Esempio n. 1
0
static void uavtalk_handle_msg(struct uavtalk_message *msg)
{
    mavlink_message_t mav_msg;

    switch (msg->objid) {
        case UAVTALK_OBJID_ATTITUDESTATE:
            mavlink_msg_attitude_pack(1, 1, &mav_msg, 0,
                    DEG2RAD(uavtalk_get_float(msg, UAVTALK_OBJID_ATTITUDESTATE_ROLL)),
                    DEG2RAD(uavtalk_get_float(msg, UAVTALK_OBJID_ATTITUDESTATE_PITCH)),
                    DEG2RAD(uavtalk_get_float(msg, UAVTALK_OBJID_ATTITUDESTATE_YAW)),
                    0, 0, 0);
            mavlink_handle_msg(255, &mav_msg, NULL);
            break;
        case UAVTALK_OBJID_MANUALCONTROLCOMMAND:
        case UAVTALK_OBJID_MANUALCONTROLCOMMAND_001:
        case UAVTALK_OBJID_MANUALCONTROLCOMMAND_002:
            mavlink_msg_rc_channels_raw_pack(1, 1, &mav_msg, 0, 0,
                    (unsigned int) uavtalk_get_int16(msg, UAVTALK_OBJID_MANUALCONTROLCOMMAND_CHANNEL_1),
                    (unsigned int) uavtalk_get_int16(msg, UAVTALK_OBJID_MANUALCONTROLCOMMAND_CHANNEL_2),
                    (unsigned int) uavtalk_get_int16(msg, UAVTALK_OBJID_MANUALCONTROLCOMMAND_CHANNEL_3),
                    (unsigned int) uavtalk_get_int16(msg, UAVTALK_OBJID_MANUALCONTROLCOMMAND_CHANNEL_4),
                    (unsigned int) uavtalk_get_int16(msg, UAVTALK_OBJID_MANUALCONTROLCOMMAND_CHANNEL_5),
                    (unsigned int) uavtalk_get_int16(msg, UAVTALK_OBJID_MANUALCONTROLCOMMAND_CHANNEL_6),
                    (unsigned int) uavtalk_get_int16(msg, UAVTALK_OBJID_MANUALCONTROLCOMMAND_CHANNEL_7),
                    (unsigned int) uavtalk_get_int16(msg, UAVTALK_OBJID_MANUALCONTROLCOMMAND_CHANNEL_8),
                    0);
            mavlink_handle_msg(255, &mav_msg, NULL);
            break;
    }
}
Esempio n. 2
0
void mavlinkSendRCChannelsAndRSSI(void)
{
    uint16_t msgLength;
    mavlink_msg_rc_channels_raw_pack(0, 200, &mavMsg,
        // time_boot_ms Timestamp (milliseconds since system boot)
        millis(),
        // port Servo output port (set of 8 outputs = 1 port). Most MAVs will just use one, but this allows to encode more than 8 servos.
        0,
        // chan1_raw RC channel 1 value, in microseconds
        (rxRuntimeConfig.channelCount >= 1) ? rcData[0] : 0,
        // chan2_raw RC channel 2 value, in microseconds
        (rxRuntimeConfig.channelCount >= 2) ? rcData[1] : 0,
        // chan3_raw RC channel 3 value, in microseconds
        (rxRuntimeConfig.channelCount >= 3) ? rcData[2] : 0,
        // chan4_raw RC channel 4 value, in microseconds
        (rxRuntimeConfig.channelCount >= 4) ? rcData[3] : 0,
        // chan5_raw RC channel 5 value, in microseconds
        (rxRuntimeConfig.channelCount >= 5) ? rcData[4] : 0,
        // chan6_raw RC channel 6 value, in microseconds
        (rxRuntimeConfig.channelCount >= 6) ? rcData[5] : 0,
        // chan7_raw RC channel 7 value, in microseconds
        (rxRuntimeConfig.channelCount >= 7) ? rcData[6] : 0,
        // chan8_raw RC channel 8 value, in microseconds
        (rxRuntimeConfig.channelCount >= 8) ? rcData[7] : 0,
        // rssi Receive signal strength indicator, 0: 0%, 255: 100%
        scaleRange(rssi, 0, 1023, 0, 255));
    msgLength = mavlink_msg_to_send_buffer(mavBuffer, &mavMsg);
    mavlinkSerialWrite(mavBuffer, msgLength);
}
Esempio n. 3
0
void MavLinkSendRcData(void)
{
	mavlink_message_t msg;

