Esempio n. 1
0
static void get_Delaunay_shortest_vectors( double basis[4][3],
					   const double symprec )
{
  int i, j;
  double tmpmat[3][3], b[7][3], tmpvec[3];
  
  /* Search in the set {b1, b2, b3, b4, b1+b2, b2+b3, b3+b1} */
  for ( i = 0; i < 4; i++ ) {
    for ( j = 0; j < 3; j++ ) {
      b[i][j] = basis[i][j];
    }
  }
  
  for ( i = 0; i < 3; i++ ) {
    b[4][i] = basis[0][i] + basis[1][i];
  }
  for ( i = 0; i < 3; i++ ) {
    b[5][i] = basis[1][i] + basis[2][i];
  }
  for ( i = 0; i < 3; i++ ) {
    b[6][i] = basis[2][i] + basis[0][i];
  }
  
  /* Bubble sort */
  for ( i = 0; i < 6; i++ ) {
    for ( j = 0; j < 6; j++ ) {
      if ( mat_norm_squared_d3( b[j] ) > mat_norm_squared_d3( b[j+1] ) ) {
	mat_copy_vector_d3( tmpvec, b[j] );
	mat_copy_vector_d3( b[j], b[j+1] );
	mat_copy_vector_d3( b[j+1], tmpvec );
      }
    }
  }

  for ( i = 2; i < 7; i++ ) {
    for ( j = 0; j < 3; j++ ) {
      tmpmat[j][0] = b[0][j];
      tmpmat[j][1] = b[1][j];
      tmpmat[j][2] = b[i][j];
    }
    if ( mat_Dabs( mat_get_determinant_d3( tmpmat ) ) > symprec ) {
      for ( j = 0; j < 3; j++ ) {
	basis[0][j] = b[0][j];
	basis[1][j] = b[1][j];
	basis[2][j] = b[i][j];
      }
      break;
    }
  }
}
Esempio n. 2
0
int cel_is_overlap( const double a[3],
		    const double b[3],
		    SPGCONST double lattice[3][3],
		    const double symprec )
{
  int i;
  double v_diff[3];

  for ( i = 0; i < 3; i++ ) {
    v_diff[i] = a[i] - b[i];
    v_diff[i] -= mat_Nint( v_diff[i] );
  }

  mat_multiply_matrix_vector_d3( v_diff, lattice, v_diff );
  if ( mat_norm_squared_d3( v_diff ) < symprec*symprec ) {
    return 1;
  } else {
    return 0;
  }
}
Esempio n. 3
0
static int get_ir_reciprocal_mesh(int grid_address[][3],
				  int map[],
				  const int mesh[3],
				  const int is_shift[3],
				  const MatINT *rot_reciprocal)
{
  /* In the following loop, mesh is doubled. */
  /* Even and odd mesh numbers correspond to */
  /* is_shift[i] are 0 or 1, respectively. */
  /* is_shift = [0,0,0] gives Gamma center mesh. */
  /* grid: reducible grid points */
  /* map: the mapping from each point to ir-point. */

  int i, j, k, l, grid_point, grid_point_rot, num_ir = 0;
  int address[3], address_double[3], address_double_rot[3];

  /* "-1" means the element is not touched yet. */
  for (i = 0; i < mesh[0] * mesh[1] * mesh[2]; i++) {
    map[i] = -1;
  }

#ifndef GRID_ORDER_XYZ
  for (i = 0; i < mesh[2]; i++) {
    for (j = 0; j < mesh[1]; j++) {
      for (k = 0; k < mesh[0]; k++) {
	address[0] = k;
	address[1] = j;
	address[2] = i;
#else
  for (i = 0; i < mesh[0]; i++) {
    for (j = 0; j < mesh[1]; j++) {
      for (k = 0; k < mesh[2]; k++) {
	address[0] = i;
	address[1] = j;
	address[2] = k;
#endif	
	for (l = 0; l < 3; l++) {
	  address_double[l] = address[l] * 2 + is_shift[l];
	}
	grid_point = get_grid_point_double_mesh(address_double, mesh);
	reduce_grid_address(grid_address[grid_point], address, mesh);

	for (l = 0; l < rot_reciprocal->size; l++) {
	  mat_multiply_matrix_vector_i3(address_double_rot,
					rot_reciprocal->mat[l],
					address_double);
	  grid_point_rot = get_grid_point_double_mesh(address_double_rot, mesh);

	  if (grid_point_rot > -1) { /* Invalid if even --> odd or odd --> even */
	    if (map[grid_point_rot] > -1) {
	      map[grid_point] = map[grid_point_rot];
	      break;
	    }
	  }
	}
	
	if (map[grid_point] == -1) {
	  map[grid_point] = grid_point;
	  num_ir++;
	}
      }
    }
  }

  return num_ir;
}

static int
get_ir_reciprocal_mesh_openmp(int grid_address[][3],
			      int map[],
			      const int mesh[3],
			      const int is_shift[3],
			      const MatINT * rot_reciprocal)
{
  int i, j, grid_point, grid_point_rot, num_ir;
  int address[3], address_double[3], address_double_rot[3];

