Esempio n. 1
0
Value* Vector_dot(const Vector* vector1, const Vector* vector2, const Context* ctx) {
    unsigned count = vector1->vals->count;
    if(count != vector2->vals->count && vector2->vals->count != 1) {
        /* Both vectors must have the same number of values */
        return ValErr(mathError("Vectors must have the same dimensions for dot product."));
    }

    /* Store the total value of the dot product */
    Value* accum = ValInt(0);

    unsigned i;
    for(i = 0; i < count; i++) {
        Value* val2;
        if(vector2->vals->count == 1) {
            val2 = vector2->vals->args[0];
        }
        else {
            val2 = vector2->vals->args[i];
        }

        /* accum += v1[i] * val2 */
        TP(tp);
        accum = TP_EVAL(tp, ctx, "@@+@@*@@",
                        accum,
                        Value_copy(vector1->vals->args[i]),
                        Value_copy(val2));
    }

    return accum;
}
Esempio n. 2
0
static Value* vecCompOp(const Vector* vector1, const Vector* vector2, const Context* ctx, BINTYPE bin) {
    unsigned count = vector1->vals->count;
    if(count != vector2->vals->count && vector2->vals->count > 1) {
        return ValErr(mathError("Cannot %s vectors of different sizes.", binop_verb[bin]));
    }

    ArgList* newv = ArgList_new(count);

    unsigned i;
    for(i = 0; i < count; i++) {
        /* Perform the specified operation on each matching component */
        Value* val2;
        if(vector2->vals->count == 1) {
            val2 = vector2->vals->args[0];
        }
        else {
            val2 = vector2->vals->args[i];
        }

        BinOp* op = BinOp_new(bin, Value_copy(vector1->vals->args[i]), Value_copy(val2));
        Value* result = BinOp_eval(op, ctx);
        BinOp_free(op);

        /* Error checking */
        if(result->type == VAL_ERR) {
            ArgList_free(newv);
            return result;
        }

        /* Store result */
        newv->args[i] = result;
    }

    return ValVec(Vector_new(newv));
}
Esempio n. 3
0
static Value* unop_fact(const Context* ctx, const Value* a) {
	if(a->type != VAL_INT) {
		return ValErr(typeError("Factorial operand must be an integer."));
	}
	
	if(a->ival > 20) {
		return ValErr(mathError("Factorial operand too large (%lld > 20).", a->ival));
	}
	
	return ValInt(fact(a->ival));
}
Esempio n. 4
0
Value* Vector_elem(const Vector* vec, const Value* index, const Context* ctx) {
    if(index->type != VAL_INT) {
        return ValErr(typeError("Subscript index must be an integer."));
    }

    if(index->ival < 0) {
        return ValErr(mathError("Subscript index cannot be negative."));
    }

    if(index->ival > UINT_MAX) {
        return ValErr(mathError("Subscript index %lld is too large.", index->ival));
    }

    unsigned idx = (unsigned)index->ival;

    if(idx >= vec->vals->count) {
        return ValErr(mathError("Index %u is out of range: [0-%u]", idx, vec->vals->count - 1));
    }

    return Value_copy(vec->vals->args[index->ival]);
}
Esempio n. 5
0
static Value* eval_dot(Context* ctx, ArgList* arglist) {
	if(arglist->count != 2) {
		/* Two vectors are required for a dot product */
		return ValErr(builtinArgs("dot", 2, arglist->count));
	}
	
	Value* vector1 = Value_eval(arglist->args[0], ctx);
	if(vector1->type == VAL_ERR) {
		return vector1;
	}
	
	Value* vector2 = Value_eval(arglist->args[1], ctx);
	if(vector2->type == VAL_ERR) {
		Value_free(vector1);
		return vector2;
	}
	
	if(vector1->type != VAL_VEC || vector2->type != VAL_VEC) {
		/* Both values must be vectors */
		return ValErr(typeError("Builtin dot expects two vectors."));
	}
	
	unsigned count = vector1->vec->vals->count;
	if(count != vector2->vec->vals->count) {
		/* Both vectors must have the same number of values */
		return ValErr(mathError("Vectors must have the same dimensions for dot product."));
	}
	
	Value* total = ValInt(0); // store the total value of the dot product
	
	unsigned i;
	for(i = 0; i < count; i++) {
		/* Multiply v1[i] and v2[i] */
		BinOp* mul = BinOp_new(BIN_MUL, Value_copy(vector1->vec->vals->args[i]), Value_copy(vector2->vec->vals->args[i]));
		
		Value* part = BinOp_eval(mul, ctx);
		BinOp_free(mul);
		
		/* Accumulate the sum for all products */
		BinOp* add = BinOp_new(BIN_ADD, part, total);
		total = BinOp_eval(add, ctx);
		BinOp_free(add);
	}
	
	return total;
}
Esempio n. 6
0
static Value* eval_cross(Context* ctx, ArgList* arglist) {
	if(arglist->count != 2) {
		/* Two vectors are required for a cross product */
		return ValErr(builtinArgs("cross", 2, arglist->count));
	}
	