	mavlink_msg_rc_channels_raw_pack(mavlink_system.sysid, mavlink_system.compid, &msg,
	                                 systemStatus.time*10,
									 0, rcSignalRudder, rcSignalThrottle, rcSignalMode, rcSignalTrack, 0, 0, 0, 0,
			                         255);

	len = mavlink_msg_to_send_buffer(buf, &msg);

	uart1EnqueueData(buf, (uint8_t)len);
}
Esempio n. 4
0
uint16_t PackRawRC(uint8_t system_id, uint8_t component_id, mavlink_rc_channels_raw_t mlRC_Commands ,uint32_t time_usec){
  mavlink_system_t mavlink_system;

//  if (!(mlPending.wpProtState == WP_PROT_IDLE)) 
//    return 0;
  mavlink_system.sysid = system_id;                   ///< ID 20 for this airplane
  mavlink_system.compid = component_id;//MAV_COMP_ID_IMU;     ///< The component sending the message is the IMU, it could be also a Linux process
  //////////////////////////////////////////////////////////////////////////
  mavlink_message_t msg;
  memset(&msg, 0, sizeof (mavlink_message_t));
  mavlink_msg_rc_channels_raw_pack(mavlink_system.sysid, mavlink_system.compid, &msg , time_usec , mlRC_Commands.port, mlRC_Commands.chan1_raw, mlRC_Commands.chan2_raw, mlRC_Commands.chan3_raw, mlRC_Commands.chan4_raw, mlRC_Commands.chan5_raw, mlRC_Commands.chan6_raw, mlRC_Commands.chan7_raw, mlRC_Commands.chan8_raw,mlRC_Commands.rssi );
  return( mavlink_msg_to_send_buffer(UartOutBuff, &msg));
}
Esempio n. 5
0
void cDataLink::SendRcChannelsRaw(uint16_t ped_us, uint16_t col_us, uint16_t lon_us,
                                  uint16_t lat_us, uint16_t aux_us,uint16_t mode_us)
{
    int bytes_sent;
    uint16_t len;

    /* Send RC channels */
    {
        mavlink_msg_rc_channels_raw_pack(1, MAV_COMP_ID_ALL, &m_msg, microsSinceEpoch(),
                                         uint8_t(1),                     // port
                                         ped_us, col_us, lon_us, lat_us, //1...4
                                         aux_us, mode_us,                //5, 6
                                         uint16_t(65535), uint16_t(65535), // 6...8, 65535 implies the channel is unused
                                         uint8_t(255));                   // rssi = unknown
        len = mavlink_msg_to_send_buffer(m_buf, &m_msg);
        bytes_sent = sendto(sock, m_buf, len, 0, (struct sockaddr*)&gcAddr, sizeof(struct sockaddr_in));
        (void)bytes_sent; //avoid compiler warning
    }
}
Esempio n. 6
0
void writeMavlink()
{
	int systemId = 250;
	int componentId = 0;
	mavlink_message_t msg;
	uint8_t buf[MAVLINK_MAX_PACKET_LEN];

	mavlink_msg_rc_channels_raw_pack
		(systemId, componentId, &msg,
		millis(), 8, 
		rcValue[0],
		rcValue[1],
		rcValue[2],
		rcValue[3],
		rcValue[4],
		rcValue[5],
		rcValue[6],
		rcValue[7],
		255);
	uint16_t len = mavlink_msg_to_send_buffer(buf, &msg);
	// Send the message (.write sends as bytes)
	Serial1.write(buf, len);
}
Esempio n. 7
0
task_return_t remote_send_raw(const remote_t* remote)
{
    mavlink_message_t msg;
    mavlink_msg_rc_channels_raw_pack(	remote->mavlink_stream->sysid,
                                        remote->mavlink_stream->compid,
                                        &msg,
                                        time_keeper_get_millis(),
                                        0,
                                        remote->sat->channels[0] + 1024,
                                        remote->sat->channels[1] + 1024,
                                        remote->sat->channels[2] + 1024,
                                        remote->sat->channels[3] + 1024,
                                        remote->sat->channels[4] + 1024,
                                        remote->sat->channels[5] + 1024,
                                        remote->sat->channels[6] + 1024,
                                        remote->sat->channels[7] + 1024,
                                        // remote->mode.current_desired_mode.byte);
                                        remote->signal_quality	);

    mavlink_stream_send(remote->mavlink_stream, &msg);

    return TASK_RUN_SUCCESS;
}
Esempio n. 8
0
static void uavoMavlinkBridgeTask(void *parameters) {
	uint32_t lastSysTime;
	// Main task loop
	lastSysTime = PIOS_Thread_Systime();