#pragma omp parallel for private(j, grid_point, grid_point_rot, address, address_double, address_double_rot)
  for (i = 0; i < mesh[0] * mesh[1] * mesh[2]; i++) {
#ifndef GRID_ORDER_XYZ
    /* address[2] * mesh[0] * mesh[1] + address[1] * mesh[0] + address[0]; */
    address[0] = i % mesh[0];
    address[2] = i / (mesh[0] * mesh[1]);
    address[1] = (i - address[2] * mesh[0] * mesh[1]) / mesh[0];
#else
    /* address[0] * mesh[1] * mesh[2] + address[1] * mesh[2] + address[2]; */
    address[2] = i % mesh[2];
    address[0] = i / (mesh[1] * mesh[2]);
    address[1] = (i - address[0] * mesh[1] * mesh[2]) / mesh[2];
#endif	
    for (j = 0; j < 3; j++) {
      address_double[j] = address[j] * 2 + is_shift[j];
    }

    grid_point = get_grid_point_double_mesh(address_double, mesh);
    map[grid_point] = grid_point;
    reduce_grid_address(grid_address[grid_point], address, mesh);

    for (j = 0; j < rot_reciprocal->size; j++) {
      mat_multiply_matrix_vector_i3(address_double_rot,
				    rot_reciprocal->mat[j],
				    address_double);
      grid_point_rot = get_grid_point_double_mesh(address_double_rot, mesh);

      if (grid_point_rot > -1) { /* Invalid if even --> odd or odd --> even */
	if (grid_point_rot < map[grid_point]) {
	  map[grid_point] = grid_point_rot;
	}
      }
    }
  }

  num_ir = 0;

#pragma omp parallel for reduction(+:num_ir)
  for (i = 0; i < mesh[0] * mesh[1] * mesh[2]; i++) {
    if (map[i] == i) {
      num_ir++;
    }
  }
  
  return num_ir;
}

/* Relocate grid addresses to first Brillouin zone */
/* bz_grid_address[prod(mesh + 1)][3] */
/* bz_map[prod(mesh * 2)] */
static int relocate_BZ_grid_address(int bz_grid_address[][3],
				    int bz_map[],
				    SPGCONST int grid_address[][3],
				    const int mesh[3],
				    SPGCONST double rec_lattice[3][3],
				    const int is_shift[3])
{
  double tolerance, min_distance;
  double q_vector[3], distance[KPT_NUM_BZ_SEARCH_SPACE];
  int bzmesh[3], bz_address_double[3];
  int i, j, k, min_index, boundary_num_gp, total_num_gp, bzgp, gp;

  tolerance = get_tolerance_for_BZ_reduction(rec_lattice, mesh);
  for (i = 0; i < 3; i++) {
    bzmesh[i] = mesh[i] * 2;
  }
  for (i = 0; i < bzmesh[0] * bzmesh[1] * bzmesh[2]; i++) {
    bz_map[i] = -1;
  }
  
  boundary_num_gp = 0;
  total_num_gp = mesh[0] * mesh[1] * mesh[2];
  for (i = 0; i < total_num_gp; i++) {
    for (j = 0; j < KPT_NUM_BZ_SEARCH_SPACE; j++) {
      for (k = 0; k < 3; k++) {
	q_vector[k] = 
	  ((grid_address[i][k] + kpt_bz_search_space[j][k] * mesh[k]) * 2 +
	   is_shift[k]) / ((double)mesh[k]) / 2;
      }
      mat_multiply_matrix_vector_d3(q_vector, rec_lattice, q_vector);
      distance[j] = mat_norm_squared_d3(q_vector);
    }
    min_distance = distance[0];
    min_index = 0;
    for (j = 1; j < KPT_NUM_BZ_SEARCH_SPACE; j++) {
      if (distance[j] < min_distance) {
	min_distance = distance[j];
	min_index = j;
      }
    }

    for (j = 0; j < KPT_NUM_BZ_SEARCH_SPACE; j++) {
      if (distance[j] < min_distance + tolerance) {
	if (j == min_index) {
	  gp = i;
	} else {
	  gp = boundary_num_gp + total_num_gp;
	}
	
	for (k = 0; k < 3; k++) {
	  bz_grid_address[gp][k] = 
	    grid_address[i][k] + kpt_bz_search_space[j][k] * mesh[k];
	  bz_address_double[k] = bz_grid_address[gp][k] * 2 + is_shift[k];
	}
	bzgp = get_grid_point_double_mesh(bz_address_double, bzmesh);
	bz_map[bzgp] = gp;
	if (j != min_index) {
	  boundary_num_gp++;
	}
      }
    }
  }

  return boundary_num_gp + total_num_gp;
}

static double get_tolerance_for_BZ_reduction(SPGCONST double rec_lattice[3][3],
					     const int mesh[3])
{
  int i, j;
  double tolerance;
  double length[3];
  
  for (i = 0; i < 3; i++) {
    length[i] = 0;
    for (j = 0; j < 3; j++) {
      length[i] += rec_lattice[j][i] * rec_lattice[j][i];
    }
    length[i] /= mesh[i] * mesh[i];
  }
  tolerance = length[0];
  for (i = 1; i < 3; i++) {
    if (tolerance < length[i]) {
      tolerance = length[i];
    }
  }
  tolerance *= 0.01;
  
  return tolerance;
}
Esempio n. 4
0
/* bz_map[prod(mesh * 2)] */
static int relocate_BZ_grid_address(int bz_grid_address[][3],
				    int bz_map[],
				    SPGCONST int grid_address[][3],
				    const int mesh[3],
				    SPGCONST double rec_lattice[3][3],
				    const int is_shift[3])
{
  double tolerance, min_distance;
  double q_vector[3], distance[KPT_NUM_BZ_SEARCH_SPACE];
  int bzmesh[3], bz_address_double[3];
  int i, j, k, min_index, boundary_num_gp, total_num_gp, bzgp, gp;

  tolerance = get_tolerance_for_BZ_reduction(rec_lattice, mesh);
  for (i = 0; i < 3; i++) {
    bzmesh[i] = mesh[i] * 2;
  }
  for (i = 0; i < bzmesh[0] * bzmesh[1] * bzmesh[2]; i++) {
    bz_map[i] = -1;
  }
  
  boundary_num_gp = 0;
  total_num_gp = mesh[0] * mesh[1] * mesh[2];

