void caml_mcl_initialize(void) { if (caml_mcl_initialized) return; srandom(mcxSeed(315)); mclx_app_init(NULL); caml_mcl_initialized = 1; }
int main ( int argc , const char* argv[] ) { const char* fn_input = argc > 1 ? argv[1] : "" ; mclAlgParam* mlp = NULL ; const char* me = "mcl" ; mcxstatus status = STATUS_OK ; srandom(mcxSeed(315)) ; signal(SIGALRM, mclSigCatch) ; if (signal(SIGUSR1, mcxLogSig) == SIG_ERR) mcxErr(me, "cannot catch SIGUSR1!") ; mcxLogLevel = MCX_LOG_AGGR | MCX_LOG_MODULE | MCX_LOG_IO | MCX_LOG_GAUGE | MCX_LOG_WARN ; mclx_app_init(stderr) ; if (argc < 2) { mcxTell ( me , "usage: mcl <-|file name> [options]," " do 'mcl -h' or 'man mcl' for help" ) ; mcxExit(0) ; } status = mclAlgInterface (&mlp, (char**) (argv+2), argc-2, fn_input, NULL, ALG_DO_IO) ; if (status == ALG_INIT_DONE) return 0 ; else if (status) mcxDie(STATUS_FAIL, me, "no tango") ; if ((status = mclAlgorithm(mlp)) == STATUS_FAIL) mcxDie(STATUS_FAIL, me, "failed") ; if (mlp->n_assimilated) mcxLog(MCX_LOG_MODULE, me, "%lu nodes will assimilate", (ulong) mlp->n_assimilated) ; if (mlp->mx_start) mcxLog(MCX_LOG_MODULE, me, "cached matrix with %lu columns", (ulong) N_COLS(mlp->mx_start)) ; mclAlgParamFree(&mlp, TRUE) ; helpful_reminder() ; return STATUS_OK ; }
int main ( int argc , const char* argv[] ) { mcxDispBundle bundle ; mcxLogLevel = MCX_LOG_AGGR | MCX_LOG_MODULE | MCX_LOG_GAUGE | MCX_LOG_WARN ; mclxIOsetQMode("MCLXIOVERBOSITY", MCL_APP_VB_NO) ; mclx_app_init(stderr) ; bundle.disp_argc = argc ; bundle.disp_argv = argv ; bundle.disp_name = "clm" ; bundle.disp_syntax = clm_syntax ; bundle.disp_shared = clmSharedOptions ; bundle.n_disp_shared = sizeof(clmSharedOptions) / sizeof(mcxOptAnchor) -1; ; bundle.disp_version = app_report_version ; bundle.disp_table = clm_dir ; bundle.shared_handler= sharedArgHandle ; return mcxDispatch(&bundle) ; }
int main ( int argc , const char* argv[] ) { mcxIO* xf1, *xf2 ; mclx* mx1, *mx2 ; mcxbits modes = 0 ; mcxLogLevel = MCX_LOG_AGGR | MCX_LOG_MODULE | MCX_LOG_IO | MCX_LOG_GAUGE | MCX_LOG_WARN ; mclx_app_init(stdout) ; if (argc < 4) mcxUsage(stdout, me, usagelines) , mcxExit(0) ; modes = atoi(argv[1]) ; xf1 = mcxIOnew(argv[2], "r") ; xf2 = mcxIOnew(argv[3], "r") ; mx1 = mclxRead(xf1, EXIT_ON_FAIL) ; mx2 = mclxRead(xf2, EXIT_ON_FAIL) ; pairwise_setops(mx1, mx2, modes) ; if (modes & MMM_DUMPMX) { mcxIO* xo = mcxIOnew("out.mmm", "w") ; mclxWrite(mx1, xo, MCLXIO_VALUE_GETENV, RETURN_ON_FAIL) ; } mclxFree(&mx1) ; mclxFree(&mx2) ; mcxIOfree(&xf1) ; mcxIOfree(&xf2) ; return 0 ; }
int main ( int argc , const char* argv[] ) { mcxIO *xfin = mcxIOnew("-", "r") ; mcxIO *xfout = mcxIOnew("-", "w") ; mclMatrix *mx = NULL ; mclx* cmapx = NULL, *rmapx = NULL ; const char* me = "mcxmap" ; long cshift = 0 ; long rshift = 0 ; long cmul = 1 ; long rmul = 1 ; mcxIO* xf_cannc = NULL ; mcxIO* xf_cannr = NULL ; mcxstatus status = STATUS_OK ; mcxbool invert = FALSE ; mcxbool invertr = FALSE ; mcxbool invertc = FALSE ; mcxIO* xf_map_c = NULL, *xf_map_r = NULL, *xf_map = NULL, *xf_tab = NULL ; mcxOption* opts, *opt ; mcxstatus parseStatus = STATUS_OK ; mcxLogLevel = MCX_LOG_AGGR | MCX_LOG_MODULE | MCX_LOG_IO | MCX_LOG_GAUGE | MCX_LOG_WARN ; mclxIOsetQMode("MCLXIOVERBOSITY", MCL_APP_VB_NO) ; mclx_app_init(stderr) ; mcxOptAnchorSortById(options, sizeof(options)/sizeof(mcxOptAnchor) -1) ; opts = mcxOptParse(options, (char**) argv, argc, 1, 0, &parseStatus) ; if (!opts) exit(0) ; for (opt=opts;opt->anch;opt++) { mcxOptAnchor* anch = opt->anch ; switch(anch->id) { case MY_OPT_HELP : case MY_OPT_APROPOS : mcxOptApropos(stdout, me, syntax, 0, 0, options) ; return 0 ; case MY_OPT_VERSION : app_report_version(me) ; return 0 ; case MY_OPT_IMX : mcxIOnewName(xfin, opt->val) ; break ; case MY_OPT_OUT : mcxIOnewName(xfout, opt->val) ; break ; case MY_OPT_MUL : cmul = atol(opt->val) ; rmul = cmul ; break ; case MY_OPT_CMUL : cmul = atol(opt->val) ; break ; case MY_OPT_RMUL : rmul = atol(opt->val) ; break ; case MY_OPT_SHIFT : cshift = atol(opt->val) ; rshift = atol(opt->val) ; break ; case MY_OPT_CSHIFT : cshift = atol(opt->val) ; break ; case MY_OPT_RSHIFT : rshift = atol(opt->val) ; break ; case MY_OPT_MAP : xf_map = mcxIOnew(opt->val, "r") ; invert = FALSE ; break ; case MY_OPT_CMAP : invertc = FALSE ; xf_map_c = mcxIOnew(opt->val, "r") ; break ; case MY_OPT_RMAP : invertr = FALSE ; xf_map_r = mcxIOnew(opt->val, "r") ; break ; case MY_OPT_MAPI : invert = TRUE ; xf_map = mcxIOnew(opt->val, "r") ; break ; case MY_OPT_CMAPI : invertc = TRUE ; xf_map_c = mcxIOnew(opt->val, "r") ; break ; case MY_OPT_RMAPI : invertr = TRUE ; xf_map_r = mcxIOnew(opt->val, "r") ; break ; case MY_OPT_MAKE_MAP : xf_cannc = mcxIOnew(opt->val, "w") ; xf_cannr = xf_cannc ; break ; case MY_OPT_MAKE_MAPC : xf_cannc = mcxIOnew(opt->val, "w") ; break ; case MY_OPT_MAKE_MAPR : xf_cannr = mcxIOnew(opt->val, "w") ; break ; case MY_OPT_TAB : xf_tab = mcxIOnew(opt->val, "r") ; break ; } } /* little special case. restructure when it grows */ if (xf_tab) { mclTab* tab1, *tab2 ; if (xf_map) { mcxIOopen(xf_map, EXIT_ON_FAIL) ; cmapx = mclxRead(xf_map, EXIT_ON_FAIL) ; } else mcxDie(1, me, "-tab option requires -map option") ; tab1 = mclTabRead(xf_tab, NULL, EXIT_ON_FAIL) ; if ((tab2 = mclTabMap(tab1, cmapx))) mclTabWrite(tab2, xfout, NULL, EXIT_ON_FAIL) ; else mcxDie(1, me, "map file error (subsumption/bijection)") ; return 0 ; } mx = mclxRead(xfin, EXIT_ON_FAIL) ; if (xf_map) { mcxIOopen(xf_map, EXIT_ON_FAIL) ; cmapx = mclxRead(xf_map, EXIT_ON_FAIL) ; rmapx = cmapx ; } else { if (xf_map_c) { mcxIOopen(xf_map_c, EXIT_ON_FAIL) ; cmapx = mclxRead(xf_map_c, EXIT_ON_FAIL) ; } else if (cshift || cmul > 1) cmapx = mclxMakeMap ( mclvCopy(NULL, mx->dom_cols) , mclvMap(NULL, cmul, cshift, mx->dom_cols) ) ; else if (xf_cannc) /* fixme slightly flaky interface */ { cmapx = mclxMakeMap ( mclvCopy(NULL, mx->dom_cols) , mclvCanonical(NULL, mx->dom_cols->n_ivps, 1.0) ) ; mclxWrite(cmapx, xf_cannc, MCLXIO_VALUE_GETENV, RETURN_ON_FAIL) ; } if (xf_map_r) { mcxIOopen(xf_map_r, EXIT_ON_FAIL) ; rmapx = mclxRead(xf_map_r, EXIT_ON_FAIL) ; } else if (rshift || rmul > 1) rmapx = mclxMakeMap ( mclvCopy(NULL, mx->dom_rows) , mclvMap(NULL, rmul, rshift, mx->dom_rows) ) ; else if (xf_cannr) { rmapx = mclxMakeMap ( mclvCopy(NULL, mx->dom_rows) , mclvCanonical(NULL, mx->dom_rows->n_ivps, 1.0) ) ; if (xf_cannr != xf_cannc) mclxWrite(rmapx, xf_cannr, MCLXIO_VALUE_GETENV, RETURN_ON_FAIL) ; else if (!mclxIsGraph(mx)) mcxErr(me, "row map not written but matrix is not a graph") ; } } if (invert && cmapx && cmapx == rmapx) { mclx* cmapxi = mclxTranspose(cmapx) ; mclxFree(&cmapx) ; cmapx = rmapx = cmapxi ; } else { if ((invert || invertr) && rmapx) { mclx* rmapxi = mclxTranspose(rmapx) ; mclxFree(&rmapx) ; rmapx = rmapxi ; } if ((invert || invertc) && cmapx) { mclx* cmapxi = mclxTranspose(cmapx) ; mclxFree(&cmapx) ; cmapx = cmapxi ; } } ; status = STATUS_FAIL ; do { if (cmapx && mclxMapCols(mx, cmapx)) break ; if (rmapx && mclxMapRows(mx, rmapx)) break ; status = STATUS_OK ; } while (0) ; if (status) { mcxErr(me, "error, nothing written") ; return 1 ; } mclxWrite(mx, xfout, MCLXIO_VALUE_GETENV, EXIT_ON_FAIL) ; return 0 ; }
int main ( int argc , const char* argv[] ) { mcxIO *xf_cl = NULL, *xf_mx = NULL ; mclx *cl = NULL, *elcl = NULL ; int a = 1 ; dim i ; mcxLogLevel = MCX_LOG_AGGR | MCX_LOG_MODULE | MCX_LOG_IO | MCX_LOG_GAUGE | MCX_LOG_WARN ; mclxIOsetQMode("MCLXIOVERBOSITY", MCL_APP_VB_YES) ; mclx_app_init(stderr) ; while(a < argc) { if (!strcmp(argv[a], "-icl")) { if (a++ + 1 < argc) xf_cl = mcxIOnew(argv[a], "r") ; else goto arg_missing ; } else if (!strcmp(argv[a], "-h")) { help : mcxUsage(stdout, me, usagelines) ; mcxExit(STATUS_FAIL) ; } else if (!strcmp(argv[a], "--version")) { app_report_version(me) ; exit(0) ; } else if (!strcmp(argv[a], "-imx")) { if (a++ + 1 < argc) xf_mx = mcxIOnew(argv[a], "r") ; else goto arg_missing ; } else if (!strcmp(argv[a], "-h")) { goto help ; } else if (0) { arg_missing: ; mcxErr ( me , "flag <%s> needs argument; see help (-h)" , argv[argc-1] ) ; mcxExit(1) ; } else { mcxErr ( me , "unrecognized flag <%s>; see help (-h)" , argv[a] ) ; mcxExit(1) ; } a++ ; } if (!xf_cl) mcxErr(me, "need cluster file") , mcxExit(1) ; cl = mclxRead(xf_cl, EXIT_ON_FAIL) ; elcl = mclxTranspose(cl) ; for (i=0; i<N_COLS(elcl); i++) { mclv* vec = elcl->cols+i ; if (vec->n_ivps > 1) fprintf(stdout, "%ld\n", (long) vec->vid) ; } return 0 ; }
static mcxstatus meetMain ( int argc , const char* argv[] ) { mcxIO **xfmcs = NULL ; mclMatrix *lft = NULL ; mclMatrix *rgt = NULL ; mclMatrix *dst = NULL ; int a = 0 ; int n_mx = 0 ; int j ; dim o, m, e ; mclxIOsetQMode("MCLXIOVERBOSITY", MCL_APP_VB_YES) ; mclx_app_init(stderr) ; xfmcs = (mcxIO**) mcxAlloc ( (argc)*sizeof(mcxIO*) , EXIT_ON_FAIL ) ; mcxIOopen(xfout, EXIT_ON_FAIL) ; for(j=a;j<argc;j++) { xfmcs[n_mx] = mcxIOnew(argv[j], "r") ; n_mx++ ; } if (!n_mx) mcxDie(1, me, "at least one clustering matrix required") /* Fixme: do a decent initialization with lft = clmTop() *before* * this loop (removing the need for ugly tmp assignment), but that requires * we know the correct domain to pass to it. For that, we need to peak into * the first matrix. */ ; for (j=0;j<n_mx;j++) { mclMatrix* tmp = mclxRead (xfmcs[j], EXIT_ON_FAIL) ; if (clmEnstrict(tmp, &o, &m, &e, ENSTRICT_SPLIT_OVERLAP)) report_partition("clmmeet", tmp, xfmcs[j]->fn, o, m, e) , mcxExit(1) ; if (!lft) { lft = tmp ; continue ; } else rgt = tmp ; if (!MCLD_EQUAL(lft->dom_rows, rgt->dom_rows)) mcxDie ( 1 , me , "domains not equal (files %s/%s)" , xfmcs[j-1]->fn->str , xfmcs[j]->fn->str ) ; mcxIOclose(xfmcs[j]) ; dst = clmMeet(lft, rgt) ; lft = dst ; mclxFree(&rgt) ; } mclxColumnsRealign(lft, mclvSizeRevCmp) ; mclxWrite(lft, xfout, MCLXIO_VALUE_NONE, EXIT_ON_FAIL) ; mclxFree(&lft) ; mcxIOfree(&xfout) ; free(xfmcs) ; return STATUS_OK ; }