	FlightBatterySettingsData batSettings = {};

	if (FlightBatterySettingsHandle() != NULL )
		FlightBatterySettingsGet(&batSettings);

	SystemStatsData systemStats;

	while (1) {
		PIOS_Thread_Sleep_Until(&lastSysTime, 1000 / TASK_RATE_HZ);

		if (stream_trigger(MAV_DATA_STREAM_EXTENDED_STATUS)) {
			FlightBatteryStateData batState = {};

			if (FlightBatteryStateHandle() != NULL )
				FlightBatteryStateGet(&batState);

			SystemStatsGet(&systemStats);

			int8_t battery_remaining = 0;
			if (batSettings.Capacity != 0) {
				if (batState.ConsumedEnergy < batSettings.Capacity) {
					battery_remaining = 100 - lroundf(batState.ConsumedEnergy / batSettings.Capacity * 100);
				}
			}

			uint16_t voltage = 0;
			if (batSettings.VoltagePin != FLIGHTBATTERYSETTINGS_VOLTAGEPIN_NONE)
				voltage = lroundf(batState.Voltage * 1000);

			uint16_t current = 0;
			if (batSettings.CurrentPin != FLIGHTBATTERYSETTINGS_CURRENTPIN_NONE)
				current = lroundf(batState.Current * 100);

			mavlink_msg_sys_status_pack(0, 200, mav_msg,
					// onboard_control_sensors_present Bitmask showing which onboard controllers and sensors are present. Value of 0: not present. Value of 1: present. Indices: 0: 3D gyro, 1: 3D acc, 2: 3D mag, 3: absolute pressure, 4: differential pressure, 5: GPS, 6: optical flow, 7: computer vision position, 8: laser based position, 9: external ground-truth (Vicon or Leica). Controllers: 10: 3D angular rate control 11: attitude stabilization, 12: yaw position, 13: z/altitude control, 14: x/y position control, 15: motor outputs / control
					0,
					// onboard_control_sensors_enabled Bitmask showing which onboard controllers and sensors are enabled:  Value of 0: not enabled. Value of 1: enabled. Indices: 0: 3D gyro, 1: 3D acc, 2: 3D mag, 3: absolute pressure, 4: differential pressure, 5: GPS, 6: optical flow, 7: computer vision position, 8: laser based position, 9: external ground-truth (Vicon or Leica). Controllers: 10: 3D angular rate control 11: attitude stabilization, 12: yaw position, 13: z/altitude control, 14: x/y position control, 15: motor outputs / control
					0,
					// onboard_control_sensors_health Bitmask showing which onboard controllers and sensors are operational or have an error:  Value of 0: not enabled. Value of 1: enabled. Indices: 0: 3D gyro, 1: 3D acc, 2: 3D mag, 3: absolute pressure, 4: differential pressure, 5: GPS, 6: optical flow, 7: computer vision position, 8: laser based position, 9: external ground-truth (Vicon or Leica). Controllers: 10: 3D angular rate control 11: attitude stabilization, 12: yaw position, 13: z/altitude control, 14: x/y position control, 15: motor outputs / control
					0,
					// load Maximum usage in percent of the mainloop time, (0%: 0, 100%: 1000) should be always below 1000
					(uint16_t)systemStats.CPULoad * 10,
					// voltage_battery Battery voltage, in millivolts (1 = 1 millivolt)
					voltage,
					// current_battery Battery current, in 10*milliamperes (1 = 10 milliampere), -1: autopilot does not measure the current
					current,
					// battery_remaining Remaining battery energy: (0%: 0, 100%: 100), -1: autopilot estimate the remaining battery
					battery_remaining,
					// drop_rate_comm Communication drops in percent, (0%: 0, 100%: 10'000), (UART, I2C, SPI, CAN), dropped packets on all links (packets that were corrupted on reception on the MAV)
					0,
					// errors_comm Communication errors (UART, I2C, SPI, CAN), dropped packets on all links (packets that were corrupted on reception on the MAV)
					0,
					// errors_count1 Autopilot-specific errors
					0,
					// errors_count2 Autopilot-specific errors
					0,
					// errors_count3 Autopilot-specific errors
					0,
					// errors_count4 Autopilot-specific errors
					0);

			send_message();
		}

		if (stream_trigger(MAV_DATA_STREAM_RC_CHANNELS)) {
			ManualControlCommandData manualState;
			FlightStatusData flightStatus;