  /* Multithreading doesn't work for this loop since gp calculated */
  /* with boundary_num_gp is unstable to store bz_grid_address. */
  for (i = 0; i < total_num_gp; i++) {
    for (j = 0; j < KPT_NUM_BZ_SEARCH_SPACE; j++) {
      for (k = 0; k < 3; k++) {
	q_vector[k] = 
	  ((grid_address[i][k] + bz_search_space[j][k] * mesh[k]) * 2 +
	   is_shift[k]) / ((double)mesh[k]) / 2;
      }
      mat_multiply_matrix_vector_d3(q_vector, rec_lattice, q_vector);
      distance[j] = mat_norm_squared_d3(q_vector);
    }
    min_distance = distance[0];
    min_index = 0;
    for (j = 1; j < KPT_NUM_BZ_SEARCH_SPACE; j++) {
      if (distance[j] < min_distance) {
	min_distance = distance[j];
	min_index = j;
      }
    }

    for (j = 0; j < KPT_NUM_BZ_SEARCH_SPACE; j++) {
      if (distance[j] < min_distance + tolerance) {
	if (j == min_index) {
	  gp = i;
	} else {
	  gp = boundary_num_gp + total_num_gp;
	}
	
	for (k = 0; k < 3; k++) {
	  bz_grid_address[gp][k] = 
	    grid_address[i][k] + bz_search_space[j][k] * mesh[k];
	  bz_address_double[k] = bz_grid_address[gp][k] * 2 + is_shift[k];
	}
	bzgp = kgd_get_grid_point_double_mesh(bz_address_double, bzmesh);
	bz_map[bzgp] = gp;
	if (j != min_index) {
	  boundary_num_gp++;
	}
      }
    }
  }

  return boundary_num_gp + total_num_gp;
}
Esempio n. 5
0
static int get_ir_reciprocal_mesh(int grid_address[][3],
				  int map[],
				  const int mesh[3],
				  const int is_shift[3],
				  const MatINT *rot_reciprocal)
{
  /* In the following loop, mesh is doubled. */
  /* Even and odd mesh numbers correspond to */
  /* is_shift[i] are 0 or 1, respectively. */
  /* is_shift = [0,0,0] gives Gamma center mesh. */
  /* grid: reducible grid points */
  /* map: the mapping from each point to ir-point. */

  int i, j, k, l, grid_point, grid_point_rot, num_ir = 0;
  int address_double[3], address_rot[3], mesh_double[3];

  for (i = 0; i < 3; i++) {
    mesh_double[i] = mesh[i] * 2;
  }

  /* "-1" means the element is not touched yet. */
  for (i = 0; i < mesh[0] * mesh[1] * mesh[2]; i++) {
    map[i] = -1;
  }

#ifndef GRID_ORDER_XYZ
  for (i = 0; i < mesh[2]; i++) {
    for (j = 0; j < mesh[1]; j++) {
      for (k = 0; k < mesh[0]; k++) {
	address_double[0] = k * 2 + is_shift[0];
	address_double[1] = j * 2 + is_shift[1];
	address_double[2] = i * 2 + is_shift[2];
#else
  for (i = 0; i < mesh[0]; i++) {
    for (j = 0; j < mesh[1]; j++) {
      for (k = 0; k < mesh[2]; k++) {
  	address_double[0] = i * 2 + is_shift[0];
  	address_double[1] = j * 2 + is_shift[1];
  	address_double[2] = k * 2 + is_shift[2];
#endif	

	grid_point = get_grid_point_double_mesh(address_double, mesh);
	get_grid_address(grid_address[grid_point], address_double, mesh);

	for (l = 0; l < rot_reciprocal->size; l++) {
	  mat_multiply_matrix_vector_i3(address_rot,
					rot_reciprocal->mat[l],
					address_double);
	  get_vector_modulo(address_rot, mesh_double);
	  grid_point_rot = get_grid_point_double_mesh(address_rot, mesh);

	  if (grid_point_rot > -1) { /* Invalid if even --> odd or odd --> even */
	    if (map[grid_point_rot] > -1) {
	      map[grid_point] = map[grid_point_rot];
	      break;
	    }
	  }
	}
	
	if (map[grid_point] == -1) {
	  map[grid_point] = grid_point;
	  num_ir++;
	}
      }
    }
  }

  return num_ir;
}

static int
get_ir_reciprocal_mesh_openmp(int grid_address[][3],
			      int map[],
			      const int mesh[3],
			      const int is_shift[3],
			      const MatINT * rot_reciprocal)
{
  int i, j, k, l, grid_point, grid_point_rot, num_ir;
  int address_double[3], address_rot[3], mesh_double[3];

  for (i = 0; i < 3; i++) {
    mesh_double[i] = mesh[i] * 2;
  }

#ifndef GRID_ORDER_XYZ
#pragma omp parallel for private(j, k, l, grid_point, grid_point_rot, address_double, address_rot)
  for (i = 0; i < mesh[2]; i++) {
    for (j = 0; j < mesh[1]; j++) {
      for (k = 0; k < mesh[0]; k++) {
	address_double[0] = k * 2 + is_shift[0];
	address_double[1] = j * 2 + is_shift[1];
	address_double[2] = i * 2 + is_shift[2];
#else
#pragma omp parallel for private(j, k, l, grid_point, grid_point_rot, address_double, address_rot)
  for (i = 0; i < mesh[0]; i++) {
    for (j = 0; j < mesh[1]; j++) {
      for (k = 0; k < mesh[2]; k++) {
  	address_double[0] = i * 2 + is_shift[0];
  	address_double[1] = j * 2 + is_shift[1];
  	address_double[2] = k * 2 + is_shift[2];
#endif	

	grid_point = get_grid_point_double_mesh(address_double, mesh);
	map[grid_point] = grid_point;
	get_grid_address(grid_address[grid_point], address_double, mesh);

	for (l = 0; l < rot_reciprocal->size; l++) {
	  mat_multiply_matrix_vector_i3(address_rot,
					rot_reciprocal->mat[l],
					address_double);
	  get_vector_modulo(address_rot, mesh_double);
	  grid_point_rot = get_grid_point_double_mesh(address_rot, mesh);

	  if (grid_point_rot > -1) { /* Invalid if even --> odd or odd --> even */
	    if (grid_point_rot < map[grid_point]) {
	      map[grid_point] = grid_point_rot;
	    }
	  }
	}
      }
    }
  }

  num_ir = 0;