int main ( int argc , const char* argv[] ) { mcxIO* xfmx = mcxIOnew("-", "r"), *xfout = mcxIOnew("-", "w") ; mclx* mx = NULL ; mclv* mx_diag = NULL ; mcxstatus parseStatus = STATUS_OK ; mcxOption* opts, *opt ; dim N_edge = 0 ; dim* offsets ; dim template_n_nodes = 0 ; mcxbool plus = FALSE ; double e_min = 1.0 ; double e_max = 0.0 ; double skew = 0.0 ; double radius = 0.0 ; double n_sdev = 0.5 ; double n_range = 2.0 ; double g_radius = 0.0 ; double g_mean = 0.0 ; double g_sdev = 0.0 ; double g_min = 1.0 ; double g_max = 0.0 ; mcxbool do_gaussian = FALSE ; dim i = 0 ; dim N_remove = 0 ; dim N_add = 0 ; dim N_shuffle = 0 ; unsigned long random_ignore = 0 ; srandom(mcxSeed(2308947)) ; mcxOptAnchorSortById(options, sizeof(options)/sizeof(mcxOptAnchor) -1) ; if (!(opts = mcxOptParse(options, (char**) argv, argc, 1, 0, &parseStatus))) exit(0) ; mcxLogLevel = MCX_LOG_AGGR | MCX_LOG_MODULE | MCX_LOG_IO | MCX_LOG_GAUGE | MCX_LOG_WARN ; mclxIOsetQMode("MCLXIOVERBOSITY", MCL_APP_VB_YES) ; mclx_app_init(stderr) ; for (opt=opts;opt->anch;opt++) { mcxOptAnchor* anch = opt->anch ; switch(anch->id) { case MY_OPT_HELP : case MY_OPT_APROPOS : mcxOptApropos(stdout, me, syntax, 20, MCX_OPT_DISPLAY_SKIP, options) ; return 0 ; case MY_OPT_VERSION : app_report_version(me) ; return 0 ; case MY_OPT_SKEW : skew = atof(opt->val) ; break ; case MY_OPT_GEN : template_n_nodes = atoi(opt->val) ; break ; case MY_OPT_IMX : mcxIOrenew(xfmx, opt->val, NULL) ; break ; case MY_OPT_PLUS : case MY_OPT_WB : plus = TRUE ; break ; case MY_OPT_OUT : mcxIOrenew(xfout, opt->val, NULL) ; break ; case MY_OPT_E_MAX : if (!strcmp(opt->val, "copy")) e_max = -DBL_MAX ; else e_max = atof(opt->val) ; break ; case MY_OPT_E_MIN : e_min = atof(opt->val) ; break ; case MY_OPT_G_MIN : g_min = atof(opt->val) ; break ; case MY_OPT_G_MAX : g_max = atof(opt->val) ; break ; case MY_OPT_G_SDEV : g_sdev = atof(opt->val) ; break ; case MY_OPT_G_MEAN : g_mean = atof(opt->val) ; do_gaussian = TRUE ; break ; case MY_OPT_G_RADIUS : g_radius = atof(opt->val) ; break ; case MY_OPT_N_RANGE : n_range = atof(opt->val) ; break ; case MY_OPT_N_SDEV : n_sdev = atof(opt->val) ; break ; case MY_OPT_N_RADIUS : radius = atof(opt->val) ; break ; case MY_OPT_SHUFFLE : N_shuffle = atoi(opt->val) ; break ; case MY_OPT_ADD : N_add = atoi(opt->val) ; break ; case MY_OPT_REMOVE : N_remove = atoi(opt->val) ; break ; } } /* hitting y% in vi tells me the size of this block */ { if (template_n_nodes) mx = mclxAllocZero ( mclvCanonical(NULL, template_n_nodes, 1.0) , mclvCanonical(NULL, template_n_nodes, 1.0) ) ; else mx = mclxReadx ( xfmx , EXIT_ON_FAIL , MCLX_REQUIRE_GRAPH ) ; mx_diag = mclxDiagValues(mx, MCL_VECTOR_COMPLETE) ; if (N_shuffle) mclxAdjustLoops(mx, mclxLoopCBremove, NULL) ; else mclxSelectUpper(mx) /* ^ apparently we always work on single arc representation (docme andsoon) */ ; offsets = mcxAlloc(sizeof offsets[0] * N_COLS(mx), EXIT_ON_FAIL) ; N_edge = 0 ; for (i=0;i<N_COLS(mx);i++) { offsets[i] = N_edge ; N_edge += mx->cols[i].n_ivps ; } if (N_edge < N_remove) { mcxErr ( me , "removal count %ld exceeds edge count %ld" , (long) N_remove , (long) N_edge ) ; N_remove = N_edge ; } random_ignore = RAND_MAX - (N_edge ? RAND_MAX % N_edge : 0) ; if (RAND_MAX / 2 < N_edge) mcxDie(1, me, "graph too large!") ; if (N_shuffle) { do_the_shuffle(mx, N_shuffle, offsets, N_edge, random_ignore) ; mx_readd_diagonal(mx, mx_diag) ; mclxWrite(mx, xfout, MCLXIO_VALUE_GETENV, RETURN_ON_FAIL) ; exit(0) ; } ; if (N_remove) { dim n_remove = do_remove(mx, N_remove, offsets, N_edge, random_ignore) /* Need to recompute N_edge and random_ignore. * NOTE we work with *upper* matrix; this counts graph edges. */ ; N_edge = mclxNrofEntries(mx) - n_remove ; random_ignore = RAND_MAX - (RAND_MAX % N_COLS(mx)) ; } if (g_mean) { if (!g_radius) { if (g_sdev) g_radius = 2 * g_sdev ; mcxWarn(me, "set radius to %.5f\n", g_radius) ; } } ; if (N_add) N_edge += do_add ( mx , N_add , N_edge , do_gaussian ? &g_mean : NULL, g_radius , g_sdev , g_min , g_max , skew , e_min , e_max ) ; if (radius) { for (i=0;i<N_COLS(mx);i++) { mclp* ivp = mx->cols[i].ivps, *ivpmax = ivp + mx->cols[i].n_ivps ;if(DEBUG)fprintf(stderr, "here %d\n", (int) i) ; while (ivp < ivpmax) { double val = ivp->val ; double r = mcxNormalCut(n_range * n_sdev, n_sdev) ; double newval = val + radius * (r / (n_range * n_sdev)) ; if (e_min < e_max && newval >= e_min && newval <= e_max) ; ivp->val = newval ; ivp++ ; } } } mclxUnary(mx, fltxCopy, NULL) /* remove zeroes */ ; mclxAddTranspose(mx, 0.0) ; mx_readd_diagonal(mx, mx_diag) ; if (plus) mclxbWrite(mx, xfout, RETURN_ON_FAIL) ; else mclxWrite(mx, xfout, MCLXIO_VALUE_GETENV, RETURN_ON_FAIL) ; } return 0 ; }