			ManualControlCommandGet(&manualState);
			FlightStatusGet(&flightStatus);
			SystemStatsGet(&systemStats);

			//TODO connect with RSSI object and pass in last argument
			mavlink_msg_rc_channels_raw_pack(0, 200, mav_msg,
					// time_boot_ms Timestamp (milliseconds since system boot)
					systemStats.FlightTime,
					// port Servo output port (set of 8 outputs = 1 port). Most MAVs will just use one, but this allows to encode more than 8 servos.
					0,
					// chan1_raw RC channel 1 value, in microseconds
					manualState.Channel[0],
					// chan2_raw RC channel 2 value, in microseconds
					manualState.Channel[1],
					// chan3_raw RC channel 3 value, in microseconds
					manualState.Channel[2],
					// chan4_raw RC channel 4 value, in microseconds
					manualState.Channel[3],
					// chan5_raw RC channel 5 value, in microseconds
					manualState.Channel[4],
					// chan6_raw RC channel 6 value, in microseconds
					manualState.Channel[5],
					// chan7_raw RC channel 7 value, in microseconds
					manualState.Channel[6],
					// chan8_raw RC channel 8 value, in microseconds
					manualState.Channel[7],
					// rssi Receive signal strength indicator, 0: 0%, 255: 100%
					manualState.Rssi);

			send_message();
		}

		if (stream_trigger(MAV_DATA_STREAM_POSITION)) {
			GPSPositionData gpsPosData = {};
			HomeLocationData homeLocation = {};
			SystemStatsGet(&systemStats);

			if (GPSPositionHandle() != NULL )
				GPSPositionGet(&gpsPosData);
			if (HomeLocationHandle() != NULL )
				HomeLocationGet(&homeLocation);
			SystemStatsGet(&systemStats);

			uint8_t gps_fix_type;
			switch (gpsPosData.Status)
			{
			case GPSPOSITION_STATUS_NOGPS:
				gps_fix_type = 0;
				break;
			case GPSPOSITION_STATUS_NOFIX:
				gps_fix_type = 1;
				break;
			case GPSPOSITION_STATUS_FIX2D:
				gps_fix_type = 2;
				break;
			case GPSPOSITION_STATUS_FIX3D:
			case GPSPOSITION_STATUS_DIFF3D:
				gps_fix_type = 3;
				break;
			default:
				gps_fix_type = 0;
				break;
			}

			mavlink_msg_gps_raw_int_pack(0, 200, mav_msg,
					// time_usec Timestamp (microseconds since UNIX epoch or microseconds since system boot)
					(uint64_t)systemStats.FlightTime * 1000,
					// fix_type 0-1: no fix, 2: 2D fix, 3: 3D fix. Some applications will not use the value of this field unless it is at least two, so always correctly fill in the fix.
					gps_fix_type,
					// lat Latitude in 1E7 degrees
					gpsPosData.Latitude,
					// lon Longitude in 1E7 degrees
					gpsPosData.Longitude,
					// alt Altitude in 1E3 meters (millimeters) above MSL
					gpsPosData.Altitude * 1000,
					// eph GPS HDOP horizontal dilution of position in cm (m*100). If unknown, set to: 65535
					gpsPosData.HDOP * 100,
					// epv GPS VDOP horizontal dilution of position in cm (m*100). If unknown, set to: 65535
					gpsPosData.VDOP * 100,
					// vel GPS ground speed (m/s * 100). If unknown, set to: 65535
					gpsPosData.Groundspeed * 100,
					// cog Course over ground (NOT heading, but direction of movement) in degrees * 100, 0.0..359.99 degrees. If unknown, set to: 65535
					gpsPosData.Heading * 100,
					// satellites_visible Number of satellites visible. If unknown, set to 255
					gpsPosData.Satellites);

			send_message();

			mavlink_msg_gps_global_origin_pack(0, 200, mav_msg,
					// latitude Latitude (WGS84), expressed as * 1E7
					homeLocation.Latitude,
					// longitude Longitude (WGS84), expressed as * 1E7
					homeLocation.Longitude,
					// altitude Altitude(WGS84), expressed as * 1000
					homeLocation.Altitude * 1000);

			send_message();