#pragma omp parallel for reduction(+:num_ir)
  for (i = 0; i < mesh[0] * mesh[1] * mesh[2]; i++) {
    if (map[i] == i) {
      num_ir++;
    }
  }
  
  return num_ir;
}

/* Relocate grid addresses to first Brillouin zone */
/* bz_grid_address[prod(mesh + 1)][3] */
/* bz_map[prod(mesh * 2)] */
static int relocate_BZ_grid_address(int bz_grid_address[][3],
				    int bz_map[],
				    SPGCONST int grid_address[][3],
				    const int mesh[3],
				    SPGCONST double rec_lattice[3][3],
				    const int is_shift[3])
{
  double tolerance, min_distance;
  double q_vector[3], distance[NUM_DIM_SEARCH];
  int bzmesh[3], bzmesh_double[3], bz_address_double[3];
  int i, j, k, min_index, boundary_num_gp, total_num_gp, bzgp, gp;

  tolerance = get_tolerance_for_BZ_reduction(rec_lattice, mesh);
  for (i = 0; i < 3; i++) {
    bzmesh[i] = mesh[i] * 2;
    bzmesh_double[i] = bzmesh[i] * 2;
  }
  for (i = 0; i < bzmesh[0] * bzmesh[1] * bzmesh[2]; i++) {
    bz_map[i] = -1;
  }
  
  boundary_num_gp = 0;
  total_num_gp = mesh[0] * mesh[1] * mesh[2];
  for (i = 0; i < total_num_gp; i++) {
    for (j = 0; j < NUM_DIM_SEARCH; j++) {
      for (k = 0; k < 3; k++) {
	q_vector[k] = 
	  ((grid_address[i][k] + search_space[j][k] * mesh[k]) * 2 +
	   is_shift[k]) / ((double)mesh[k]) / 2;
      }
      mat_multiply_matrix_vector_d3(q_vector, rec_lattice, q_vector);
      distance[j] = mat_norm_squared_d3(q_vector);
    }
    min_distance = distance[0];
    min_index = 0;
    for (j = 1; j < NUM_DIM_SEARCH; j++) {
      if (distance[j] < min_distance) {
	min_distance = distance[j];
	min_index = j;
      }
    }

    for (j = 0; j < NUM_DIM_SEARCH; j++) {
      if (distance[j] < min_distance + tolerance) {
	if (j == min_index) {
	  gp = i;
	} else {
	  gp = boundary_num_gp + total_num_gp;
	}
	
	for (k = 0; k < 3; k++) {
	  bz_grid_address[gp][k] = 
	    grid_address[i][k] + search_space[j][k] * mesh[k];
	  bz_address_double[k] = bz_grid_address[gp][k] * 2 + is_shift[k];
	}
	get_vector_modulo(bz_address_double, bzmesh_double);
	bzgp = get_grid_point_double_mesh(bz_address_double, bzmesh);
	bz_map[bzgp] = gp;
	if (j != min_index) {
	  boundary_num_gp++;
	}
      }
    }
  }

  return boundary_num_gp + total_num_gp;
}

static double get_tolerance_for_BZ_reduction(SPGCONST double rec_lattice[3][3],
					     const int mesh[3])
{
  int i, j;
  double tolerance;
  double length[3];
  
  for (i = 0; i < 3; i++) {
    length[i] = 0;
    for (j = 0; j < 3; j++) {
      length[i] += rec_lattice[j][i] * rec_lattice[j][i];
    }
    length[i] /= mesh[i] * mesh[i];
  }
  tolerance = length[0];
  for (i = 1; i < 3; i++) {
    if (tolerance < length[i]) {
      tolerance = length[i];
    }
  }
  tolerance *= 0.01;
  
  return tolerance;
}
 
static int get_ir_triplets_at_q(int map_triplets[],
				int map_q[],
				int grid_address[][3],
				const int grid_point,
				const int mesh[3],
				const MatINT * rot_reciprocal)
{
  int i, j, num_grid, q_2, num_ir_q, num_ir_triplets, ir_grid_point;
  int mesh_double[3], is_shift[3];
  int address_double0[3], address_double1[3], address_double2[3];
  int *ir_grid_points, *third_q;
  double tolerance;
  double stabilizer_q[1][3];
  MatINT *rot_reciprocal_q;

  tolerance = 0.01 / (mesh[0] + mesh[1] + mesh[2]);
  num_grid = mesh[0] * mesh[1] * mesh[2];

  for (i = 0; i < 3; i++) {
    /* Only consider the gamma-point */
    is_shift[i] = 0;
    mesh_double[i] = mesh[i] * 2;
  }

  /* Search irreducible q-points (map_q) with a stabilizer */
  /* q */  
  grid_point_to_address_double(address_double0, grid_point, mesh, is_shift);
  for (i = 0; i < 3; i++) {
    stabilizer_q[0][i] =
      (double)address_double0[i] / mesh_double[i] - (address_double0[i] > mesh[i]);
  }

  rot_reciprocal_q = get_point_group_reciprocal_with_q(rot_reciprocal,
						       tolerance,
						       1,
						       stabilizer_q);
#ifdef _OPENMP
  num_ir_q = get_ir_reciprocal_mesh_openmp(grid_address,
					   map_q,
					   mesh,
					   is_shift,
					   rot_reciprocal_q);
#else
  num_ir_q = get_ir_reciprocal_mesh(grid_address,
				    map_q,
				    mesh,
				    is_shift,
				    rot_reciprocal_q);
#endif
  mat_free_MatINT(rot_reciprocal_q);

  third_q = (int*) malloc(sizeof(int) * num_ir_q);
  ir_grid_points = (int*) malloc(sizeof(int) * num_ir_q);
  num_ir_q = 0;
  for (i = 0; i < num_grid; i++) {
    if (map_q[i] == i) {
      ir_grid_points[num_ir_q] = i;
      num_ir_q++;
    }
    map_triplets[i] = -1;
  }

