void ISOP2P1::solveNS(int method) { int n_dof_v = fem_space_v.n_dof(); int n_dof_p = fem_space_p.n_dof(); int n_total_dof = n_dof_v * 2 + n_dof_p; /// 开始迭代. double error_N = 1.0; int iteration_times = 0; while (error_N > n_tol) { /// Newton 迭代或 Picard 迭代. /// 先更新和速度场有关的矩阵块. updateNonlinearMatrix(); /// 构建迭代矩阵. if (method == 1) buildNewtonSys4NS(); else if (method == 2) buildPicardSys4NS(); else if (method == 3) if (iteration_times < 2) buildPicardSys4NS(); else buildNewtonSys4NS(); else { std::cout << "Newton: 1, Picard: 2, Hybrid: 3." << std::endl; exit(1); } /// 建立右端项. rhs.reinit(n_total_dof); FEMSpace<double, DIM>::ElementIterator the_element_v = fem_space_v.beginElement(); FEMSpace<double, DIM>::ElementIterator end_element_v = fem_space_v.endElement(); FEMSpace<double, DIM>::ElementIterator the_element_p = fem_space_p.beginElement(); FEMSpace<double, DIM>::ElementIterator end_element_p = fem_space_p.endElement(); /// 遍历速度单元, 拼装相关系数矩阵和右端项. for (the_element_v = fem_space_v.beginElement(); the_element_v != end_element_v; ++the_element_v) { /// 当前单元信息. double volume = the_element_v->templateElement().volume(); /// 积分精度, u 和 p 都是 1 次, 梯度和散度 u 都是常数. 因此矩阵拼 /// 装时积分精度不用超过 1 次. (验证一下!) const QuadratureInfo<DIM>& quad_info = the_element_v->findQuadratureInfo(4); std::vector<double> jacobian = the_element_v->local_to_global_jacobian(quad_info.quadraturePoint()); int n_quadrature_point = quad_info.n_quadraturePoint(); std::vector<Point<DIM> > q_point = the_element_v->local_to_global(quad_info.quadraturePoint()); /// 速度单元信息. std::vector<std::vector<std::vector<double> > > basis_gradient_v = the_element_v->basis_function_gradient(q_point); std::vector<std::vector<double> > basis_value_v = the_element_v->basis_function_value(q_point); const std::vector<int>& element_dof_v = the_element_v->dof(); std::vector<double> fx_value = source_v[0].value(q_point, *the_element_v); std::vector<double> fy_value = source_v[1].value(q_point, *the_element_v); int n_element_dof_v = the_element_v->n_dof(); std::vector<double> vx_value = v_h[0].value(q_point, *the_element_v); std::vector<double> vy_value = v_h[1].value(q_point, *the_element_v); std::vector<std::vector<double> > vx_gradient = v_h[0].gradient(q_point, *the_element_v); std::vector<std::vector<double> > vy_gradient = v_h[1].gradient(q_point, *the_element_v); /// 压力单元信息. Element<double, DIM> &p_element = fem_space_p.element(index_ele_v2p[the_element_v->index()]); const std::vector<int>& element_dof_p = p_element.dof(); std::vector<std::vector<std::vector<double> > > basis_gradient_p = p_element.basis_function_gradient(q_point); std::vector<std::vector<double> > basis_value_p = p_element.basis_function_value(q_point); std::vector<double> p_value = p_h.value(q_point, p_element); int n_element_dof_p = p_element.n_dof(); /// 实际拼装. for (int l = 0; l < n_quadrature_point; ++l) { double Jxw = quad_info.weight(l) * jacobian[l] * volume; for (int i = 0; i < n_element_dof_v; ++i) { double rhs_cont = fx_value[l] * basis_value_v[i][l]; rhs_cont -= (vx_value[l] * vx_gradient[l][0] + vy_value[l] * vx_gradient[l][1]) * basis_value_v[i][l]; rhs_cont -= viscosity * innerProduct(basis_gradient_v[i][l], vx_gradient[l]); rhs_cont += p_value[l] * basis_gradient_v[i][l][0]; rhs_cont *= Jxw; rhs(element_dof_v[i]) += rhs_cont; rhs_cont = fy_value[l] * basis_value_v[i][l]; rhs_cont -= (vx_value[l] * vy_gradient[l][0] + vy_value[l] * vy_gradient[l][1]) * basis_value_v[i][l]; rhs_cont -= viscosity * innerProduct(basis_gradient_v[i][l], vy_gradient[l]); rhs_cont += p_value[l] * basis_gradient_v[i][l][1]; rhs_cont *= Jxw; rhs(n_dof_v + element_dof_v[i]) += rhs_cont; } } } /// 遍历压力单元. 拼装矩阵和右端项. for (the_element_p = fem_space_p.beginElement(); the_element_p != end_element_p; ++the_element_p) { const std::vector<int>& element_dof_p = the_element_p->dof(); int n_element_dof_p = the_element_p->n_dof(); for (int i = 0; i < n_element_dof_p; ++i) { int idx_p = the_element_p->index(); int n_chi = index_ele_p2v[idx_p].size(); for (int k = 0; k < n_chi; k++) { /// 速度单元信息. Element<double, DIM> &v_element = fem_space_v.element(index_ele_p2v[idx_p][k]); /// 几何信息. double volume = v_element.templateElement().volume(); const QuadratureInfo<DIM>& quad_info = v_element.findQuadratureInfo(4); std::vector<double> jacobian = v_element.local_to_global_jacobian(quad_info.quadraturePoint()); int n_quadrature_point = quad_info.n_quadraturePoint(); std::vector<Point<DIM> > q_point = v_element.local_to_global(quad_info.quadraturePoint()); std::vector<std::vector<double> > vx_gradient = v_h[0].gradient(q_point, v_element); std::vector<std::vector<double> > vy_gradient = v_h[1].gradient(q_point, v_element); std::vector<double> vx_value = v_h[0].value(q_point, v_element); std::vector<double> vy_value = v_h[1].value(q_point, v_element); /// 压力单元信息. std::vector<std::vector<double> > basis_value_p = the_element_p->basis_function_value(q_point); /// 具体拼装. for (int l = 0; l < n_quadrature_point; ++l) { double Jxw = quad_info.weight(l) * jacobian[l] * volume; /// 右端项还是零. 源项和 Neumann 条件. double rhs_cont = Jxw * basis_value_p[i][l] * (vx_gradient[l][0] + vy_gradient[l][1]); rhs(2 * n_dof_v + element_dof_p[i]) += rhs_cont; } } } } /// 初始化未知量. Vector<double> x(n_total_dof); /// 边界条件处理. boundaryValueNS(x); std::cout << "nonlinear res:" << std::endl; double revx = 0.0; for (int i = 0; i < n_dof_v; ++i) revx += rhs(i) * rhs(i); std::cout << "vx re: " << sqrt(revx) << std::endl; double revy = 0.0; for (int i = 0; i < n_dof_v; ++i) revy += rhs(i + n_dof_v) * rhs(i + n_dof_v); std::cout << "vy re: " << sqrt(revy) << std::endl; double rep = 0.0; for (int i = 0; i < n_dof_p; ++i) rep += rhs(i + 2 * n_dof_v) * rhs(i + 2 * n_dof_v); std::cout << "p re: " << sqrt(rep) << std::endl; double re = revx + revy +rep; std::cout << "total re: " << sqrt(re) << std::endl; std::cout << "pause ..." << std::endl; getchar(); if (sqrt(re) < n_tol) { std::cout << "Covergence with residual: " << sqrt(re) << " in step " << iteration_times << std::endl; break; } std::cout << "Building precondition matrix ..." << std::endl; /// 