double pearson ( const mclv* a , const mclv* b , dim n ) { double suma = mclvSum(a) ; double sumb = mclvSum(b) ; double sumasq = mclvPowSum(a, 2.0) ; double sumbsq = mclvPowSum(b, 2.0) ; double nom = sqrt( (n*sumasq - suma*suma) * (n*sumbsq - sumb*sumb) ) ; double num = n * mclvIn(a, b) - suma * sumb ; return nom ? num / nom : 0.0 ; }
mclMatrix* mclDiagOrdering ( const mclMatrix* M , mclVector** vecp_attr ) { int n_cols = N_COLS(M) ; mclMatrix* diago = mclxAllocZero(NULL, NULL) ; long col ; if (*vecp_attr != NULL) mclvFree(vecp_attr) ; *vecp_attr = mclvResize(NULL, n_cols) ; for (col=0;col<n_cols;col++) { ofs offset = -1 ; double selfval = mclvIdxVal(M->cols+col, col, &offset) ; double center = mclvPowSum(M->cols+col, 2.0) /* double maxval = mclvMaxValue(M->cols+col) */ ; double bar = MCX_MAX(center, selfval) - dpsd_delta ; mclIvp* ivp = (*vecp_attr)->ivps+col ; ivp->idx = col ; ivp->val = center ? selfval / center : 0 ; if (offset >= 0) /* take only higher valued entries */ mclvSelectGqBar(diago->cols+col, bar) ; } ; return diago ; }
double mclvNorm ( const mclVector* vec , double power ) { if(power > 0.0) mcxErr("mclvNorm", "pbd: negative power argument <%f>", (double) power) , mcxExit(1) ; return pow((double) mclvPowSum(vec, power), 1.0 / power) ; }
mclv* reduce_v ( const mclv* u ) { mclv* v = mclvClone(u) ; dim n = v->n_ivps ; double s = mclvSum(v) ; double sq = mclvPowSum(v, 2.0) ; if (s) mclvSelectGqBar(v, 0.25 * sq / s) ;fprintf(stderr, "from %d to %d entries\n", (int) n, (int) v->n_ivps) ; return v ; }
static void tf_ssq ( mclx* mx , double val ) { dim i ; for (i=0;i<N_COLS(mx);i++) { mclv* v = mx->cols+i ; double ssq = mclvPowSum(v, 2.0) ; double sum = mclvSum(v) ; double self = mclvSelf(v) ; if (sum-self) mclvSelectGtBar(v, val * (ssq - self*self) / (sum - self)) ; } ; }
static void vary_threshold ( mcxIO* xf , FILE* fp , int vary_a , int vary_z , int vary_s , int vary_n , unsigned mode ) { dim cor_i = 0, j ; int step ; mclx* mx ; unsigned long noe ; pval* allvals ; dim n_allvals = 0 ; double sum_vals = 0.0 ; mx = mclxRead(xf, EXIT_ON_FAIL) ; mcxIOclose(xf) ; if (transform) mclgTFexec(mx, transform) ; noe = mclxNrofEntries(mx) ; allvals = mcxAlloc(noe * sizeof allvals[0], EXIT_ON_FAIL) ; if (!weight_scale) { if (mode == 'c') weight_scale = 1.0 ; else weight_scale = vary_n ; } n_allvals = get_n_sort_allvals(mx, allvals, noe, &sum_vals, FALSE) ; if (mode == 'c') { double smallest = n_allvals ? allvals[n_allvals-1] : -DBL_MAX ; if (vary_a * 1.0 / vary_n < smallest) { while (vary_a * 1.0 / vary_n < smallest) vary_a++ ; vary_a-- ; } mcxTell ( me , "smallest correlation is %.2f, using starting point %.2f" , smallest , vary_a * 1.0 / vary_n ) ; } if (output_flags & OUTPUT_TABLE) { ;fprintf(fp, "L\tD\tR\tS\tcce\tEWmean\tEWmed\tEWiqr\tNDmean\tNDmed\tNDiqr\tCCF\t%s\n", mode == 'k' ? "kNN" : mode == 'l' ? "N" : "Cutoff") ;} else { if (output_flags & OUTPUT_KEY) { ;fprintf(fp, "-------------------------------------------------------------------------------\n") ;fprintf(fp, " L Percentage of nodes in the largest component\n") ;fprintf(fp, " D Percentage of nodes in components of size at most %d [-div option]\n", (int) divide_g) ;fprintf(fp, " R Percentage of nodes not in L or D: 100 - L -D\n") ;fprintf(fp, " S Percentage of nodes that are singletons\n") ;fprintf(fp, " cce Expected size of component, nodewise [ sum(sz^2) / sum^2(sz) ]\n") ;fprintf(fp, "*EW Edge weight traits (mean, median and IQR, all scaled!)\n") ;fprintf(fp, " Scaling is used to avoid printing of fractional parts throughout.\n") ;fprintf(fp, " The scaling factor is %.2f [-report-scale option]\n", weight_scale) ;fprintf(fp, " ND Node degree traits [mean, median and IQR]\n") ;fprintf(fp, " CCF Clustering coefficient %s\n", compute_flags & COMPUTE_CLCF ? "(not computed; use --clcf to include this)" : "") ;fprintf(fp, " eff Induced component efficiency %s\n", compute_flags & COMPUTE_EFF ? "(not computed; use --eff to include this)" : "") ;if (mode == 'c') fprintf(fp, "Cutoff The threshold used.\n") ;else if (mode == 't') fprintf(fp, "*Cutoff The threshold with scale factor %.2f and fractional parts removed\n", weight_scale) ;else if (mode == 'k') fprintf(fp, "k-NN The knn parameter\n") ;else if (mode == 'l') fprintf(fp, "N The knn parameter (merge mode)\n") ;else if (mode == 'n') fprintf(fp, "ceil The ceil parameter\n") ;fprintf(fp, "Total number of nodes: %lu\n", (ulong) N_COLS(mx)) ;} fprintf(fp, "-------------------------------------------------------------------------------\n") ;fprintf(fp, " L D R S cce *EWmean *EWmed *EWiqr NDmean NDmed NDiqr CCF eff %6s \n", mode == 'k' ? "k-NN" : mode == 'l' ? "N" : mode == 'n' ? "Ceil" : "Cutoff") ;fprintf(fp, "-------------------------------------------------------------------------------\n") ; } for (step = vary_a; step <= vary_z; step += vary_s) { double cutoff = step * 1.0 / vary_n ; double eff = -1.0 ; mclv* nnodes = mclvCanonical(NULL, N_COLS(mx), 0.0) ; mclv* degree = mclvCanonical(NULL, N_COLS(mx), 0.0) ; dim i, n_sample = 0 ; double cor, y_prev, iqr = 0.0 ; mclx* cc = NULL, *res = NULL ; mclv* sz, *ccsz = NULL ; int step2 = vary_z + vary_a - step ; sum_vals = 0.0 ; if (mode == 't' || mode == 'c') mclxSelectValues(mx, &cutoff, NULL, MCLX_EQT_GQ) , res = mx ; else if (mode == 'k') { res = rebase_g ? mclxCopy(mx) : mx ; mclxKNNdispatch(res, step2, n_thread_l, 1) ; } else if (mode == 'l') { res = mx ; mclxKNNdispatch(res, step2, n_thread_l, 0) ; } else if (mode == 'n') { res = rebase_g ? mclxCopy(mx) : mx ; mclv* cv = mclgCeilNB(res, step2, NULL, NULL, NULL) ; mclvFree(&cv) ; } sz = mclxColSizes(res, MCL_VECTOR_COMPLETE) ; mclvSortDescVal(sz) ; cc = clmUGraphComponents(res, NULL) /* fixme: user has to specify -tf '#max()' if graph is directed */ ; if (cc) { ccsz = mclxColSizes(cc, MCL_VECTOR_COMPLETE) ; if (compute_flags & COMPUTE_EFF) { clmPerformanceTable pftable ; clmPerformance(mx, cc, &pftable) ; eff = pftable.efficiency ; } } if (mode == 't' || mode == 'c') { for ( ; n_allvals > 0 && allvals[n_allvals-1] < cutoff ; n_allvals-- ) ; sum_vals = 0.0 ; for (i=0;i<n_allvals;i++) sum_vals += allvals[i] ; } else if (mode == 'k' || mode == 'n' || mode == 'l') { n_allvals = get_n_sort_allvals(res, allvals, noe, &sum_vals, FALSE) ; } levels[cor_i].sim_median= mcxMedian(allvals, n_allvals, sizeof allvals[0], pval_get_double, &iqr) ; levels[cor_i].sim_iqr = iqr ; levels[cor_i].sim_mean = n_allvals ? sum_vals / n_allvals : 0.0 ; levels[cor_i].nb_median = mcxMedian(sz->ivps, sz->n_ivps, sizeof sz->ivps[0], ivp_get_double, &iqr) ; levels[cor_i].nb_iqr = iqr ; levels[cor_i].nb_mean = mclvSum(sz) / N_COLS(res) ; levels[cor_i].cc_exp = cc ? mclvPowSum(ccsz, 2.0) / N_COLS(res) : 0 ; levels[cor_i].nb_sum = mclxNrofEntries(res) ; if (compute_flags & COMPUTE_CLCF) { mclv* clcf = mclgCLCFdispatch(res, n_thread_l) ; levels[cor_i].clcf = mclvSum(clcf) / N_COLS(mx) ; mclvFree(&clcf) ; } else levels[cor_i].clcf = 0.0 ; levels[cor_i].threshold = mode == 'k' || mode == 'l' || mode == 'n' ? step2 : cutoff ; levels[cor_i].bigsize = cc ? cc->cols[0].n_ivps : 0 ; levels[cor_i].n_single = 0 ; levels[cor_i].n_edge = n_allvals ; levels[cor_i].n_lq = 0 ; if (cc) for (i=0;i<N_COLS(cc);i++) { dim n = cc->cols[N_COLS(cc)-1-i].n_ivps ; if (n == 1) levels[cor_i].n_single++ ; if (n <= divide_g) levels[cor_i].n_lq += n ; else break ; } if (levels[cor_i].bigsize <= divide_g) levels[cor_i].bigsize = 0 ; y_prev = sz->ivps[0].val /* wiki says: A scale-free network is a network whose degree distribution follows a power law, at least asymptotically. That is, the fraction P(k) of nodes in the network having k connections to other nodes goes for large values of k as P(k) ~ k^−g where g is a constant whose value is typically in the range 2<g<3, although occasionally it may lie outside these bounds. */ ; for (i=1;i<sz->n_ivps;i++) { double y = sz->ivps[i].val ; if (y > y_prev - 0.5) continue /* same as node degree seen last */ ; nnodes->ivps[n_sample].val = log( (i*1.0) / (1.0*N_COLS(res))) /* x = #nodes >= k, as fraction */ ; degree->ivps[n_sample].val = log(y_prev ? y_prev : 1) /* y = k = degree of node */ ; n_sample++ ;if(0)fprintf(stderr, "k=%.0f\tn=%d\t%.3f\t%.3f\n", (double) y_prev, (int) i, (double) nnodes->ivps[n_sample-1].val, (double) degree->ivps[n_sample-1].val) ; y_prev = y ; } nnodes->ivps[n_sample].val = 0 ; nnodes->ivps[n_sample++].val = log(y_prev ? y_prev : 1) ;if(0){fprintf(stderr, "k=%.0f\tn=%d\t%.3f\t%.3f\n", (double) sz->ivps[sz->n_ivps-1].val, (int) N_COLS(res), (double) nnodes->ivps[n_sample-1].val, (double) degree->ivps[n_sample-1].val) ;} ; mclvResize(nnodes, n_sample) ; mclvResize(degree, n_sample) ; cor = pearson(nnodes, degree, n_sample) ; levels[cor_i].degree_cor = cor * cor ;if(0)fprintf(stdout, "cor