#pragma omp parallel for private(j, address_double1, address_double2)
  for (i = 0; i < num_ir_q; i++) {
    grid_point_to_address_double(address_double1,
				 ir_grid_points[i],
				 mesh,
				 is_shift); /* q' */
    for (j = 0; j < 3; j++) { /* q'' */
      address_double2[j] = - address_double0[j] - address_double1[j];
    }
    get_vector_modulo(address_double2, mesh_double);
    third_q[i] = get_grid_point_double_mesh(address_double2, mesh);
  }

  num_ir_triplets = 0;
  for (i = 0; i < num_ir_q; i++) {
    ir_grid_point = ir_grid_points[i];
    q_2 = third_q[i];
    if (map_triplets[map_q[q_2]] > -1) {
      map_triplets[ir_grid_point] = map_q[q_2];
    } else {
      map_triplets[ir_grid_point] = ir_grid_point;
      num_ir_triplets++;
    }
  }

#pragma omp parallel for
  for (i = 0; i < num_grid; i++) {
    map_triplets[i] = map_triplets[map_q[i]];
  }
  
  free(third_q);
  third_q = NULL;
  free(ir_grid_points);
  ir_grid_points = NULL;

  return num_ir_triplets;
}

static int get_BZ_triplets_at_q(int triplets[][3],
				const int grid_point,
				SPGCONST int bz_grid_address[][3],
				const int bz_map[],
				const int map_triplets[],
				const int num_map_triplets,
				const int mesh[3])
{
  int i, j, k, num_ir;
  int bz_address[3][3], bz_address_double[3], bzmesh[3], bzmesh_double[3];
  int *ir_grid_points;

  for (i = 0; i < 3; i++) {
    bzmesh[i] = mesh[i] * 2;
    bzmesh_double[i] = bzmesh[i] * 2;
  }

  num_ir = 0;
  ir_grid_points = (int*) malloc(sizeof(int) * num_map_triplets);
  for (i = 0; i < num_map_triplets; i++) {
    if (map_triplets[i] == i) {
      ir_grid_points[num_ir] = i;
      num_ir++;
    }
  }
 
#pragma omp parallel for private(j, k, bz_address, bz_address_double)
  for (i = 0; i < num_ir; i++) {
    for (j = 0; j < 3; j++) {
      bz_address[0][j] = bz_grid_address[grid_point][j];
      bz_address[1][j] = bz_grid_address[ir_grid_points[i]][j];
      bz_address[2][j] = - bz_address[0][j] - bz_address[1][j];
    }
    for (j = 2; j > -1; j--) {
      if (get_third_q_of_triplets_at_q(bz_address,
    				       j,
    				       bz_map,
    				       mesh,
    				       bzmesh,
    				       bzmesh_double) == 0) {
    	break;
      }
    }
    for (j = 0; j < 3; j++) {
      for (k = 0; k < 3; k++) {
	bz_address_double[k] = bz_address[j][k] * 2;
      }
      get_vector_modulo(bz_address_double, bzmesh_double);
      triplets[i][j] =
	bz_map[get_grid_point_double_mesh(bz_address_double, bzmesh)];
    }
  }

  free(ir_grid_points);
  
  return num_ir;
}

static int get_third_q_of_triplets_at_q(int bz_address[3][3],
					const int q_index,
					const int bz_map[],
					const int mesh[3],
					const int bzmesh[3],
					const int bzmesh_double[3])
{
  int i, j, smallest_g, smallest_index, sum_g, delta_g[3];
  int bzgp[NUM_DIM_SEARCH], bz_address_double[3];

  get_vector_modulo(bz_address[q_index], mesh);
  for (i = 0; i < 3; i++) {
    delta_g[i] = 0;
    for (j = 0; j < 3; j++) {
      delta_g[i] += bz_address[j][i];
    }
    delta_g[i] /= mesh[i];
  }
  
  for (i = 0; i < NUM_DIM_SEARCH; i++) {
    for (j = 0; j < 3; j++) {
      bz_address_double[j] = (bz_address[q_index][j] +
			   search_space[i][j] * mesh[j]) * 2;
    }
    for (j = 0; j < 3; j++) {
      if (bz_address_double[j] < 0) {
	bz_address_double[j] += bzmesh_double[j];
      }
    }
    get_vector_modulo(bz_address_double, bzmesh_double);
    bzgp[i] = bz_map[get_grid_point_double_mesh(bz_address_double, bzmesh)];
  }

  for (i = 0; i < NUM_DIM_SEARCH; i++) {
    if (bzgp[i] != -1) {
      goto escape;
    }
  }
  warning_print("******* Warning *******\n");
  warning_print(" No third-q was found.\n");
  warning_print("******* Warning *******\n");

 escape:

  smallest_g = 4;
  smallest_index = 0;

  for (i = 0; i < NUM_DIM_SEARCH; i++) {
    if (bzgp[i] > -1) { /* q'' is in BZ */
      sum_g = (abs(delta_g[0] + search_space[i][0]) +
	       abs(delta_g[1] + search_space[i][1]) +
	       abs(delta_g[2] + search_space[i][2]));
      if (sum_g < smallest_g) {
	smallest_index = i;
	smallest_g = sum_g;
      }
    }
  }

  for (i = 0; i < 3; i++) {
    bz_address[q_index][i] += search_space[smallest_index][i] * mesh[i];
  }

