PIN FINAL SETTINGS ---------------------//
        #if defined MRF49XA_1
            MRF49XA_1_IF = 0;
            if(MRF49XA_1_INT_PIN == 0){
                MRF49XA_1_IF = 1;
            }
        #endif
        #if defined MRF49XA_2
            MRF49XA_2_IF = 0;
            if(MRF49XA_2_INT_PIN == 0){
                MRF49XA_2_IF = 1;
            }
        #endif
        #if defined MRF89XA
            PHY_IRQ1 = 0;
        #endif
        #if defined MRF24J40
            MRF24J40_IF = 0;
            if(MRF24J40_INT_PIN == 0){
                MRF24J40_IF = 1;
            }
        #endif
}
Esempio n. 19
0
static void lcd_setup(void)
{
    //mPORTDSetPinsDigitalOut(BIT_3);
    //mPORTDClearBits(BIT_3);

    mPORTDSetPinsDigitalOut( BIT_2 );

    //Set backlight to open drain
    mPORTDOpenDrainOpen( BIT_2 );

    //Enable contrast control
    OpenTimer2(T2_ON, LCD_PWMPERIOD);
    OpenOC4( OC_ON | OC_TIMER_MODE16 | OC_TIMER2_SRC | OC_CONTINUE_PULSE | OC_LOW_HIGH , LCD_PWMPERIOD, 0x0458 );

    //Start the timer for contrast/brightness PWM
    //OpenTimer3(T3_ON | T3_PS_1_1 | T3_SOURCE_INT, LCD_PWMPERIOD);
    //PR3 = LCD_PWMPERIOD - 1;
    //OC3R = 0;
    //mT3SetIntPriority(4);
    //mT3ClearIntFlag();
    //mT3IntEnable(1);
    //SetDCOC3PWM(LCD_PWMPERIOD >> 2);
    //SetDCOC3PWM(1);

    //Enable brightness control
    OpenOC3( OC_ON | OC_TIMER_MODE16 | OC_TIMER2_SRC | OC_CONTINUE_PULSE | OC_LOW_HIGH , LCD_PWMPERIOD, 0x500 );

    // Open ENABLE line as output
    LCD_EN_CLR();
    PORT_DIR_OUT(LCD_EN_P, LCD_EN);
    LCD_EN_CLR();

    // Open RW and RS lines as output
    LCD_RS_CLR();
    PORT_CLR(LCD_RW_P, LCD_RW);

    PORT_DIR_OUT(LCD_RS_P, LCD_RS);
    PORT_DIR_OUT(LCD_RW_P, LCD_RW);

    LCD_RS_CLR();
    PORT_CLR(LCD_RW_P, LCD_RW);

    // Set data lines as output
    PORT_CLR(LCD_DATA_P, LCD_DATA_MASK);
    PORT_DIR_OUT(LCD_DATA_P, LCD_DATA_MASK);
    PORT_CLR(LCD_DATA_P, LCD_DATA_MASK);

    // Wait for proper power up
    task_delay(LCD_LONG_DELAY);
    task_delay(LCD_LONG_DELAY);
    task_delay(LCD_LONG_DELAY);
    task_delay(LCD_LONG_DELAY);

    // Wait for the LCD to power up correctly
    lcd_command(LCD_FUNCTION_SET_CMD | LCD_FUNCTION_SET_8_BITS);
    task_delay(LCD_SHORT_DELAY);
    lcd_command(LCD_FUNCTION_SET_CMD | LCD_FUNCTION_SET_8_BITS);
    task_delay(LCD_VERY_SHORT_DELAY);
    lcd_command(LCD_FUNCTION_SET_CMD | LCD_FUNCTION_SET_8_BITS);
    task_delay(LCD_VERY_SHORT_DELAY);

    // Set up the LCD function
    lcd_command(LCD_FUNCTION_SET_CMD | LCD_FUNCTION_SET_8_BITS | LCD_FUNCTION_SET_2_LINES);
    task_delay(LCD_VERY_SHORT_DELAY);

    // Turn the display on
    lcd_command(LCD_DISPLAY_CTRL_CMD | LCD_DISPLAY_CTRL_CURSOR_ON | LCD_DISPLAY_CTRL_BLINK_ON);
    task_delay(LCD_VERY_SHORT_DELAY);

    // Clear the display
    lcd_command(LCD_CLEAR_DISPLAY_CMD);
    task_delay(LCD_SHORT_DELAY);

    // Increase the cursor
    lcd_command(LCD_ENTRY_MODE_CMD | LCD_ENTRY_MODE_INCREASE);
    task_delay(LCD_SHORT_DELAY);

    lcd_command(LCD_DISPLAY_CTRL_CMD | LCD_DISPLAY_CTRL_DISPLAY_ON);
    task_delay(LCD_SHORT_DELAY);
}