			//TODO add waypoint nav stuff
			//wp_target_bearing
			//wp_dist = mavlink_msg_nav_controller_output_get_wp_dist(&msg);
			//alt_error = mavlink_msg_nav_controller_output_get_alt_error(&msg);
			//aspd_error = mavlink_msg_nav_controller_output_get_aspd_error(&msg);
			//xtrack_error = mavlink_msg_nav_controller_output_get_xtrack_error(&msg);
			//mavlink_msg_nav_controller_output_pack
			//wp_number
			//mavlink_msg_mission_current_pack
		}

		if (stream_trigger(MAV_DATA_STREAM_EXTRA1)) {
			AttitudeActualData attActual;
			SystemStatsData systemStats;

			AttitudeActualGet(&attActual);
			SystemStatsGet(&systemStats);

			mavlink_msg_attitude_pack(0, 200, mav_msg,
					// time_boot_ms Timestamp (milliseconds since system boot)
					systemStats.FlightTime,
					// roll Roll angle (rad)
					attActual.Roll * DEG2RAD,
					// pitch Pitch angle (rad)
					attActual.Pitch * DEG2RAD,
					// yaw Yaw angle (rad)
					attActual.Yaw * DEG2RAD,
					// rollspeed Roll angular speed (rad/s)
					0,
					// pitchspeed Pitch angular speed (rad/s)
					0,
					// yawspeed Yaw angular speed (rad/s)
					0);

			send_message();
		}

		if (stream_trigger(MAV_DATA_STREAM_EXTRA2)) {
			ActuatorDesiredData actDesired;
			AttitudeActualData attActual;
			AirspeedActualData airspeedActual = {};
			GPSPositionData gpsPosData = {};
			BaroAltitudeData baroAltitude = {};
			FlightStatusData flightStatus;

			if (AirspeedActualHandle() != NULL )
				AirspeedActualGet(&airspeedActual);
			if (GPSPositionHandle() != NULL )
				GPSPositionGet(&gpsPosData);
			if (BaroAltitudeHandle() != NULL )
				BaroAltitudeGet(&baroAltitude);
			ActuatorDesiredGet(&actDesired);
			AttitudeActualGet(&attActual);
			FlightStatusGet(&flightStatus);

			float altitude = 0;
			if (BaroAltitudeHandle() != NULL)
				altitude = baroAltitude.Altitude;
			else if (GPSPositionHandle() != NULL)
				altitude = gpsPosData.Altitude;

			// round attActual.Yaw to nearest int and transfer from (-180 ... 180) to (0 ... 360)
			int16_t heading = lroundf(attActual.Yaw);
			if (heading < 0)
				heading += 360;

			mavlink_msg_vfr_hud_pack(0, 200, mav_msg,
					// airspeed Current airspeed in m/s
					airspeedActual.TrueAirspeed,
					// groundspeed Current ground speed in m/s
					gpsPosData.Groundspeed,
					// heading Current heading in degrees, in compass units (0..360, 0=north)
					heading,
					// throttle Current throttle setting in integer percent, 0 to 100
					actDesired.Throttle * 100,
					// alt Current altitude (MSL), in meters
					altitude,
					// climb Current climb rate in meters/second
					0);

			send_message();

			uint8_t armed_mode = 0;
			if (flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMED)
				armed_mode |= MAV_MODE_FLAG_SAFETY_ARMED;

			uint8_t custom_mode = CUSTOM_MODE_STAB;