  return smallest_g;
}
Esempio n. 6
0
static int get_ir_reciprocal_mesh(int grid_address[][3],
				  int map[],
				  const int mesh[3],
				  const int is_shift[3],
				  SPGCONST PointSymmetry * point_symmetry)
{
  /* In the following loop, mesh is doubled. */
  /* Even and odd mesh numbers correspond to */
  /* is_shift[i] = 0 and 1, respectively. */
  /* is_shift = [0,0,0] gives Gamma center mesh. */
  /* grid: reducible grid points */
  /* map: the mapping from each point to ir-point. */

  int i, j, k, l, grid_point, grid_point_rot, num_ir = 0;
  int grid_double[3], grid_rot[3], mesh_double[3];

  for (i = 0; i < 3; i++) {
    mesh_double[i] = mesh[i] * 2;
  }

  /* "-1" means the element is not touched yet. */
  for (i = 0; i < mesh[0] * mesh[1] * mesh[2]; i++) {
    map[i] = -1;
  }

#ifndef GRID_ORDER_XYZ
  for (i = 0; i < mesh[2]; i++) {
    for (j = 0; j < mesh[1]; j++) {
      for (k = 0; k < mesh[0]; k++) {
	grid_double[0] = k * 2 + is_shift[0];
	grid_double[1] = j * 2 + is_shift[1];
	grid_double[2] = i * 2 + is_shift[2];
#else
  for (i = 0; i < mesh[0]; i++) {
    for (j = 0; j < mesh[1]; j++) {
      for (k = 0; k < mesh[2]; k++) {
  	grid_double[0] = i * 2 + is_shift[0];
  	grid_double[1] = j * 2 + is_shift[1];
  	grid_double[2] = k * 2 + is_shift[2];
#endif	

	grid_point = get_grid_point(grid_double, mesh);
	get_grid_address(grid_address[grid_point], grid_double, mesh);

	for (l = 0; l < point_symmetry->size; l++) {
	  mat_multiply_matrix_vector_i3(grid_rot,
					point_symmetry->rot[l],	grid_double);
	  get_vector_modulo(grid_rot, mesh_double);
	  grid_point_rot = get_grid_point(grid_rot, mesh);

	  if (grid_point_rot > -1) { /* Invalid if even --> odd or odd --> even */
	    if (map[grid_point_rot] > -1) {
	      map[grid_point] = map[grid_point_rot];
	      break;
	    }
	  }
	}
	
	if (map[grid_point] == -1) {
	  map[grid_point] = grid_point;
	  num_ir++;
	}
      }
    }
  }

  return num_ir;
}

static int
get_ir_reciprocal_mesh_openmp(int grid_address[][3],
			      int map[],
			      const int mesh[3],
			      const int is_shift[3],
			      SPGCONST PointSymmetry * point_symmetry)
{
  int i, j, k, l, grid_point, grid_point_rot, num_ir;
  int grid_double[3], grid_rot[3], mesh_double[3];

  for (i = 0; i < 3; i++) {
    mesh_double[i] = mesh[i] * 2;
  }

#ifndef GRID_ORDER_XYZ
#pragma omp parallel for private(j, k, l, grid_point, grid_point_rot, grid_double, grid_rot)
  for (i = 0; i < mesh[2]; i++) {
    for (j = 0; j < mesh[1]; j++) {
      for (k = 0; k < mesh[0]; k++) {
	grid_double[0] = k * 2 + is_shift[0];
	grid_double[1] = j * 2 + is_shift[1];
	grid_double[2] = i * 2 + is_shift[2];
#else
#pragma omp parallel for private(j, k, l, grid_point, grid_point_rot, grid_double, grid_rot)
  for (i = 0; i < mesh[0]; i++) {
    for (j = 0; j < mesh[1]; j++) {
      for (k = 0; k < mesh[2]; k++) {
  	grid_double[0] = i * 2 + is_shift[0];
  	grid_double[1] = j * 2 + is_shift[1];
  	grid_double[2] = k * 2 + is_shift[2];
#endif	

	grid_point = get_grid_point(grid_double, mesh);
	map[grid_point] = grid_point;
	get_grid_address(grid_address[grid_point], grid_double, mesh);

	for (l = 0; l < point_symmetry->size; l++) {
	  mat_multiply_matrix_vector_i3(grid_rot,
					point_symmetry->rot[l],	grid_double);
	  get_vector_modulo(grid_rot, mesh_double);
	  grid_point_rot = get_grid_point(grid_rot, mesh);

	  if (grid_point_rot > -1) { /* Invalid if even --> odd or odd --> even */
	    if (grid_point_rot < map[grid_point]) {
	      map[grid_point] = grid_point_rot;
	    }
	  }
	}
      }
    }
  }

  num_ir = 0;

#pragma omp parallel for reduction(+:num_ir)
  for (i = 0; i < mesh[0] * mesh[1] * mesh[2]; i++) {
    if (map[i] == i) {
      num_ir++;
    }
  }
  
  return num_ir;
}

/* Relocate grid addresses to first Brillouin zone */
/* bz_grid_address[prod(mesh + 1)][3] */
/* bz_map[prod(mesh * 2 - 1)] */
static int relocate_BZ_grid_address(int bz_grid_address[][3],
				    int bz_map[],
				    int grid_address[][3],
				    const int mesh[3],
				    SPGCONST double rec_lattice[3][3],
				    const int is_shift[3])
{
  double tolerance, min_distance;
  double vector[3], distance[27];
  int bzmesh[3], bzmesh_double[3], address_double[3];
  int i, j, k, min_index, boundary_gp, total_num_gp, bzgp, gp;

  tolerance = get_tolerance_for_BZ_reduction(rec_lattice);
  for (i = 0; i < 3; i++) {
    bzmesh[i] = mesh[i] * 2 - 1;
    bzmesh_double[i] = bzmesh[i] * 2;
  }
  for (i = 0; i < bzmesh[0] * bzmesh[1] * bzmesh[2]; i++) {
    bz_map[i] = -1;
  }
  