at cutoff %.2f %.3f\n\n", cutoff, levels[cor_i-1].degree_cor) ; mclvFree(&nnodes) ; mclvFree(°ree) ; mclvFree(&sz) ; mclvFree(&ccsz) ; mclxFree(&cc) ; if(output_flags & OUTPUT_TABLE) { fprintf ( fp , "%lu\t%lu\t%lu\t%lu\t%lu" "\t%6g\t%6g\t%6g" "\t%6g\t%lu\t%6g" , (ulong) levels[cor_i].bigsize , (ulong) levels[cor_i].n_lq , (ulong) N_COLS(mx) - levels[cor_i].bigsize - levels[cor_i].n_lq , (ulong) levels[cor_i].n_single , (ulong) levels[cor_i].cc_exp , (double) levels[cor_i].sim_mean , (double) levels[cor_i].sim_median , (double) levels[cor_i].sim_iqr , (double) levels[cor_i].nb_mean , (ulong) levels[cor_i].nb_median , (double) levels[cor_i].nb_iqr ) ; if (compute_flags & COMPUTE_CLCF) fprintf(fp, "\t%6g", levels[cor_i].clcf) ; else fputs("\tNA", fp) ; if (eff >= 0.0) fprintf(fp, "\t%4g", eff) ; else fputs("\tNA", fp) ; fprintf(fp, "\t%6g", (double) levels[cor_i].threshold) ; fputc('\n', fp) ; } else { fprintf ( fp , "%3d %3d %3d %3d %7d " "%7.0f %7.0f %6.0f" "%6.1f %6.0f %6.0f" , 0 ? 1 : (int) (0.5 + (100.0 * levels[cor_i].bigsize) / N_COLS(mx)) , 0 ? 1 : (int) (0.5 + (100.0 * levels[cor_i].n_lq) / N_COLS(mx)) , 0 ? 1 : (int) (0.5 + (100.0 * (N_COLS(mx) - levels[cor_i].bigsize - levels[cor_i].n_lq)) / N_COLS(mx)) , 0 ? 1 : (int) (0.5 + (100.0 * levels[cor_i].n_single) / N_COLS(mx)) , 0 ? 1 : (int) (0.5 + levels[cor_i].cc_exp) , 0 ? 1.0 : (double) (levels[cor_i].sim_mean * weight_scale) , 0 ? 1.0 : (double) (levels[cor_i].sim_median * weight_scale) , 0 ? 1.0 : (double) (levels[cor_i].sim_iqr * weight_scale) , 0 ? 1.0 : (double) (levels[cor_i].nb_mean ) , 0 ? 1.0 : (double) (levels[cor_i].nb_median + 0.5 ) , 0 ? 1.0 : (double) (levels[cor_i].nb_iqr + 0.5 ) ) ; if (compute_flags & COMPUTE_CLCF) fprintf(fp, " %3d", 0 ? 1 : (int) (0.5 + (100.0 * levels[cor_i].clcf))) ; else fputs(" -", fp) ; if (eff >= 0.0) fprintf(fp, " %3d", (int) (0.5 + 1000 * eff)) ; else fputs(" -", fp) ; if (mode == 'c') fprintf(fp, "%8.2f\n", (double) levels[cor_i].threshold) ; else if (mode == 't') fprintf(fp, "%8.0f\n", (double) levels[cor_i].threshold * weight_scale) ; else if (mode == 'k' || mode == 'n' || mode == 'l') fprintf(fp, "%8.0f\n", (double) levels[cor_i].threshold) ; } ; cor_i++ ; if (res != mx) mclxFree(&res) ; } if (!(output_flags & OUTPUT_TABLE)) { if (weefreemen) { fprintf(fp, "-------------------------------------------------------------------------------\n") ;fprintf(fp, "The graph below plots the R^2 squared value for the fit of a log-log plot of\n") ;fprintf(fp, "<node degree k> versus <#nodes with degree >= k>, for the network resulting\n") ;fprintf(fp, "from applying a particular %s cutoff.