矩阵求解. SparseMatrix<double> mat_Axx(sp_vxvx); SparseMatrix<double> mat_Ayy(sp_vyvy); SparseMatrix<double> mat_Wxy(sp_vyvx); SparseMatrix<double> mat_Wyx(sp_vxvy); SparseMatrix<double> mat_BTx(sp_pvx); SparseMatrix<double> mat_BTy(sp_pvy); for (int i = 0; i < sp_vxvx.n_nonzero_elements(); ++i) mat_Axx.global_entry(i) = matrix.global_entry(index_vxvx[i]); for (int i = 0; i < sp_vyvy.n_nonzero_elements(); ++i) mat_Ayy.global_entry(i) = matrix.global_entry(index_vyvy[i]); for (int i = 0; i < sp_vyvx.n_nonzero_elements(); ++i) mat_Wxy.global_entry(i) = matrix.global_entry(index_vyvx[i]); for (int i = 0; i < sp_vxvy.n_nonzero_elements(); ++i) mat_Wyx.global_entry(i) = matrix.global_entry(index_vxvy[i]); for (int i = 0; i < sp_pvx.n_nonzero_elements(); ++i) mat_BTx.global_entry(i) = matrix.global_entry(index_pvx[i]); for (int i = 0; i < sp_pvy.n_nonzero_elements(); ++i) mat_BTy.global_entry(i) = matrix.global_entry(index_pvy[i]); std::cout << "Precondition matrix builded!" << std::endl; /// 矩阵求解. dealii::SolverControl solver_control (4000000, l_tol); SolverGMRES<Vector<double> >::AdditionalData para(2000, false, true); SolverGMRES<Vector<double> > gmres (solver_control, para); std::cout << "Begin to solve linear system ..." << std::endl; // gmres.solve (matrix, x, rhs, navierstokes_preconditioner); gmres.solve (matrix, x, rhs, PreconditionIdentity()); /// 调试块: 直接观测真实残量. // Vector<double> tmp(n_total_dof); // matrix.vmult(tmp, x); // tmp -= rhs; // std::cout << "linear residual: " << tmp.l2_norm() << std::endl; // getchar(); FEMFunction<double, DIM> res_vx(fem_space_v); FEMFunction<double, DIM> res_vy(fem_space_v); FEMFunction<double, DIM> res_p(fem_space_p); /// 更新数值解. for (int i = 0; i < n_dof_v; ++i) { v_h[0](i) += x(i); res_vx(i) = x(i); v_h[1](i) += x(i + n_dof_v); res_vy(i) = x(i+ n_dof_v); } for (int i = 0; i < n_dof_p; ++i) { p_h(i) += x(i + 2 * n_dof_v); res_p(i) = x(i + 2 * n_dof_v); } double r_vx = Functional::L2Norm(res_vx, 1); double r_vy = Functional::L2Norm(res_vy, 1); double r_p = Functional::L2Norm(res_p, 1); /// 这个其实是更新... error_N = r_vx + r_vy + r_p; std::cout.setf(std::ios::fixed); std::cout.precision(20); std::cout << "updated vx: " << r_vx << std::endl; std::cout << "updated vy: " << r_vy << std::endl; std::cout << "updated p: " << r_p << std::endl; std::cout << "total updated: " << error_N << std::endl; std::cout << "step " << iteration_times << ", total updated: " << error_N << ", GMRES stpes: " << solver_control.last_step() << std::endl; iteration_times++; if (iteration_times > 10) { std::cout << "Disconvergence at step 10." << std::endl; break; } } };
void ISOP2P1::solveStokes() { buildStokesSys(); std::cout << "Stokes system builded." << std::endl; int n_dof_v = fem_space_v.n_dof(); int n_dof_p = fem_space_p.n_dof(); int n_total_dof = 2 * n_dof_v + n_dof_p; /// 构建系数矩阵和右端项. /// 这个存放整体的数值解. 没有分割成 u_h[0], u_h[1] 和 p_h. Vector<double> x(n_total_dof); /// 将数值解合并一个向量便于边界处理. for (int i = 0; i < n_dof_v; ++i) { x(i) = v_h[0](i); x(n_dof_v + i) = v_h[1](i); } for (int i = 0; i < n_dof_p; ++i) x(2 * n_dof_v + i) = p_h(i); rhs.reinit(n_total_dof); /// 边界条件一起处理了. 