  boundary_gp = 0;
  total_num_gp = mesh[0] * mesh[1] * mesh[2];
  for (i = 0; i < total_num_gp; i++) {
    for (j = 0; j < 27; j++) {
      for (k = 0; k < 3; k++) {
	address_double[k] =
	  (grid_address[i][k] + search_space[j][k] * mesh[k]) * 2 + is_shift[k];
      }
      mat_multiply_matrix_vector_di3(vector, rec_lattice, address_double);
      distance[j] = mat_norm_squared_d3(vector);
    }
    min_distance = distance[0];
    min_index = 0;
    for (j = 1; j < 27; j++) {
      if (distance[j] + tolerance < min_distance) {
	min_distance = distance[j];
	min_index = j;
      }
    }

    for (j = 0; j < 27; j++) {
      if (distance[j] < min_distance + tolerance) {
	if (j == min_index) {
	  gp = i;
	} else {
	  gp = boundary_gp + total_num_gp;
	}
	for (k = 0; k < 3; k++) {
	  bz_grid_address[gp][k] = 
	    grid_address[i][k] + search_space[j][k] * mesh[k];
	  address_double[k] = bz_grid_address[gp][k] * 2 + is_shift[k];
	  if (address_double[k] < 0) {
	    address_double[k] += bzmesh_double[k];
	  }
	}
	bzgp = get_grid_point(address_double, bzmesh);
	bz_map[bzgp] = gp;
	if (j != min_index) {
	  boundary_gp++;
	}
      }
    }
  }

  return boundary_gp + total_num_gp;
}

static double get_tolerance_for_BZ_reduction(SPGCONST double rec_lattice[3][3])
{
  int i, j;
  double tolerance;
  double length[3];
  
  for (i = 0; i < 3; i++) {
    length[i] = 0;
    for (j = 0; j < 3; j++) {
      length[i] += rec_lattice[j][i] * rec_lattice[j][i];
    }
  }
  tolerance = length[0];
  for (i = 1; i < 3; i++) {
    if (tolerance > length[i]) {
      tolerance = length[i];
    }
  }
  tolerance /= 100;
  return tolerance;
}
 
static int get_ir_triplets_at_q(int weights[],
				int grid_address[][3],
				int third_q[],
				const int grid_point,
				const int mesh[3],
				SPGCONST PointSymmetry * pointgroup)
{
  int i, j, num_grid, q_2, num_ir_q, num_ir_triplets, ir_grid_point;
  int mesh_double[3], is_shift[3];
  int grid_double0[3], grid_double1[3], grid_double2[3];
  int *map_q, *ir_grid_points, *weight_q;
  double tolerance;
  double stabilizer_q[1][3];
  PointSymmetry pointgroup_q;

  tolerance = 0.1 / (mesh[0] + mesh[1] + mesh[2]);

  num_grid = mesh[0] * mesh[1] * mesh[2];

  for (i = 0; i < 3; i++) {
    /* Only consider the gamma-point */
    is_shift[i] = 0;
    mesh_double[i] = mesh[i] * 2;
  }

  /* Search irreducible q-points (map_q) with a stabilizer */
  grid_point_to_grid_double(grid_double0, grid_point, mesh, is_shift); /* q */
  for (i = 0; i < 3; i++) {
    stabilizer_q[0][i] =
      (double)grid_double0[i] / mesh_double[i] - (grid_double0[i] > mesh[i]);
  }

  pointgroup_q = get_point_group_reciprocal_with_q(pointgroup,
						   tolerance,
						   1,
						   stabilizer_q);
  map_q = (int*) malloc(sizeof(int) * num_grid);

#ifdef _OPENMP
  num_ir_q = get_ir_reciprocal_mesh_openmp(grid_address,
					   map_q,
					   mesh,
					   is_shift,
					   &pointgroup_q);
#else
  num_ir_q = get_ir_reciprocal_mesh(grid_address,
				    map_q,
				    mesh,
				    is_shift,
				    &pointgroup_q);
#endif

  ir_grid_points = (int*) malloc(sizeof(int) * num_ir_q);
  weight_q = (int*) malloc(sizeof(int) * num_grid);
  num_ir_q = 0;
  for (i = 0; i < num_grid; i++) {
    if (map_q[i] == i) {
      ir_grid_points[num_ir_q] = i;
      num_ir_q++;
    }
    weight_q[i] = 0;
    third_q[i] = -1;
    weights[i] = 0;
  }

  for (i = 0; i < num_grid; i++) {
    weight_q[map_q[i]]++;
  }

#pragma omp parallel for private(j, grid_double1, grid_double2)
  for (i = 0; i < num_ir_q; i++) {
    grid_point_to_grid_double(grid_double1, ir_grid_points[i], mesh, is_shift); /* q' */
    for (j = 0; j < 3; j++) { /* q'' */
      grid_double2[j] = - grid_double0[j] - grid_double1[j];
    }
    get_vector_modulo(grid_double2, mesh_double);
    third_q[ir_grid_points[i]] = get_grid_point(grid_double2, mesh);
  }

  num_ir_triplets = 0;
  for (i = 0; i < num_ir_q; i++) {
    ir_grid_point = ir_grid_points[i];
    q_2 = third_q[ir_grid_point];
    if (weights[map_q[q_2]]) {
      weights[map_q[q_2]] += weight_q[ir_grid_point];
    } else {
      weights[ir_grid_point] = weight_q[ir_grid_point];
      num_ir_triplets++;
    }
  }

  free(map_q);
  map_q = NULL;
  free(weight_q);
  weight_q = NULL;
  free(ir_grid_points);
  ir_grid_points = NULL;

  return num_ir_triplets;
}

static int get_BZ_triplets_at_q(int triplets[][3],
				const int grid_point,
				SPGCONST int bz_grid_address[][3],
				const int bz_map[],
				const int weights[],
				const int mesh[3])
{
  int i, j, k, num_ir;
  int address[3][3], address_double[3], bzmesh[3], bzmesh_double[3];
  int *ir_grid_points;

  for (i = 0; i < 3; i++) {
    bzmesh[i] = mesh[i] * 2 - 1;
    bzmesh_double[i] = bzmesh[i] * 2;
  }

  num_ir = 0;
  ir_grid_points = (int*) malloc(sizeof(int) * mesh[0] * mesh[1] * mesh[2]);
  for (i = 0; i < mesh[0] * mesh[1] * mesh[2]; i++) {
    if (weights[i] > 0) {
      ir_grid_points[num_ir] = i;
      num_ir++;
    }
  }
 