	Value* vector1 = Value_eval(arglist->args[0], ctx);
	if(vector1->type == VAL_ERR) {
		return vector1;
	}
	
	Value* vector2 = Value_eval(arglist->args[1], ctx);
	if(vector2->type == VAL_ERR) {
		Value_free(vector1);
		return vector2;
	}
	
	if(vector1->type != VAL_VEC || vector2->type != VAL_VEC) {
		/* Both values must be vectors */
		return ValErr(typeError("Builtin dot expects two vectors."));
	}
	
	if(vector1->vec->vals->count != 3) {
		/* Vectors must each have a size of 3 */
		return ValErr(mathError("Vectors must each have a size of 3 for cross product."));
	}
	
	/* First cross multiplication */
	BinOp* i_pos_op = BinOp_new(BIN_MUL, Value_copy(vector1->vec->vals->args[1]), Value_copy(vector2->vec->vals->args[2]));
	BinOp* i_neg_op = BinOp_new(BIN_MUL, Value_copy(vector1->vec->vals->args[2]), Value_copy(vector2->vec->vals->args[1]));
	
	/* Evaluate multiplications */
	Value* i_pos = BinOp_eval(i_pos_op, ctx);
	Value* i_neg = BinOp_eval(i_neg_op, ctx);
	
	BinOp_free(i_pos_op);
	BinOp_free(i_neg_op);
	
	/* Error checking */
	if(i_pos->type == VAL_ERR) {
		Value_free(vector1);
		Value_free(vector2);
		Value_free(i_neg);
		return i_pos;
	}
	if(i_neg->type == VAL_ERR) {
		Value_free(vector1);
		Value_free(vector2);
		Value_free(i_pos);
		return i_neg;
	}
	
	/* Subtract products */
	BinOp* i_op = BinOp_new(BIN_SUB, i_pos, i_neg);
	Value* i_val = BinOp_eval(i_op, ctx);
	BinOp_free(i_op);
	
	if(i_val->type == VAL_ERR) {
		Value_free(vector1);
		Value_free(vector2);
		return i_val;
	}
	
	/* Part 2 */
	BinOp* j_pos_op = BinOp_new(BIN_MUL, Value_copy(vector1->vec->vals->args[0]), Value_copy(vector2->vec->vals->args[2]));
	BinOp* j_neg_op = BinOp_new(BIN_MUL, Value_copy(vector1->vec->vals->args[2]), Value_copy(vector2->vec->vals->args[0]));
	
	Value* j_pos = BinOp_eval(j_pos_op, ctx);
	Value* j_neg = BinOp_eval(j_neg_op, ctx);
	
	BinOp_free(j_pos_op);
	BinOp_free(j_neg_op);
	
	if(j_pos->type == VAL_ERR) {
		Value_free(vector1);
		Value_free(vector2);
		Value_free(j_neg);
		return j_pos;
	}
	if(j_neg->type == VAL_ERR) {
		Value_free(vector1);
		Value_free(vector2);
		Value_free(j_pos);
		return j_neg;
	}
	
	BinOp* j_op = BinOp_new(BIN_SUB, j_pos, j_neg);
	Value* j_val = BinOp_eval(j_op, ctx);
	BinOp_free(j_op);
	
	if(j_val->type == VAL_ERR) {
		Value_free(vector1);
		Value_free(vector2);
		return j_val;
	}
	
	/* Part 3 */
	BinOp* k_pos_op = BinOp_new(BIN_MUL, Value_copy(vector1->vec->vals->args[0]), Value_copy(vector2->vec->vals->args[1]));
	BinOp* k_neg_op = BinOp_new(BIN_MUL, Value_copy(vector1->vec->vals->args[1]), Value_copy(vector2->vec->vals->args[0]));
	
	Value* k_pos = BinOp_eval(k_pos_op, ctx);
	Value* k_neg = BinOp_eval(k_neg_op, ctx);
	
	BinOp_free(k_pos_op);
	BinOp_free(k_neg_op);
	
	if(k_pos->type == VAL_ERR) {
		Value_free(vector1);
		Value_free(vector2);
		Value_free(k_neg);
		return k_pos;
	}
	if(k_neg->type == VAL_ERR) {
		Value_free(vector1);
		Value_free(vector2);
		Value_free(k_pos);
		return k_neg;
	}
	
	BinOp* k_op = BinOp_new(BIN_SUB, k_pos, k_neg);
	Value* k_val = BinOp_eval(k_op, ctx);
	BinOp_free(k_op);
	
	if(k_val->type == VAL_ERR) {
		Value_free(vector1);
		Value_free(vector2);
		return k_val;
	}
	
	ArgList* args = ArgList_create(3, i_val, j_val, k_val);
	return ValVec(Vector_new(args));
}