修改了matrix, rhs和x. boundaryValueStokes(x, t); std::cout << "Stokes boundary applied." << std::endl; // /// 矩阵求解. // dealii::SolverControl solver_control (400000, l_tol * rhs.l2_norm(), 1); // /// 不完全LU分解. // dealii::SparseILU<double> preconditioner; // preconditioner.initialize(matrix); // /// 求解Stokes方程, MinRes要比GMRES求解器要快很多, // /// 当矩阵规模稍微大点的时候,GMRES会出现不收敛的情况. // SolverMinRes<Vector<double> > minres (solver_control); // SolverGMRES<Vector<double> >::AdditionalData para(1000, false, true); // /// 不用para算不动, 但是均匀网格下可以不用para,算其它的例子也不用para,是不是跟计算区域有关系? // SolverGMRES<Vector<double> > gmres(solver_control, para); // // /// 移动网格和时间发展中,这个预处理失效. // // StokesPreconditioner preconditioner; // // /// 预处理矩阵. // // SparseMatrix<double> matrix_vxvx(sp_vxvx); // // SparseMatrix<double> matrix_vyvy(sp_vyvy); // // /// 这里从 Stokes 取是因为加了边界条件. // // for (int i = 0; i < sp_vxvx.n_nonzero_elements(); ++i) // // matrix_vxvx.global_entry(i) = matrix.global_entry(index_vxvx[i]); // // for (int i = 0; i < sp_vyvy.n_nonzero_elements(); ++i) // // matrix_vyvy.global_entry(i) = matrix.global_entry(index_vyvy[i]); // // preconditioner.initialize(mat_v_stiff, mat_v_stiff, mat_p_mass); // clock_t t_cost = clock(); // minres.solve (matrix, x, rhs, PreconditionIdentity()); // // gmres.solve(matrix, x, rhs, preconditioner); // t_cost = clock() - t_cost; // std::cout << "time cost: " << (((float)t_cost) / CLOCKS_PER_SEC) << std::endl; // /// 将整体数值解分割成速度和压力. // for (int i = 0; i < n_dof_v; ++i) // { // v_h[0](i) = x(i); // v_h[1](i) = x(i + n_dof_v); // } // for (int i = 0; i < n_dof_p; ++i) // p_h(i) = x(i + 2 * n_dof_v); // /// 计算误差, t为时间参数. // computeError(t); // /// debug, 计算惨量的L2 norm。 // Vector<double> res(n_total_dof); // matrix.vmult(res, x); // res *= -1; // res += rhs; // std::cout << "res_l2norm =" << res.l2_norm() << std::endl; /// 矩阵求解. SparseMatrix<double> mat_BTx(sp_pvx); SparseMatrix<double> mat_BTy(sp_pvy); SparseMatrix<double> mat_Bx(sp_vxp); SparseMatrix<double> mat_By(sp_vyp); SparseMatrix<double> mat_Ax(sp_vxvx); SparseMatrix<double> mat_Ay(sp_vyvy); for (int i = 0; i < sp_vxvx.n_nonzero_elements(); ++i) mat_Ax.global_entry(i) = matrix.global_entry(index_vxvx[i]); for (int i = 0; i < sp_vyvy.n_nonzero_elements(); ++i) mat_Ay.global_entry(i) = matrix.global_entry(index_vyvy[i]); for (int i = 0; i < sp_pvx.n_nonzero_elements(); ++i) mat_BTx.global_entry(i) = matrix.global_entry(index_pvx[i]); for (int i = 0; i < sp_pvy.n_nonzero_elements(); ++i) mat_BTy.global_entry(i) = matrix.global_entry(index_pvy[i]); for (int i = 0; i < sp_vxp.n_nonzero_elements(); ++i) mat_Bx.global_entry(i) = matrix.global_entry(index_vxp[i]); for (int i = 0; i < sp_vyp.n_nonzero_elements(); ++i) mat_By.global_entry(i) = matrix.global_entry(index_vyp[i]); /// alp对AMGSolver的初始化影响比较大, 如果取得很小,初始化很快. double alp = dt * viscosity; AMGSolver solverQ(mat_Ax, 1.0e-12, 3, 100, 0.382, alp); // AMGSolver solverQ(mat_Ax); InverseMatrix AInv(mat_Ax, solverQ); /// 这里没有对速度质量阵进行边界条件处理. InverseMatrix QInv(mat_v_mass, solverQ); SchurComplement