			switch (flightStatus.FlightMode) {
				case FLIGHTSTATUS_FLIGHTMODE_MANUAL:
				case FLIGHTSTATUS_FLIGHTMODE_MWRATE:
				case FLIGHTSTATUS_FLIGHTMODE_VIRTUALBAR:
				case FLIGHTSTATUS_FLIGHTMODE_HORIZON:
					/* Kinda a catch all */
					custom_mode = CUSTOM_MODE_SPORT;
					break;
				case FLIGHTSTATUS_FLIGHTMODE_ACRO:
				case FLIGHTSTATUS_FLIGHTMODE_AXISLOCK:
					custom_mode = CUSTOM_MODE_ACRO;
					break;
				case FLIGHTSTATUS_FLIGHTMODE_STABILIZED1:
				case FLIGHTSTATUS_FLIGHTMODE_STABILIZED2:
				case FLIGHTSTATUS_FLIGHTMODE_STABILIZED3:
					/* May want these three to try and
					 * infer based on roll axis */
				case FLIGHTSTATUS_FLIGHTMODE_LEVELING:
					custom_mode = CUSTOM_MODE_STAB;
					break;
				case FLIGHTSTATUS_FLIGHTMODE_AUTOTUNE:
					custom_mode = CUSTOM_MODE_DRIFT;
					break;
				case FLIGHTSTATUS_FLIGHTMODE_ALTITUDEHOLD:
					custom_mode = CUSTOM_MODE_ALTH;
					break;
				case FLIGHTSTATUS_FLIGHTMODE_RETURNTOHOME:
					custom_mode = CUSTOM_MODE_RTL;
					break;
				case FLIGHTSTATUS_FLIGHTMODE_TABLETCONTROL:
				case FLIGHTSTATUS_FLIGHTMODE_POSITIONHOLD:
					custom_mode = CUSTOM_MODE_POSH;
					break;
				case FLIGHTSTATUS_FLIGHTMODE_PATHPLANNER:
					custom_mode = CUSTOM_MODE_AUTO;
					break;
			}

			mavlink_msg_heartbeat_pack(0, 200, mav_msg,
					// type Type of the MAV (quadrotor, helicopter, etc., up to 15 types, defined in MAV_TYPE ENUM)
					MAV_TYPE_GENERIC,
					// autopilot Autopilot type / class. defined in MAV_AUTOPILOT ENUM
					MAV_AUTOPILOT_GENERIC,
					// base_mode System mode bitfield, see MAV_MODE_FLAGS ENUM in mavlink/include/mavlink_types.h
					armed_mode,
					// custom_mode A bitfield for use for autopilot-specific flags.
					custom_mode,
					// system_status System status flag, see MAV_STATE ENUM
					0);

			send_message();
		}
	}
}
Esempio n. 9
0
void MAVLinkMKHUCHApp::handle_input(const mkhuch_message_t& msg) {
	uint64_t last_mkhuch_msg_time = mkhuch_msg_time;
	mkhuch_msg_time = get_time_us();

	log("MAVLinkMKHUCHApp got mkhuch_message", static_cast<int>(msg.type), Logger::LOGLEVEL_DEBUG);

	//send heartbeat approx. after 1s
	heartbeat_time += mkhuch_msg_time - last_mkhuch_msg_time;
	if( heartbeat_time > 1000000 ) {
		send_heartbeat();
		heartbeat_time = 0;
	}