int main ( int argc , const char* argv[] ) { mcxIO* xf_tab = NULL ; mcxIO* xf_tabr = NULL ; mcxIO* xf_tabc = NULL ; mcxIO* xf_restrict_tab = NULL ; mcxIO* xf_restrict_tabr = NULL ; mcxIO* xf_restrict_tabc = NULL ; mcxIO* xf_mx = mcxIOnew("-", "r") ; mcxIO* xfout = NULL ; const char* fndump = "-" ; mclTab* tabr = NULL ; mclTab* tabc = NULL ; mclTab* restrict_tabr = NULL ; mclTab* restrict_tabc = NULL ; mcxbool transpose = FALSE ; mcxbool lazy_tab = FALSE ; mcxbool write_tabc = FALSE ; mcxbool write_tabr = FALSE ; mcxbool cat = FALSE ; mcxbool tree = FALSE ; mcxbool skel = FALSE ; mcxbool newick = FALSE ; mcxbits newick_bits = 0 ; mcxbits cat_bits = 0 ; dim catmax = 1 ; dim n_max = 0 ; dim table_nlines = 0 ; dim table_nfields = 0 ; int split_idx = 1 ; int split_inc = 1 ; const char* split_stem = NULL ; const char* sort_mode = NULL ; mcxTing* line = mcxTingEmpty(NULL, 10) ; mcxbits modes = MCLX_DUMP_VALUES ; mcxbits mode_dump = MCLX_DUMP_PAIRS ; mcxbits mode_part = 0 ; mcxbits mode_loop = MCLX_DUMP_LOOP_ASIS ; mcxbits mode_matrix = 0 ; int digits = MCLXIO_VALUE_GETENV ; mcxOption* opts, *opt ; mcxstatus parseStatus = STATUS_OK ; mcxLogLevel = MCX_LOG_AGGR | MCX_LOG_MODULE | MCX_LOG_IO | MCX_LOG_GAUGE | MCX_LOG_WARN ; mclxIOsetQMode("MCLXIOVERBOSITY", MCL_APP_VB_YES) ; mclx_app_init(stderr) ; mcxOptAnchorSortById(options, sizeof(options)/sizeof(mcxOptAnchor) -1) ; opts = mcxOptParse(options, (char**) argv, argc, 1, 0, &parseStatus) ; if (!opts) exit(0) ; for (opt=opts;opt->anch;opt++) { mcxOptAnchor* anch = opt->anch ; switch(anch->id) { case MY_OPT_HELP : case MY_OPT_APROPOS : mcxOptApropos(stdout, me, syntax, 0, 0, options) ; return 0 ; case MY_OPT_VERSION : app_report_version(me) ; return 0 ; case MY_OPT_TAB : xf_tab = mcxIOnew(opt->val, "r") ; break ; case MY_OPT_TABC : xf_tabc = mcxIOnew(opt->val, "r") ; break ; case MY_OPT_TABR : xf_tabr = mcxIOnew(opt->val, "r") ; break ; case MY_OPT_OUTPUT : fndump = opt->val ; break ; case MY_OPT_SEP_LEAD : sep_lead_g = opt->val ; break ; case MY_OPT_SEP_FIELD : sep_row_g = opt->val ; break ; case MY_OPT_SEP_CAT : sep_cat_g = opt->val ; break ; case MY_OPT_SEP_VAL : sep_val_g = opt->val ; break ; case MY_OPT_PREFIXC : prefixc_g = opt->val ; break ; case MY_OPT_RESTRICT_TAB : xf_restrict_tab = mcxIOnew(opt->val, "r") ; break ; case MY_OPT_RESTRICT_TABC : xf_restrict_tabc = mcxIOnew(opt->val, "r") ; break ; case MY_OPT_RESTRICT_TABR : xf_restrict_tabr = mcxIOnew(opt->val, "r") ; break ; case MY_OPT_LAZY_TAB : lazy_tab = TRUE ; break ; case MY_OPT_NO_VALUES : BIT_OFF(modes, MCLX_DUMP_VALUES) ; break ; case MY_OPT_DUMP_RLINES : mode_dump = MCLX_DUMP_LINES ; BIT_ON(modes, MCLX_DUMP_NOLEAD) ; break ; case MY_OPT_DUMP_VLINES : mode_dump = MCLX_DUMP_LINES ; BIT_ON(modes, MCLX_DUMP_LEAD_VALUE) ; break ; case MY_OPT_DUMP_LINES : mode_dump = MCLX_DUMP_LINES ; break ; case MY_OPT_OMIT_EMPTY : BIT_ON(modes, MCLX_DUMP_OMIT_EMPTY) ; break ; case MY_OPT_SORT : sort_mode = opt->val ; break ; case MY_OPT_NO_LOOPS : mode_loop = MCLX_DUMP_LOOP_NONE ; break ; case MY_OPT_CAT_LIMIT : n_max = atoi(opt->val) ; break ; case MY_OPT_SPLIT_STEM : split_stem = opt->val ; sep_cat_g = NULL ; break ; case MY_OPT_FORCE_LOOPS : mode_loop = MCLX_DUMP_LOOP_FORCE ; break ; case MY_OPT_SKEL : skel = TRUE ; break ; case MY_OPT_WRITE_TABC : write_tabc = TRUE ; break ; case MY_OPT_DIGITS : digits = strtol(opt->val, NULL, 10) ; break ; case MY_OPT_WRITE_TABR : write_tabr = TRUE ; break ; case MY_OPT_DUMP_RDOM : transpose = TRUE ; skel = TRUE ; mode_dump = MCLX_DUMP_LINES ; break ; case MY_OPT_DUMP_CDOM : skel = TRUE ; mode_dump = MCLX_DUMP_LINES ; break ; case MY_OPT_IMX : mcxIOnewName(xf_mx, opt->val) ; break ; case MY_OPT_ICL : mcxIOnewName(xf_mx, opt->val) ; mode_dump = MCLX_DUMP_LINES ; BIT_ON(modes, MCLX_DUMP_NOLEAD) ; BIT_OFF(modes, MCLX_DUMP_VALUES) ; break ; case MY_OPT_TREECAT : mcxIOnewName(xf_mx, opt->val) ; tree = TRUE ; cat_bits |= MCLX_PRODUCE_DOMSTACK ; break ; case MY_OPT_CAT : mcxIOnewName(xf_mx, opt->val) ; cat = TRUE ; break ; case MY_OPT_DUMP_MATRIX : mode_matrix |= MCLX_DUMP_MATRIX ; break ; case MY_OPT_TRANSPOSE : transpose = TRUE ; break ; case MY_OPT_DUMP_UPPER : mode_part = MCLX_DUMP_PART_UPPER ; break ; case MY_OPT_DUMP_UPPERI : mode_part = MCLX_DUMP_PART_UPPERI ; break ; case MY_OPT_DUMP_LOWER : mode_part = MCLX_DUMP_PART_LOWER ; break ; case MY_OPT_DUMP_LOWERI : mode_part = MCLX_DUMP_PART_LOWERI ; break ; case MY_OPT_DUMP_NOLEAD : BIT_ON(modes, MCLX_DUMP_NOLEAD) ; break ; case MY_OPT_NEWICK_MODE : if (strchr(opt->val, 'N')) newick_bits |= (MCLX_NEWICK_NONL | MCLX_NEWICK_NOINDENT) ; if (strchr(opt->val, 'I')) newick_bits |= MCLX_NEWICK_NOINDENT ; if (strchr(opt->val, 'B')) newick_bits |= MCLX_NEWICK_NONUM ; if (strchr(opt->val, 'S')) newick_bits |= MCLX_NEWICK_NOPTHS ; newick = TRUE ; break ; case MY_OPT_DUMP_NEWICK : newick = TRUE ; break ; case MY_OPT_DUMP_TABLE : mode_dump = MCLX_DUMP_TABLE ; break ; case MY_OPT_TABLE_NFIELDS : table_nfields = atoi(opt->val) ; break ; case MY_OPT_TABLE_NLINES : table_nlines = atoi(opt->val) ; break ; case MY_OPT_DUMP_PAIRS : mode_dump = MCLX_DUMP_PAIRS ; break ; } } ; if (skel) cat_bits |= MCLX_READ_SKELETON ; modes |= mode_loop | mode_dump | mode_part | mode_matrix ; xfout = mcxIOnew(fndump, "w") ; mcxIOopen(xfout, EXIT_ON_FAIL) ; mcxIOopen(xf_mx, EXIT_ON_FAIL) ; if (cat || tree) catmax = n_max ? n_max : 0 ; if ((write_tabc || write_tabr) && !xf_tab) mcxDie(1, me, "need a single tab file (-tab option) with --write-tabc or --write-tabr") ; if (xf_tab && mcxIOopen(xf_tab, RETURN_ON_FAIL)) mcxDie(1, me, "no tab") ; else { if (xf_tabr && mcxIOopen(xf_tabr, RETURN_ON_FAIL)) mcxDie(1, me, "no tabr") ; if (xf_tabc && mcxIOopen(xf_tabc, RETURN_ON_FAIL)) mcxDie(1, me, "no tabc") ; } { if (xf_restrict_tab && mcxIOopen(xf_restrict_tab, RETURN_ON_FAIL)) mcxDie(1, me, "no restriction tab") ; else { if (xf_restrict_tabr && mcxIOopen(xf_restrict_tabr, RETURN_ON_FAIL)) mcxDie(1, me, "no restriction tabr") ; if (xf_restrict_tabc && mcxIOopen(xf_restrict_tabc, RETURN_ON_FAIL)) mcxDie(1, me, "no restriction tabc") ; } /* fixme: below is pretty boilerplate, happens in other places as well */ if (xf_restrict_tab) { if (!(restrict_tabr = mclTabRead (xf_restrict_tab, NULL, RETURN_ON_FAIL))) mcxDie(1, me, "error reading restriction tab") ; restrict_tabc = restrict_tabr ; mcxIOclose(xf_restrict_tab) ; } else { if (xf_restrict_tabr) { if (!(restrict_tabr = mclTabRead(xf_restrict_tabr, NULL, RETURN_ON_FAIL))) mcxDie(1, me, "error reading restriction tabr") ; mcxIOclose(xf_restrict_tabr) ; } if (xf_restrict_tabc) { if (!(restrict_tabc = mclTabRead(xf_restrict_tabc, NULL, RETURN_ON_FAIL))) mcxDie(1, me, "error reading restriction tabc") ; mcxIOclose(xf_restrict_tabc) ; } } } /* fixme: restructure code to include bit below */ if (write_tabc || write_tabr) { mclv* dom_cols = mclvInit(NULL) ; mclv* dom_rows = mclvInit(NULL) ; mclv* dom = write_tabc ? dom_cols : dom_rows ; if (!(tabc = mclTabRead(xf_tab, NULL, RETURN_ON_FAIL))) mcxDie(1, me, "error reading tab file") ; if (mclxReadDomains(xf_mx, dom_cols, dom_rows)) mcxDie(1, me, "error reading matrix file") ; mcxIOclose(xf_mx) /* fixme check status */ ; mclTabWrite(tabc, xfout, dom, RETURN_ON_FAIL) ; mcxIOclose(xfout) ; return 0 ; } if (newick) { mcxTing* thetree ; mclxCat cat ; if (xf_tab && !(tabr = mclTabRead(xf_tab, NULL, RETURN_ON_FAIL))) mcxDie(1, me, "error reading tab file") ; mclxCatInit(&cat) ; if ( mclxCatRead ( xf_mx , &cat , 0 , NULL , tabr ? tabr->domain : NULL , MCLX_CATREAD_CLUSTERTREE | MCLX_ENSURE_ROOT ) ) mcxDie(1, me, "failure reading file") ; thetree = mclxCatNewick(&cat, tabr, newick_bits) ; fwrite(thetree->str, 1, thetree->len, xfout->fp) ; fputc('\n', xfout->fp) ; mcxIOclose(xfout) ; return 0 ; } while (1) { mclxIOdumper dumper ; mclxCat cat ; dim i ; if (xf_tab && !lazy_tab) cat_bits |= MCLX_REQUIRE_GRAPH ; mclxCatInit(&cat) ; if (mclxCatRead(xf_mx, &cat, catmax, NULL, NULL, cat_bits)) break ; for (i=0;i<cat.n_level;i++) { mclx* mx = cat.level[i].mx ; if (restrict_tabr || restrict_tabc) { mclx* sub ; sub = mclxSub ( mx , restrict_tabc ? restrict_tabc->domain : mx->dom_cols , restrict_tabr ? restrict_tabr->domain : mx->dom_rows ) ; mx = sub ; } /* noteme fixme dangersign mx now may violate some 'cat' invariant */ if (sort_mode) { if (!strcmp(sort_mode, "size-ascending")) mclxColumnsRealign(mx, mclvSizeCmp) ; else if (!strcmp(sort_mode, "size-descending")) mclxColumnsRealign(mx, mclvSizeRevCmp) ; else mcxErr(me, "unknown sort mode <%s>", sort_mode) ; if (catmax != 1) mcxErr(me, "-sort option and cat mode may fail or corrupt") ; } if (xf_tab && !tabr) { if (!( tabr = mclTabRead (xf_tab, lazy_tab ? NULL : mx->dom_rows, RETURN_ON_FAIL) ) ) mcxDie(1, me, "consider using --lazy-tab option") ; tabc = tabr ; mcxIOclose(xf_tab) ; } else { if (!tabr && xf_tabr) { if (!(tabr = mclTabRead (xf_tabr, lazy_tab ? NULL : mx->dom_rows, RETURN_ON_FAIL) ) ) mcxDie(1, me, "consider using --lazy-tab option") ; mcxIOclose(xf_tabr) ; } if (!tabc && xf_tabc) { if (!( tabc = mclTabRead (xf_tabc, lazy_tab ? NULL : mx->dom_cols, RETURN_ON_FAIL) ) ) mcxDie(1, me, "consider using --lazy-tab option") ; mcxIOclose(xf_tabc) ; } } ; if (transpose) { mclx* tp = mclxTranspose(mx) ; mclxFree(&mx) ; mx = tp ; if (tabc || tabr) { mclTab* tabt = tabc ; tabc = tabr ; tabr = tabt ; } } if (mode_dump == MCLX_DUMP_TABLE) BIT_ON(modes, MCLX_DUMP_TABLE_HEADER) ; mclxIOdumpSet(&dumper, modes, sep_lead_g, sep_row_g, sep_val_g) ; dumper.table_nlines = table_nlines ; dumper.table_nfields = table_nfields ; dumper.prefixc = prefixc_g ; if (split_stem) { mcxTing* ting = mcxTingPrint(NULL, "%s.%03d", split_stem, split_idx) ; mcxIOclose(xfout) ; mcxIOrenew(xfout, ting->str, "w") ; split_idx += split_inc ; } if ( mclxIOdump ( mx , xfout , &dumper , tabc , tabr , digits , RETURN_ON_FAIL ) ) mcxDie(1, me, "something suboptimal") ; mclxFree(&mx) ; if (sep_cat_g && i+1 < cat.n_level) fprintf(xfout->fp, "%s\n", sep_cat_g) ; } break ; } mcxIOfree(&xf_mx) ; mcxIOfree(&xfout) ; mcxIOfree(&xf_tab) ; mcxIOfree(&xf_tabr) ; mcxIOfree(&xf_tabc) ; mcxTingFree(&line) ; return 0 ; }