\n", mode == 'c' ? "correlation" : "similarity") ;fprintf(fp, "-------------------------------------------------------------------------------\n") ; for (j=0;j<cor_i;j++) { dim jj ; for (jj=30;jj<=100;jj++) { char c = ' ' ; if (jj * 0.01 < levels[j].degree_cor && (jj+1.0) * 0.01 > levels[j].degree_cor) c = 'X' ; else if (jj % 5 == 0) c = '|' ; fputc(c, fp) ; } if (mode == 'c') fprintf(fp, "%8.2f\n", (double) levels[j].threshold) ; else fprintf(fp, "%8.0f\n", (double) levels[j].threshold * weight_scale) ; } fprintf(fp, "|----+----|----+----|----+----|----+----|----+----|----+----|----+----|--------\n") ;fprintf(fp, "| R^2 0.4 0.5 0.6 0.7 0.8 0.9 | 1.0 -o)\n") ;fprintf(fp, "+----+----+----+----+----+---------+----+----+----+----+----+----+----+ /\\\\\n") ;fprintf(fp, "| 2 4 6 8 2 4 6 8 | 2 4 6 8 | 2 4 6 8 | 2 4 6 8 | 2 4 6 8 | 2 4 6 8 | _\\_/\n") ;fprintf(fp, "+----+----|----+----|----+----|----+----|----+----|----+----|----+----+--------\n") ; } else fprintf(fp, "-------------------------------------------------------------------------------\n") ; } mclxFree(&mx) ; mcxFree(allvals) ; }
double get_score ( const mclv* c , const mclv* d , const mclv* c_start , const mclv* d_start , const mclv* c_end , const mclv* d_end ) { mclv* vecc = mclvClone(c) ; mclv* vecd = mclvClone(d) ; mclv* meet_c = mcldMeet(vecc, vecd, NULL) ; mclv* meet_d = mcldMeet(vecd, meet_c, NULL) ; mclv* cwid = mclvBinary(c_end, c_start, NULL, fltSubtract) ; mclv* dwid = mclvBinary(d_end, d_start, NULL, fltSubtract) ; mclv* rmin = mclvBinary(c_end, d_end, NULL, fltMin) ; mclv* lmax = mclvBinary(c_start, d_start, NULL, fltMax) ; mclv* delta = mclvBinary(rmin, lmax, NULL, fltSubtract) ; mclv* weightc, *weightd ; double ip, cd, csn, meanc, meand, mean, euclid, meet_fraction, score, sum_meet_c, sum_meet_d, reduction_c, reduction_d ; int nmeet = meet_c->n_ivps ; int nldif = vecc->n_ivps - nmeet ; int nrdif = vecd->n_ivps - nmeet ; mclvSelectGqBar(delta, 0.0) ; weightc= mclvBinary(delta, cwid, NULL, mydiv) ; weightd= mclvBinary(delta, dwid, NULL, mydiv) #if 0 ;if (c != d)mclvaDump ( cwid , stdout , 5 , "\n" , 0) ,mclvaDump ( dwid , stdout , 5 , "\n" , 0) #endif ; sum_meet_c = 0.01 + mclvSum(meet_c) ; sum_meet_d = 0.01 + mclvSum(meet_d) ; mclvBinary(meet_c, weightc, meet_c, fltMultiply) ; mclvBinary(meet_d, weightd, meet_d, fltMultiply) ; reduction_c = mclvSum(meet_c) / sum_meet_c ; reduction_d = mclvSum(meet_d) / sum_meet_d ; ip = mclvIn(meet_c, meet_d) ; cd = sqrt(mclvPowSum(meet_c, 2.0) * mclvPowSum(meet_d, 2.0)) ; csn = cd ? ip / cd : 0.0 ; meanc = meet_c->n_ivps ? mclvSum(meet_c) / meet_c->n_ivps : 0.0 ; meand = meet_d->n_ivps ? mclvSum(meet_d) / meet_d->n_ivps : 0.0 ; mean = MCX_MIN(meanc, meand) ; euclid = 0 ? 1.0 : ( mean ? sqrt(mclvPowSum(meet_c, 2.0) / mclvPowSum(vecc, 2.0)) : 0.0 ) ; meet_fraction = pow((meet_c->n_ivps * 1.0 / vecc->n_ivps), 1.0) ; score = mean * csn * euclid * meet_fraction * 1.0 ; mclvFree(&meet_c) ; mclvFree(&meet_d) ; fprintf ( stdout , "%10d%10d%10d%10d%10d%10g%10g%10g%10g%10g%10g%10g\n" , (int) c->vid , (int) d->vid , (int) nldif , (int) nrdif , (int) nmeet , score , mean , csn , euclid , meet_fraction , reduction_c , reduction_d ) ; return score ; }