schur_complement(mat_BTx, mat_BTy, mat_Bx, mat_By, mat_v_mass, QInv, QInv); AMGSolver solverP(mat_p_mass); ApproxSchurComplement asc(mat_p_mass, solverQ); LSCPreconditioner lsc_preconditioner(mat_BTx, mat_BTy, mat_Bx, mat_By, mat_Ax, mat_Ax, mat_v_mass, schur_complement, asc, QInv, AInv, AInv); /// 矩阵求解. dealii::SolverControl solver_control (400000, l_Euler_tol * rhs.l2_norm(), 0); SolverMinRes<Vector<double> > minres(solver_control); minres.solve(matrix, x, rhs, lsc_preconditioner); /// 将整体数值解分割成速度和压力. for (int i = 0; i < n_dof_v; ++i) { v_h[0](i) = x(i); v_h[1](i) = x(i + n_dof_v); } for (int i = 0; i < n_dof_p; ++i) p_h(i) = x(i + 2 * n_dof_v); /// 计算误差, t为时间参数. computeError(t); // /// 矩阵求解. // SparseMatrix<double> mat_BTx(sp_pvx); // SparseMatrix<double> mat_BTy(sp_pvy); // SparseMatrix<double> mat_Bx(sp_vxp); // SparseMatrix<double> mat_By(sp_vyp); // SparseMatrix<double> mat_Ax(sp_vxvx); // SparseMatrix<double> mat_Ay(sp_vyvy); // for (int i = 0; i < sp_vxvx.n_nonzero_elements(); ++i) // mat_Ax.global_entry(i) = matrix.global_entry(index_vxvx[i]); // for (int i = 0; i < sp_vyvy.n_nonzero_elements(); ++i) // mat_Ay.global_entry(i) = matrix.global_entry(index_vyvy[i]); // for (int i = 0; i < sp_pvx.n_nonzero_elements(); ++i) // mat_BTx.global_entry(i) = matrix.global_entry(index_pvx[i]); // for (int i = 0; i < sp_pvy.n_nonzero_elements(); ++i) // mat_BTy.global_entry(i) = matrix.global_entry(index_pvy[i]); // for (int i = 0; i < sp_vxp.n_nonzero_elements(); ++i) // mat_Bx.global_entry(i) = matrix.global_entry(index_vxp[i]); // for (int i = 0; i < sp_vyp.n_nonzero_elements(); ++i) // mat_By.global_entry(i) = matrix.global_entry(index_vyp[i]); // Vector<double> tmp1(n_dof_v); // Vector<double> tmp2(n_dof_v); // Vector<double> rhs_vx(n_dof_v); // Vector<double> rhs_vy(n_dof_v); // Vector<double> rhs_p(n_dof_p); // for (int i = 0; i < n_dof_v; ++i) // { // rhs_vx(i) = rhs(i); // v_h[0](i) = x(i); // rhs_vy(i) = rhs(n_dof_v + i); // v_h[1](i) = x(n_dof_v + i); // } // for (int i = 0; i < n_dof_p; ++i) // { // rhs_p(i) = rhs(2 * n_dof_v + i); // p_h(i) = x(2 * n_dof_v + i); // } // Vector<double> schur_rhs (n_dof_p); // AMGSolver solverQ(mat_Ax); // InverseMatrix M(mat_Ax, solverQ); // M.vmult (tmp1, rhs_vx); // M.vmult (tmp2, rhs_vy); // mat_Bx.vmult(schur_rhs, tmp1); // mat_By.vmult_add(schur_rhs, tmp2); // schur_rhs -= rhs_p; // SchurComplement schur_complement(mat_BTx, mat_BTy, mat_Bx, mat_By, mat_v_mass, M, M, dt); // SolverControl solver_control_cg (n_dof_p * 2, // 1e-12*schur_rhs.l2_norm()); // SolverCG<> cg (solver_control_cg); // AMGSolver AQ(mat_p_mass); // ApproxSchurComplement asc(mat_p_mass, AQ); // cg.solve (schur_complement, p_h, schur_rhs, asc); // // cg.solve (schur_complement, p_h, schur_rhs, PreconditionIdentity()); // std::cout << solver_control_cg.last_step() // << " CG Schur complement iterations to obtain convergence." // << std::endl; // mat_BTx.vmult(tmp1, *dynamic_cast<const Vector<double>* >(&p_h)); // mat_BTy.vmult(tmp2, *dynamic_cast<const Vector<double>* >(&p_h)); // tmp1 *= -1; // tmp2 *= -1; // tmp1 += rhs_vx; // tmp2 += rhs_vy; // M.vmult(v_h[0], tmp1); // M.vmult(v_h[1], tmp2); // std::cout << "Stokes system solved." << std::endl; // /// 计算误差, t为时间参数. // computeError(t); // /// debug, 计算惨量的L2 norm。 // Vector<double> res(n_total_dof); // matrix.vmult(res, x); // res *= -1; // res += rhs; // std::cout << "res_l2norm =" << res.l2_norm() << std::endl; };