#pragma omp parallel for private(j, k, address, address_double)
  for (i = 0; i < num_ir; i++) {
    for (j = 0; j < 3; j++) {
      address[0][j] = bz_grid_address[grid_point][j];
      address[1][j] = bz_grid_address[ir_grid_points[i]][j];
      address[2][j] = - address[0][j] - address[1][j];
    }
    get_third_q_of_triplets_at_q(address,
				 bz_map,
				 mesh,
				 bzmesh,
				 bzmesh_double);
    for (j = 0; j < 3; j++) {
      for (k = 0; k < 3; k++) {
	address_double[k] = address[j][k] * 2;
	if (address_double[k] < 0) {
	  address_double[k] += bzmesh_double[k];
	}
      }
      triplets[i][j] = bz_map[get_grid_point(address_double, bzmesh)];
    }
  }

  free(ir_grid_points);
  
  return num_ir;
}

static void get_third_q_of_triplets_at_q(int address[3][3],
					 const int bz_map[],
					 const int mesh[3],
					 const int bzmesh[3],
					 const int bzmesh_double[3])
{
  int i, j, smallest_g, smallest_index, sum_g, delta_g[3];
  int bzgp[27], address_double[3];

  get_vector_modulo(address[2], mesh);
  for (i = 0; i < 3; i++) {
    delta_g[i] = 0;
    for (j = 0; j < 3; j++) {
      delta_g[i] += address[j][i];
    }
    delta_g[i] /= mesh[i];
  }
  
  for (i = 0; i < 27; i++) {
    for (j = 0; j < 3; j++) {
      address_double[j] = (address[2][j] + search_space[i][j] * mesh[j]) * 2;
    }
    if (abs(address_double[0] > bzmesh[0]) ||
	abs(address_double[1] > bzmesh[1]) ||
	abs(address_double[2] > bzmesh[2]) ||
	abs(address_double[0] < -bzmesh[0]) ||
	abs(address_double[1] < -bzmesh[1]) ||
	abs(address_double[2] < -bzmesh[2])) { /* outside extended zone */
      bzgp[i] = -1;
      continue;
    }
    for (j = 0; j < 3; j++) {
      if (address_double[j] < 0) {
	address_double[j] += bzmesh_double[j];
      }
    }
    bzgp[i] = bz_map[get_grid_point(address_double, bzmesh)];
  }

  for (i = 0; i < 27; i++) {
    if (bzgp[i] != -1) {
      goto escape;
    }
  }
  printf("******* Warning *******\n");
  printf(" No third-q was found.\n");
  printf("******* Warning *******\n");

 escape:

  smallest_g = 4;
  smallest_index = 0;
  for (i = 0; i < 27; i++) {
    if (bzgp[i] > -1) { /* q'' is in BZ */
      sum_g = (abs(delta_g[0] + search_space[i][0]) +
	       abs(delta_g[1] + search_space[i][1]) +
	       abs(delta_g[2] + search_space[i][2]));
      if (sum_g < smallest_g) {
	smallest_index = i;
	smallest_g = sum_g;
      }
    }
  }
  
  for (i = 0; i < 3; i++) {
    address[2][i] += search_space[smallest_index][i] * mesh[i];
  }
}
Esempio n. 7
0
/* Return 0 if failed */
static int match_hall_symbol_db_monocli(double origin_shift[3],
					double lattice[3][3],
					const int hall_number,
					const int num_hall_types,
					const Centering centering,
					SPGCONST Symmetry *symmetry,
					const double symprec)
{
  int i, j, k, l, is_found;
  double vec[3], norms[3];
  Centering changed_centering;
  Symmetry * changed_symmetry;
  double changed_lattice[3][3];

  changed_symmetry = NULL;

  for (i = 0; i < 18; i++) {
    if (centering == C_FACE) {
      changed_centering = change_of_centering_monocli[i];
    } else { /* suppose PRIMITIVE */
      changed_centering = centering;
    }

    mat_multiply_matrix_d3(changed_lattice,
			   lattice,
			   change_of_basis_monocli[i]);

    /* Choose |a| < |b| < |c| if there are freedom. */
    if (num_hall_types == 3) {
      l = 0;
      for (j = 0; j < 3; j++) {
	if (j == change_of_unique_axis_monocli[i]) {continue;}
	for (k = 0; k < 3; k++) {vec[k] = changed_lattice[k][j];}
	norms[l] = mat_norm_squared_d3(vec);
	l++;
      }
      if (norms[0] > norms[1]) {continue;}
    }

    if ((changed_symmetry =
	 get_conventional_symmetry(change_of_basis_monocli[i],
				   PRIMITIVE,
				   symmetry)) == NULL) {
      goto err;
    }

    is_found = hal_match_hall_symbol_db(origin_shift,
					changed_lattice,
					hall_number,
					changed_centering,
					changed_symmetry,
					symprec);
    sym_free_symmetry(changed_symmetry);
    changed_symmetry = NULL;
    if (is_found) {
      mat_copy_matrix_d3(lattice, changed_lattice);
      return 1;
    }
  }

 err:
  return 0;
}