int main ( int argc , const char* argv[] ) { mcxIO* xfdagreduce = NULL, *xfattr = NULL, *xfdiff = NULL ; double child_diff_lq = 0.2 ; double parent_diff_gq = 0.4 ; mcxIO* xfimx = mcxIOnew("-", "r"), *xfdag = NULL, *xftab = NULL ; mclTab* tab = NULL ; int q = -1 ; mclx* mx ; unsigned char test_mode = 0 ; mcxstatus parseStatus = STATUS_OK ; mcxOption* opts, *opt ; mcxOptAnchorSortById(options, sizeof(options)/sizeof(mcxOptAnchor) -1) ; if (!(opts = mcxOptParse(options, (char**) argv, argc, 1, 0, &parseStatus))) exit(0) ; mcxLogLevel = MCX_LOG_AGGR | MCX_LOG_MODULE | MCX_LOG_IO | MCX_LOG_GAUGE | MCX_LOG_WARN ; mclxIOsetQMode("MCLXIOVERBOSITY", MCL_APP_VB_YES) ; mclx_app_init(stderr) ; for (opt=opts;opt->anch;opt++) { mcxOptAnchor* anch = opt->anch ; switch(anch->id) { case MY_OPT_HELP : mcxOptApropos(stdout, me, syntax, 0, 0, options) ; return 0 ; case MY_OPT_VERSION : app_report_version(me) ; return 0 ; case MY_OPT_TEST_CYCLE : test_mode = 'c' ; break ; case MY_OPT_TEST_CROSS : test_mode = 'x' ; break ; case MY_OPT_DAG_ATTR : xfattr = mcxIOnew(opt->val, "w") ; mcxIOopen(xfattr, EXIT_ON_FAIL) ; break ; case MY_OPT_DAG_DIFF : xfdiff = mcxIOnew(opt->val, "w") ; break ; case MY_OPT_DAG_REDUCE : xfdagreduce = mcxIOnew(opt->val, "w") ; break ; case MY_OPT_CHILD_DIFF_LQ : child_diff_lq = atof(opt->val) ; break ; case MY_OPT_PARENT_DIFF_GQ : parent_diff_gq = atof(opt->val) ; break ; case MY_OPT_QUERY : q = atoi(opt->val) ; break ; case MY_OPT_TAB : xftab = mcxIOnew(opt->val, "r") ; break ; case MY_OPT_IMX : mcxIOnewName(xfimx, opt->val) ; break ; } } ; if (xfimx) mx = mclxRead(xfimx, EXIT_ON_FAIL) ; else mcxDie(1, me, "need -imx") ; if (xftab) tab = mclTabRead(xftab, mx->dom_cols, EXIT_ON_FAIL) ; if (test_mode == 'c') test_for_cycles(mx) ; else if (test_mode == 'x') test_cross_ratio(mx) ; else if (xfattr) get_attr(mx, tab, xfattr) ; else if (xfdagreduce) { mclxComposeHelper* ch = mclxComposePrepare(mx, mx) ; dim i ; for (i=0;i<N_COLS(mx);i++) { mclv* in = mx->cols+i ; mclv* out = mclxVectorCompose(mx, in, NULL, ch) ; mcldMinus(in, out, in) ; mclvFree(&out) ; } mclxWrite(mx, xfdagreduce, MCLXIO_VALUE_GETENV, EXIT_ON_FAIL) ; mclxComposeRelease(&ch) ; } else if (xfdiff) dag_diff_select(mx, tab, xfdiff, child_diff_lq, parent_diff_gq) ; mclxFree(&mx) ; mcxIOfree(&xfimx) ; mcxIOfree(&xfdag) ; mcxIOfree(&xfattr) ; mcxIOfree(&xfdagreduce) ; return 0 ; }
int main ( int argc , const char* argv[] ) { mcxIO *xfcl = NULL , *xfctrl = NULL , *xfcoarse= NULL , *xfbase = NULL , *xfcone = NULL , *xfstack = NULL ; mclx* mxbase, *cl, *cl_coarse, *clprev, *clctrl = NULL ; mcxTing* shared = mcxTingNew("-I 4 -overlap split") ; mcxbool root = TRUE ; mcxbool have_bootstrap = FALSE ; const char* plexprefix = NULL ; const char* stem = "mcl" ; mcxbool same = FALSE ; mcxbool plex = TRUE ; mcxbool add_transpose = FALSE ; const char* b2opts = NULL ; const char* b1opts = NULL ; mcxbits write_modes = 0 ; mclAlgParam* mlp = NULL ; mcxstatus status = STATUS_OK ; mcxstatus parse_status = STATUS_OK ; int multiplex_idx = 1 ; int N = 0 ; int n_ite = 0 ; dim n_components = 0, n_cls = 0 ; int a = 1, i= 0 ; int n_arg_read = 0 ; int delta = 0 ; mcxOption* opts, *opt ; mcxTing* cline = mcxOptArgLine(argv+1, argc-1, '\'') ; mclgTF* transform = NULL ; mcxTing* transform_spec = NULL ; double iaf = 0.84 ; mclx_app_init(stderr) ; if (0) mcxLogLevel = MCX_LOG_AGGR | MCX_LOG_MODULE | MCX_LOG_IO | MCX_LOG_GAUGE | MCX_LOG_WARN ; else mcxLogLevelSetByString("xf4g1") ; mcxOptAnchorSortById(options, sizeof(options)/sizeof(mcxOptAnchor) -1) ; if (argc == 2 && argv[1][0] == '-' && mcxOptIsInfo(argv[1], options)) delta = 1 ; else if (argc < 2) { help(options, shared) ; exit(0) ; } opts = mcxOptExhaust (options, (char**) argv, argc, 2-delta, &n_arg_read, &parse_status) ; if (parse_status != STATUS_OK) { mcxErr(me, "initialization failed") ; exit(1) ; } ; for (opt=opts;opt->anch;opt++) { mcxOptAnchor* anch = opt->anch ; switch(anch->id) { case MY_OPT_HELP : help(options, shared) ; exit(0) ; case MY_OPT_APROPOS : help(options, shared) ; exit(0) ; break ; case MY_OPT_NMAX : N = atoi(opt->val) ; break ; case MY_OPT_Z : help(NULL, shared) ; exit(0) ; break ; case MY_OPT_SHARED : mcxTingPrintAfter(shared, " %s", opt->val) ; break ; case MY_OPT_TRANSFORM : transform_spec = mcxTingNew(opt->val) ; break ; case MY_OPT_B1 : b1opts = opt->val ; break ; case MY_OPT_B2 : b2opts = opt->val ; break ; case ALG_OPT_SETENV : mcxSetenv(opt->val) ; break ; case ALG_OPT_QUIET : mcxLogLevelSetByString(opt->val) ; break ; case MY_OPT_HDP : hdp_g = atof(opt->val) ; break ; case MY_OPT_ADDTP : add_transpose = TRUE ; break ; case MY_OPT_ANNOT /* only used in command-line copying */ : break ; case MY_OPT_IAF : iaf = atof(opt->val) / 100 ; break ; case MY_OPT_WRITE : if (strstr(opt->val, "stack")) write_modes |= OUTPUT_STACK ; if (strstr(opt->val, "cone")) write_modes |= OUTPUT_CONE ; if (strstr(opt->val, "levels")) write_modes |= OUTPUT_STEPS ; if (strstr(opt->val, "coarse")) write_modes |= OUTPUT_COARSE ; if (strstr(opt->val, "base")) write_modes |= OUTPUT_BASE ; break ; case MY_OPT_BASENAME : xfbase = mcxIOnew(opt->val, "w") ; break ; case MY_OPT_COARSE : xfcoarse = mcxIOnew(opt->val, "w") ; break ; case MY_OPT_CONE : xfcone = mcxIOnew(opt->val, "w") ; break ; case MY_OPT_ROOT : root = strchr("1yY", (u8) opt->val[0]) ? TRUE : FALSE ; break ; case MY_OPT_STACK : xfstack = mcxIOnew(opt->val, "w") ; break ; case MY_OPT_STEM : stem = opt->val ; break ; case MY_OPT_MULTIPLEX : plex = strchr("yY1", (unsigned char) opt->val[0]) ? TRUE : FALSE ; break ; case MY_OPT_DISPATCH : dispatch_g = TRUE ; break ; case MY_OPT_INTEGRATE : integrate_g = TRUE ; break ; case MY_OPT_CONTRACT : break ; case MY_OPT_SUBCLUSTERX : subclusterx_g = TRUE, subcluster_g = TRUE ; break ; case MY_OPT_SUBCLUSTER : subcluster_g = TRUE ; break ; case MY_OPT_CONTROL : xfctrl = mcxIOnew(opt->val, "r") ; break ; case MY_OPT_CL : xfcl = mcxIOnew(opt->val, "r") ; have_bootstrap = TRUE ; break ; case MY_OPT_VERSION : app_report_version(me) ; exit(0) ; default : mcxExit(1) ; } } mcxOptFree(&opts) ; a = 2 + n_arg_read ; if (a < argc) { if (strcmp(argv[a], "--")) mcxDie ( 1 , me , "trailing %s options require standalone '--' separator (found %s)" , integrate_g ? "integrate" : "mcl" , argv[a] ) ; a++ ; } if (subcluster_g + dispatch_g + integrate_g > 1) mcxDie(1, me, "too many modes!") ; if (N && N < argc-a) mcxErr(me, "-n argument leaves spurious option specifications") ; srandom(mcxSeed(89315)) ; signal(SIGALRM, mclSigCatch) ; if (dispatch_g) plexprefix = "dis" ; else if (!write_modes || (write_modes & OUTPUT_STEPS)) plexprefix = stem ; { mcxTing* tg = mcxTingEmpty(NULL, 30) ; if ((write_modes & OUTPUT_COARSE) && !xfcoarse) mcxTingPrint(tg, "%s.%s", stem, "coarse") , xfcoarse = mcxIOnew(tg->str, "w") ; if ((write_modes & OUTPUT_BASE) && !xfbase) mcxTingPrint(tg, "%s.%s", stem, "base") , xfbase = mcxIOnew(tg->str, "w") ; if ( (!write_modes || (write_modes & OUTPUT_CONE)) && !xfcone ) { mcxTingPrint(tg, "%s.%s", stem, "cone") ; xfcone = mcxIOnew(tg->str, "w") ; mcxIOopen(xfcone, EXIT_ON_FAIL) ; fprintf(xfcone->fp, "# %s %s\n", argv[0], cline->str) ; } if ((write_modes & OUTPUT_STACK) && !xfstack) { mcxTingPrint(tg, "%s.%s", stem, "stack") ; xfstack = mcxIOnew(tg->str, "w") ; mcxIOopen(xfstack, EXIT_ON_FAIL) ; fprintf(xfstack->fp, "# %s %s\n", argv[0], cline->str) ; } mcxTingFree(&tg) ; } if (integrate_g) { for (i=a;i<argc;i++) { mcxIO* xf = mcxIOnew(argv[i], "r") ; mclx* cl = mclxRead(xf, EXIT_ON_FAIL) ; mclxCatPush(&stck_g, cl, NULL, NULL, mclxCBdomStack, NULL, "dummy-integrate", n_cls++) ; } integrate_results(&stck_g) ; if (xfstack) mclxCatWrite(xfstack, &stck_g, MCLXIO_VALUE_NONE, RETURN_ON_FAIL) ; if (xfcone) mclxCatConify(&stck_g) , mclxCatWrite(xfcone, &stck_g, MCLXIO_VALUE_NONE, RETURN_ON_FAIL) ; return 0 ; } for (i=a;i<argc;i++) { if (get_interface(NULL, argv[1], shared->str, argv[i], NULL, 0, RETURN_ON_FAIL)) mcxDie(1, me, "error while testing mcl options viability (%s)", argv[i]) ; } mcxLog(MCX_LOG_APP, me, "pid %ld", (long) getpid()) /* make sure clusters align with this cluster * status: does not seem promising. */ ; if (xfctrl) clctrl = mclxRead(xfctrl, EXIT_ON_FAIL) ; /* * Below: compute cl and mxbase. */ ; if (xfcl) { cl = mclxRead(xfcl, EXIT_ON_FAIL) ; write_clustering (cl, NULL, xfcone, xfstack, plexprefix, multiplex_idx++, NULL) ; if (subcluster_g || dispatch_g) mclxCatPush(&stck_g, cl, NULL, NULL, mclxCBdomStack, NULL, "dummy-mclcm", n_cls++) ; mcxIOfree(&xfcl) ; if (!b1opts && !b2opts) b1opts = "" ; mxbase = get_base(argv[1], NULL, b1opts, b2opts) ; } else { mcxbits CACHE = b1opts || b2opts ? ALG_CACHE_INPUT /* cache, transform later */ : ALG_CACHE_START ; get_interface ( &mlp , argv[1] , shared->str , a < argc ? argv[a] : NULL , NULL , CACHE , EXIT_ON_FAIL ) ; if (a < argc) a++ ; if ((status = mclAlgorithm(mlp)) == STATUS_FAIL) { mcxErr(me, "failed at initial run") ; exit(1) ; } cl_coarse = mclAlgParamRelease(mlp, mlp->cl_result) ; cl_coarse = control_test(cl_coarse, clctrl) ; write_clustering (cl_coarse, NULL, xfcone, xfstack, plexprefix, multiplex_idx++, mlp) ; if (subcluster_g || dispatch_g) mclxCatPush(&stck_g, cl_coarse, NULL, NULL, mclxCBdomStack, NULL, "dummy-mclcm", n_cls++) ; cl = cl_coarse ; n_ite++ ; if (b1opts || b2opts) { mclx* mx_input = mclAlgParamRelease(mlp, mlp->mx_input) ; mxbase = get_base(NULL, mx_input, b1opts, b2opts) /* ^ get_base frees mx_input */ ; } else mxbase = mclAlgParamRelease(mlp, mlp->mx_start) ; } clprev = cl ; mclAlgParamFree(&mlp, TRUE) ; if (xfbase) { dim nre = mclxNrofEntries(mxbase) ; mcxLog(MCX_LOG_APP, me, "base has %lu entries", (ulong) nre) ; mclxaWrite(mxbase, xfbase, MCLXIO_VALUE_GETENV, EXIT_ON_FAIL) ; mcxIOclose(xfbase) ; } if (subcluster_g || dispatch_g) iaf = iaf ? 1/iaf : 1.414 ; while ( (!dispatch_g && (!N || n_ite < N)) || (dispatch_g && a < argc) ) { mclx* mx_coarse = NULL, *clnext = NULL ; dim dist_new_prev = 0, dist_prev_new = 0 ; mclx* clnew = NULL ; mcxbool faith = FALSE ; double inflation = -1.0 ; if (subcluster_g) mx_coarse = subclusterx_g ? mclxBlockPartition(mxbase, clprev, 50) : mclxBlockUnion(mxbase, clprev) /* have to copy mxbase as mx_coarse is freed. * Even if it were not freed, it is probably transformed. */ ; else if (dispatch_g) mx_coarse = mclxCopy(mxbase) ; else { mx_coarse = get_coarse(mxbase, clprev, add_transpose) ; if (n_ite == 1) { mclx* cc = clmUGraphComponents(mx_coarse, NULL) /* fixme; mx_coarse garantueed UD ? */ ; n_components = N_COLS(cc) ; mclxFree(&cc) ; } } if (xfcoarse) write_coarse(xfcoarse, mx_coarse) ; get_interface ( &mlp , NULL , shared->str , a < argc ? argv[a] : NULL , mx_coarse , ALG_CACHE_START , EXIT_ON_FAIL ) ; inflation = mlp->mpp->mainInflation ; BIT_OFF(mlp->modes, ALG_DO_SHOW_PID | ALG_DO_SHOW_JURY) ; if ((status = mclAlgorithm(mlp)) == STATUS_FAIL) { mcxErr(me, "failed") ; mcxExit(1) ; } cl_coarse = mclAlgParamRelease(mlp, mlp->cl_result) ; if (xfcoarse) mclxaWrite(cl_coarse, xfcoarse, MCLXIO_VALUE_NONE, RETURN_ON_FAIL) ; if (dispatch_g || subcluster_g) clnext = cl_coarse ; else clnext = mclxCompose(clprev, cl_coarse, 0) , clnext = control_test(clnext, clctrl) , mclxFree(&cl_coarse) ; clmSJDistance (clprev, clnext, NULL, NULL, &dist_prev_new, &dist_new_prev) ; if (dist_prev_new + dist_new_prev) { write_clustering (clnext, clprev, xfcone, xfstack, plexprefix, multiplex_idx++, mlp) ; clnew = clnext ; if (subcluster_g || dispatch_g) mclxCatPush(&stck_g, clnext, NULL, NULL, mclxCBdomStack, NULL, "dummy-mclcm", n_cls++) ; else mclxFree(&clprev) ; clprev = clnew ; } else if ( N_COLS(clnext) > n_components && inflation * iaf > 1.2 && inflation * iaf < 10 ) { mclxFree(&clnext) ; inflation *= iaf ; mcxTingPrintAfter(shared, " -I %.2f", inflation) ; mcxLog(MCX_LOG_APP, me, "setting inflation to %.2f", inflation) ; faith = TRUE ; } /* i.e. vanilla mode, contraction */ else if (!subcluster_g && !dispatch_g) { mclx* cc ; mclxFree(&clnext) ; mclxAddTranspose(mx_coarse, 1.0) ; cc = clmUGraphComponents(mx_coarse, NULL) ; if (N_COLS(cc) < N_COLS(clprev)) { mclx* ccback = mclxCompose(clprev, cc, 0) ; write_clustering (ccback, clprev, xfcone, xfstack, plexprefix, multiplex_idx++, NULL) ; mclxFree(&clprev) ; clprev = ccback ; mcxTell(me, "connected components added as root clustering") ; } if (root && N_COLS(cc) > 1) { mclx* root = mclxCartesian ( mclvCanonical(NULL, 1, 0) , mclvCopy(NULL, mxbase->dom_cols) , 1.0 ) ; write_clustering (root, clprev, xfcone, xfstack, plexprefix, multiplex_idx++, NULL) ; mclxFree(&clprev) ; mcxTell(me, "universe added as root clustering") ; clprev = root ; clnew = NULL ; } mclxFree(&cc) ; } else if (subcluster_g || dispatch_g) mclxFree(&clnext) ; mclAlgParamFree(&mlp, TRUE) /* frees mx_coarse */ ; if (!clnew && !faith) { same = TRUE ; break ; } a++ ; if (dispatch_g && a == argc) break ; n_ite++ ; } if (same) mcxLog(MCX_LOG_MODULE, me, "no further contraction: halting") ; if (dispatch_g) integrate_results(&stck_g) ; else if (subcluster_g) mclxCatReverse(&stck_g) ; if (dispatch_g || subcluster_g) { dim j ; if (xfstack) mclxCatWrite(xfstack, &stck_g, MCLXIO_VALUE_NONE, RETURN_ON_FAIL) ; if (xfcone && ! mclxCatConify(&stck_g)) mclxCatWrite(xfcone, &stck_g, MCLXIO_VALUE_NONE, RETURN_ON_FAIL) ; for (j=0;j<stck_g.n_level;j++) { mclxAnnot* an = stck_g.level+j ; mclxFree(&an->mx) ; } mcxFree(stck_g.level) ; } mcxIOfree(&xfcoarse) ; mcxIOfree(&xfbase) ; mcxIOfree(&xfcone) ; mcxIOfree(&xfstack) ; mcxTingFree(&shared) ; if (!dispatch_g && !subcluster_g) /* fixme fixme fixme */ mclxFree(&clprev) ; mclxFree(&mxbase) ; mclvFree(&start_col_sums_g) ; mcxTingFree(&cline) ; helpful_reminder() ; return STATUS_OK ; }