void ISOP2P1::stepForwardLinearizedEuler() { int n_dof_v = fem_space_v.n_dof(); int n_dof_p = fem_space_p.n_dof(); int n_total_dof = 2 * n_dof_v + n_dof_p; matrix.reinit(sp_stokes); /// (0, 0) for (int i = 0; i < sp_vxvx.n_nonzero_elements(); ++i) matrix.global_entry(index_vxvx[i]) = viscosity * mat_v_stiff.global_entry(i) + (1.0 / dt) * mat_v_mass.global_entry(i); /// (1, 1) for (int i = 0; i < sp_vyvy.n_nonzero_elements(); ++i) matrix.global_entry(index_vyvy[i]) = viscosity * mat_v_stiff.global_entry(i) + (1.0 / dt) * mat_v_mass.global_entry(i); // /// (0, 2) for (int i = 0; i < sp_pvx.n_nonzero_elements(); ++i) matrix.global_entry(index_pvx[i]) = mat_pvx_divT.global_entry(i); // /// (1, 2) for (int i = 0; i < sp_pvy.n_nonzero_elements(); ++i) matrix.global_entry(index_pvy[i]) = mat_pvy_divT.global_entry(i); // /// (2, 0) for (int i = 0; i < sp_vxp.n_nonzero_elements(); ++i) matrix.global_entry(index_vxp[i]) = mat_vxp_div.global_entry(i); // /// (2, 1) for (int i = 0; i < sp_vyp.n_nonzero_elements(); ++i) matrix.global_entry(index_vyp[i]) = mat_vyp_div.global_entry(i); rhs.reinit(n_total_dof); FEMSpace<double,2>::ElementIterator the_element_v = fem_space_v.beginElement(); FEMSpace<double,2>::ElementIterator end_element_v = fem_space_v.endElement(); FEMSpace<double,2>::ElementIterator the_element_p = fem_space_p.beginElement(); FEMSpace<double,2>::ElementIterator end_element_p = fem_space_p.endElement(); /// 遍历速度单元, 拼装相关系数矩阵和右端项. for (the_element_v = fem_space_v.beginElement(); the_element_v != end_element_v; ++the_element_v) { /// 当前单元信息. double volume = the_element_v->templateElement().volume(); /// 积分精度, u 和 p 都是 1 次, 梯度和散度 u 都是常数. 因此矩阵拼 /// 装时积分精度不用超过 1 次. (验证一下!) const QuadratureInfo<2>& quad_info = the_element_v->findQuadratureInfo(4); std::vector<double> jacobian = the_element_v->local_to_global_jacobian(quad_info.quadraturePoint()); int n_quadrature_point = quad_info.n_quadraturePoint(); std::vector<Point<2> > q_point = the_element_v->local_to_global(quad_info.quadraturePoint()); /// 速度单元信息. std::vector<std::vector<double> > basis_value_v = the_element_v->basis_function_value(q_point); std::vector<std::vector<std::vector<double> > > basis_gradient_v = the_element_v->basis_function_gradient(q_point); std::vector<double> vx_value = v_h[0].value(q_point, *the_element_v); std::vector<double> vy_value = v_h[1].value(q_point, *the_element_v); std::vector<double> fx_value = source_v[0].value(q_point, *the_element_v); std::vector<double> fy_value = source_v[1].value(q_point, *the_element_v); std::vector<std::vector<double> > vx_gradient = v_h[0].gradient(q_point, *the_element_v); std::vector<std::vector<double> > vy_gradient = v_h[1].gradient(q_point, *the_element_v); const std::vector<int>& element_dof_v = the_element_v->dof(); int n_element_dof_v = the_element_v->n_dof(); Element<double, 2> &p_element = fem_space_p.element(index_v2p[the_element_v->index()]); const std::vector<int>& element_dof_p = p_element.dof(); std::vector<std::vector<std::vector<double> > > basis_gradient_p = p_element.basis_function_gradient(q_point); std::vector<std::vector<double> > basis_value_p = p_element.basis_function_value(q_point); int n_element_dof_p = p_element.n_dof(); std::vector<double> p_value = p_h.value(q_point, p_element); for (int l = 0; l < n_quadrature_point; ++l) { double Jxw = quad_info.weight(l) * jacobian[l] * volume; for (int i = 0; i < n_element_dof_v; ++i) { for (int j = 0; j < n_element_dof_v; ++j) { double cont = Jxw * (vx_value[l] * basis_gradient_v[j][l][0] + vy_value[l] * basis_gradient_v[j][l][1]) * basis_value_v[i][l]; matrix.add(element_dof_v[i], element_dof_v[j], cont); matrix.add(n_dof_v + element_dof_v[i], n_dof_v + element_dof_v[j], cont); } /// 右端项. 这里可施加源项和 Neumann 条件. double rhs_cont = fx_value[l] * basis_value_v[i][l] + (1.0 / dt) * vx_value[l] * basis_value_v[i][l]; rhs_cont *= Jxw; rhs(element_dof_v[i]) += rhs_cont; rhs_cont = fy_value[l] * basis_value_v[i][l] + (1.0 / dt ) * vy_value[l] * basis_value_v[i][l]; rhs_cont *= Jxw; rhs(n_dof_v + element_dof_v[i]) += rhs_cont; } } } /// 构建系数矩阵和右端项. /// 这个存放整体的数值解. 没有分割成 u_h[0], u_h[1] 和 p_h. Vector<double> x(n_total_dof); for (int i = 0; i < n_dof_v; ++i) { x(i) = v_h[0](i); x(i + n_dof_v) = v_h[1](i); } for (int i = 0; i < n_dof_p; ++i) x(i + 2 * n_dof_v) = p_h(i); boundaryValueStokes(x); /// 矩阵求解. SparseMatrix<double> mat_Axx(sp_vxvx); SparseMatrix<double> mat_Ayy(sp_vyvy); SparseMatrix<double> mat_BTx(sp_pvx); SparseMatrix<double> mat_BTy(sp_pvy); for (int i = 0; i < sp_vxvx.n_nonzero_elements(); ++i) mat_Axx.global_entry(i) = matrix.global_entry(index_vxvx[i]); for (int i = 0; i < sp_vyvy.n_nonzero_elements(); ++i) mat_Ayy.global_entry(i) = matrix.global_entry(index_vyvy[i]); for (int i = 0; i < sp_pvx.n_nonzero_elements(); ++i) mat_BTx.global_entry(i) = matrix.global_entry(index_pvx[i]); for (int i = 0; i < sp_pvy.n_nonzero_elements(); ++i) mat_BTy.global_entry(i) = matrix.global_entry(index_pvy[i]); std::cout << "Precondition matrix builded!" << std::endl; // NSPreconditioner preconditioner_ns; // preconditioner_ns.initialize(mat_Axx, // mat_Ayy, // mat_BTx, // mat_BTy, // mat_p_mass); clock_t t_cost = clock(); dealii::SolverControl solver_control (4000000, l_tol, check); SolverGMRES<Vector<double> >::AdditionalData para(2000, false, true); SolverGMRES<Vector<double> > gmres (solver_control, para); gmres.solve (matrix, x, rhs, PreconditionIdentity()); t_cost = clock() - t_cost; std::cout << "time cost: " << (((float)t_cost) / CLOCKS_PER_SEC) << std::endl; /// 将整体数值解分割成速度和压力. for (int i = 0; i < n_dof_v; ++i) { v_h[0](i) = x(i); v_h[1](i) = x(i + n_dof_v); } for (int i = 0; i < n_dof_p; ++i) p_h(i) = x(i + 2 * n_dof_v); };