	switch(msg.type) {
		case MKHUCH_MSG_TYPE_MK_IMU: {
			const mkhuch_mk_imu_t *mk_imu = reinterpret_cast<const mkhuch_mk_imu_t*>(msg.data);
			mavlink_huch_imu_raw_adc_t imu_raw_adc;
			imu_raw_adc.xacc = mk_imu->x_adc_acc;
			imu_raw_adc.yacc = mk_imu->y_adc_acc;
			imu_raw_adc.zacc = mk_imu->z_adc_acc;
			imu_raw_adc.xgyro = mk_imu->x_adc_gyro;
			imu_raw_adc.ygyro = mk_imu->y_adc_gyro;
			imu_raw_adc.zgyro = mk_imu->z_adc_gyro;
			DataCenter::set_huch_imu_raw_adc(imu_raw_adc);
			Lock tx_lock(tx_mav_mutex);
			//forward raw ADC
			mavlink_msg_huch_imu_raw_adc_encode(system_id(),
				component_id,
				&tx_mav_msg,
				&imu_raw_adc
				);
			AppLayer<mavlink_message_t>::send(tx_mav_msg);
			//forward MK IMU
			//TODO: add compass value and baro
			mavlink_huch_mk_imu_t huch_mk_imu;
			huch_mk_imu.usec = mkhuch_msg_time;
			huch_mk_imu.xacc = (2500*mk_imu->x_acc)/1024; //convert normalized analog to mg
			huch_mk_imu.yacc = (2500*mk_imu->y_acc)/1024;
			huch_mk_imu.zacc = (2500*mk_imu->z_acc)/1024;
			huch_mk_imu.xgyro = (6700*mk_imu->x_adc_gyro)/(3*1024); //convert analog to 0.1 deg./sec.
			huch_mk_imu.ygyro = (6700*mk_imu->y_adc_gyro)/(3*1024);
			huch_mk_imu.zgyro = (6700*mk_imu->z_adc_gyro)/(3*1024);
			DataCenter::set_huch_mk_imu(huch_mk_imu);
			mavlink_msg_huch_mk_imu_encode(system_id(),
				component_id,
				&tx_mav_msg,
				&huch_mk_imu
				);
			AppLayer<mavlink_message_t>::send(tx_mav_msg);
			//forward pressure
			mavlink_raw_pressure_t raw_pressure;
			raw_pressure.time_usec = mkhuch_msg_time;
			raw_pressure.press_abs = mk_imu->press_abs;
			raw_pressure.press_diff1 = 0;	//press_diff1
			raw_pressure.press_diff2 = 0;	//press_diff2
			raw_pressure.temperature = 0;	//temperature
			DataCenter::set_raw_pressure(raw_pressure);
			mavlink_msg_raw_pressure_encode(system_id(),
				component_id,
				&tx_mav_msg,
				&raw_pressure
				);
			AppLayer<mavlink_message_t>::send(tx_mav_msg);
			//TODO: forward magneto
			break;
		}
/*		case MKHUCH_MSG_TYPE_PARAM_VALUE: {
			const mkhuch_param_t *param = reinterpret_cast<const mkhuch_param_t*>(msg.data);
			//set parameter
			uint8_t index;
			if(param->index >= parameter_count)
				index = parameter_count-1;
			else
				index = param->index;
			parameters[index] = param->value;
			//ask for next parameter
			if(index < parameter_count - 1) {
				parameter_request = index + 1;
				mk_param_type_t param_type= static_cast<mk_param_type_t>(parameter_request);
				send(MKHUCH_MSG_TYPE_PARAM_REQUEST, &param_type, sizeof(mk_param_type_t));
				parameter_time = message_time;
			} else { //got all parameters
				parameter_request = 255;
			}
			//inform others
			send_mavlink_param_value( static_cast<mk_param_type_t>(index) );
			break;
		}*/
/*		case MKHUCH_MSG_TYPE_ACTION_ACK: {

			Lock tx_lock(tx_mav_mutex);
			mavlink_msg_action_ack_pack(owner()->system_id(), component_id, &tx_mav_msg, msg.data[0], msg.data[1]);
			send(tx_mav_msg);
			break;
		}*/
	case MKHUCH_MSG_TYPE_STICKS: {
		const mkhuch_sticks_t *sticks = reinterpret_cast<const mkhuch_sticks_t*>(msg.data);
		mavlink_huch_attitude_control_t attitude_control;
		attitude_control.roll = (float)sticks->roll;
		attitude_control.pitch = (float)sticks->pitch;
		attitude_control.yaw = (float)sticks->yaw;
		attitude_control.thrust = (float)sticks->thrust;
		attitude_control.target = system_id();
		attitude_control.mask = 0;
		// log("MAVLinkMKHUCHApp got mkhuch_sticks msg", static_cast<int16_t>(sticks->roll), static_cast<int16_t>(sticks->pitch), Logger::LOGLEVEL_DEBUG);
		// log("MAVLinkMKHUCHApp got mkhuch_sticks msg", static_cast<int16_t>(sticks->yaw), static_cast<int16_t>(sticks->thrust), Logger::LOGLEVEL_DEBUG);
		// ALERT uint64_t -> uint32_t cast
		uint32_t time_ms = get_time_ms();
		Lock tx_lock(tx_mav_mutex);
		mavlink_msg_huch_attitude_control_encode(
																					 system_id(),
																					 component_id,
																					 &tx_mav_msg,
																					 &attitude_control
																					 );
		AppLayer<mavlink_message_t>::send(tx_mav_msg);

