Esempio n. 1
0
double* mat_power(double mat[5][5], double *vec, int rows, int cols, int power) {
  if (power == 0) {
    return vec;
  } else {
    double *solution =  matrix_vector_mult(mat, vec, rows, cols); 
    double *solution2 = mat_power (mat, solution, rows, cols, (power - 1));
    return solution2; 
  }

}
Esempio n. 2
0
double* mat_power(double mat[5][5], double *vec, int rows, int cols, int power) {
  if (power == 0) {
    return vec;
  } else {
    double *solution =  matrix_vector_mult(mat, vec, rows, cols); 
    double *solution2 = vec_add (mat_power (mat, solution, rows, cols, (power - 1)), solution) ;
   /* for (int i = 0; i < 5; i++) {
      solution2[i] = solution2[i] + solution[i];
        if (solution2[i] < 0) {
          solution2[i] = 0; 
        }
        if (solution2[i] > 10) {
          solution2[i] = 10; 
        } 
    }*/
    return solution2; 
  }

}
Esempio n. 3
0
Table_quadruplet least_squares_approximation(Table_triplet points, 
	Booleen uniformConf) {

	int i, j;

	Table_quadruplet res;
	res.nb = points.nb;
	ALLOUER(res.table, points.nb);

	Table_flottant steps = steps_computation(points, uniformConf);

	double ** B;
	ALLOUER(B, points.nb);
	for(i = 0; i < points.nb; i++)
		ALLOUER(B[i], points.nb);

	B[0][0] = B[points.nb - 1][points.nb - 1] = 1;
	for(i = 1; i < points.nb; i++)
		B[0][i] = 0;
	for(i = 0; i < points.nb; i++) { 
		for(j = 1; j < points.nb - 1; j++) {
			B[j][i] = bernsteinPolynomial(i, points.nb - 1, steps.table[j]);
		}
	}
	for(i = 0; i < points.nb - 1; i++)
		B[points.nb - 1][i] = 0;

	double ** BT = transposedMatrix(B, points.nb);

	Grille_flottant Aprime;
	Aprime.nb_lignes = Aprime.nb_colonnes = points.nb;
	Aprime.grille = matrix_matrix_mult(B, BT, points.nb);

	for(i = 0; i < points.nb; i++)
		free(BT[i]);
	free(BT);

	double * pointsX, * pointsY, * pointsZ;
	ALLOUER(pointsX, points.nb);
	ALLOUER(pointsY, points.nb);
	ALLOUER(pointsZ, points.nb);
	split_x_y_z(points, pointsX, pointsY, pointsZ);

	Table_flottant BprimeX, BprimeY, BprimeZ;
	BprimeX.nb = BprimeY.nb = BprimeZ.nb = points.nb;
	BprimeX.table = matrix_vector_mult(B, pointsX, points.nb);
	BprimeY.table = matrix_vector_mult(B, pointsY, points.nb);
	BprimeZ.table = matrix_vector_mult(B, pointsZ, points.nb);

	free(pointsX); free(pointsY); free(pointsZ);
	for(i = 0; i < points.nb; i++)
		free(B[i]);
	free(B);

	Table_flottant resX, resY, resZ;
	resX.nb = resY.nb = resZ.nb = points.nb;
	ALLOUER(resX.table, points.nb);
	ALLOUER(resY.table, points.nb);
	ALLOUER(resZ.table, points.nb);

	resolution_systeme_lineaire(&Aprime, &BprimeX, &resX);
	resolution_systeme_lineaire(&Aprime, &BprimeY, &resY);
	resolution_systeme_lineaire(&Aprime, &BprimeZ, &resZ);

	for(i = 0; i < points.nb; i++) {
		res.table[i].x = resX.table[i];
		res.table[i].y = resY.table[i];
		res.table[i].z = resZ.table[i];
		res.table[i].h = 1;
	}

	free(BprimeX.table); free(BprimeY.table); free(BprimeZ.table);
	free(resX.table); free(resY.table); free(resZ.table);
	for(i = 0; i < Aprime.nb_lignes; i++)
		free(Aprime.grille[i]);
	free(Aprime.grille);

	return res;
}