		// mavlink_msg_named_value_int_pack(system_id(),
		// 	component_id,
		// 	&tx_mav_msg,
		// 	time_ms,
		// 	"stk_roll",
		// 	sticks->roll);
		// AppLayer<mavlink_message_t>::send(tx_mav_msg);
		// mavlink_msg_named_value_int_pack(system_id(),
		// 	component_id,
		// 	&tx_mav_msg,
		// 	time_ms,
		// 	"stk_pitch",
		// 	sticks->pitch);
		// AppLayer<mavlink_message_t>::send(tx_mav_msg);
		// mavlink_msg_named_value_int_pack(system_id(),
		// 	component_id,
		// 	&tx_mav_msg,
		// 	time_ms,
		// 	"stk_yaw",
		// 	sticks->yaw);
		// AppLayer<mavlink_message_t>::send(tx_mav_msg);
		// mavlink_msg_named_value_int_pack(system_id(),
		// 	component_id,
		// 	&tx_mav_msg,
		// 	time_ms,
		// 	"stk_thrust",
		// 	sticks->thrust);
		// AppLayer<mavlink_message_t>::send(tx_mav_msg);
		break;
	}

	case MKHUCH_MSG_TYPE_RC_CHANNELS_RAW: {
		const mkhuch_rc_channels_raw_t *rc_channels_raw = reinterpret_cast<const mkhuch_rc_channels_raw_t*>(msg.data);
		//log("MAVLinkMKHUCHApp got mkhuch_rc_channels_raw msg", static_cast<int16_t>(rc_channels_raw->channel_2), Logger::LOGLEVEL_DEBUG);
		Lock tx_lock(tx_mav_mutex);
		mavlink_msg_rc_channels_raw_pack(system_id(),
			component_id,
			&tx_mav_msg,
			get_time_ms(),
			0,	//FIXME
			rc_channels_raw->channel_1,
			rc_channels_raw->channel_2,
			rc_channels_raw->channel_3,
			rc_channels_raw->channel_4,
			rc_channels_raw->channel_5,
			rc_channels_raw->channel_6,
			rc_channels_raw->channel_7,
			rc_channels_raw->channel_8,
			rc_channels_raw->rssi);
		AppLayer<mavlink_message_t>::send(tx_mav_msg);
		break;
	}

	case MKHUCH_MSG_TYPE_SYSTEM_STATUS: {
/* FIXME
			const mkhuch_system_status_t *sys_status = reinterpret_cast<const mkhuch_system_status_t*>(msg.data);
			Lock tx_lock(tx_mav_mutex);
			mavlink_msg_sys_status_pack(system_id(),
				component_id,
				&tx_mav_msg,
				sys_status->mode,
				sys_status->nav_mode,
				sys_status->state,
				1000, //FIXME: use glibtop to get load of linux system
				sys_status->vbat*100, //convert dV to mV
				0,//motor block (unsupported)
				sys_status->packet_drop);
			AppLayer<mavlink_message_t>::send(tx_mav_msg);
*/
			break;
		}
/*		case MKHUCH_MSG_TYPE_BOOT:
			//TODO
			break;*/
		case MKHUCH_MSG_TYPE_ATTITUDE: {
			const mkhuch_attitude_t *mkhuch_attitude = reinterpret_cast<const mkhuch_attitude_t*>(msg.data);
			mavlink_attitude_t mavlink_attitude;
			mavlink_attitude.time_boot_ms = mkhuch_msg_time / 1000;
			mavlink_attitude.roll = 0.001745329251994329577*(mkhuch_attitude->roll_angle);		//convert cdeg to rad with (pi/180)/10 
			mavlink_attitude.pitch = 0.001745329251994329577*(mkhuch_attitude->pitch_angle);	//convert cdeg to rad with (pi/180)/10
			mavlink_attitude.yaw = 0.001745329251994329577*(mkhuch_attitude->yaw_angle);		//convert cdeg to rad with (pi/180)/10
			//FIXME
			mavlink_attitude.rollspeed = 0;
			mavlink_attitude.pitchspeed = 0;
			mavlink_attitude.yawspeed = 0;
			Lock tx_lock(tx_mav_mutex);
			mavlink_msg_attitude_encode(system_id(),
				component_id,
				&tx_mav_msg,
				&mavlink_attitude);
			AppLayer<mavlink_message_t>::send(tx_mav_msg);
			break;
		}
		default:
			break;
	}
}