void mclvFree ( mclVector** vecpp ) { if (*vecpp) { mcxFree((*vecpp)->ivps) ; mcxFree(*vecpp) ; (*vecpp) = NULL ; } ; }
static void free_pars ( stream_state* iface ) { dim i ; for (i=0; i<iface->pars_n_alloc; i++) mcxFree(iface->pars[i].ivps) ; mcxFree(iface->pars) ; iface->pars = NULL ; }
void mclpARfree ( mclpAR** mclparp ) { if (*mclparp) { mcxFree(mclparp[0]->ivps) ; mcxFree(*mclparp) ; *mclparp = NULL ; } }
void mcxHeapFree ( mcxHeap** heap ) { if (*heap) { if ((*heap)->base) mcxFree((*heap)->base) ; mcxFree(*heap) ; *heap = NULL ; } }
void mcxGrimFree ( mcxGrim** srcp ) { grim_buf *this = (*srcp)->buf ; while (this) { grim_buf* tmp = this->prev ; mcxFree(this->units) ; mcxFree(this) ; this = tmp ; } mcxFree(*srcp) ; *srcp = NULL ; }
void mclInterpretParamFree ( mclInterpretParam **ipp ) { if (*ipp) mcxFree(*ipp) ; *ipp = NULL ; }
mcxHash* mcxHashNew ( dim n_buckets , u32 (*hash)(const void *a) , int (*cmp) (const void *a, const void *b) ) { mcxHash *h ; mcxbool ok = FALSE ; u8 n_bits = 0 ; if (!n_buckets) { mcxErr("mcxHashNew strange", "void alloc request") ; n_buckets = 2 ; } if (!(h = mcxAlloc(sizeof(mcxHash), RETURN_ON_FAIL))) return NULL ; while(n_buckets) { n_buckets >>= 1 ; n_bits++ ; } h->load = 0.5 ; h->n_entries = 0 ; h->n_buckets = n_buckets = (1 << n_bits) ; h->cmp = cmp ; h->hash = hash ; h->options = MCX_HASH_OPT_DEFAULTS ; h->src_link = NULL ; while (1) /* fixme 2nd arg below, have better choice? */ { h->src_link = mcxGrimNew(sizeof(hash_link), h->n_buckets, MCX_GRIM_ARITHMETIC) ; if (!h->src_link) break ; if (! ( h->buckets = mcxNAlloc ( h->n_buckets , sizeof(mcx_bucket) , mcx_bucket_init , RETURN_ON_FAIL ) ) ) break ; ok = TRUE ; break ; } if (!ok) { mcxGrimFree(&(h->src_link)) ; mcxFree(h) ; return NULL ; } return h ; }
void mclpFree ( mclIvp** p_ivp ) { if (*p_ivp) { mcxFree(*p_ivp) ; *p_ivp = NULL ; } }
void mclvRelease ( mclVector* vec ) { if (!vec) return ; mcxFree(vec->ivps) ; vec->ivps = NULL ; vec->n_ivps = 0 ; }
void mclgTFfree ( mclgTF** tfpp ) { mclgTF* tf = tfpp[0] ; if (tf) { mclpARfree(&(tf->par_edge)) ; mcxFree(tf) ; tfpp[0] = NULL ; } }
void mcxHeapRelease ( void* heapv ) { mcxHeap* heap = (mcxHeap*) heapv ; if (heap->base) mcxFree(heap->base) ; heap->base = NULL ; heap->heapSize = 0 ; }
void mcxIOrelease ( mcxIO* xf ) { if (xf) { mcxIOclose(xf) ; if (xf->fn) mcxTingFree(&(xf->fn)) ; if (xf->mode) mcxFree(xf->mode) ; } }
void mcxIOfree ( mcxIO** xfpp ) { if (*xfpp) { mcxIO* xf = *xfpp ; mcxIOrelease(xf) ; mcxTingFree(&(xf->buffer)) ; if (xf->usr && xf->usr_free) xf->usr_free(xf->usr) ; mcxFree(xf) ; *xfpp = NULL ; } }
mclVector* mclvInstantiate ( mclVector* dst_vec , dim new_n_ivps , const mclIvp* src_ivps ) { mclIvp* new_ivps ; dim old_n_ivps ; if (!dst_vec && !(dst_vec = mclvInit(NULL))) /* create */ return NULL ; old_n_ivps = dst_vec->n_ivps /* I've had a suspicion that some reallocs might be too lazy * to reuse shrunk array space. */ ; if (old_n_ivps / 2 > new_n_ivps) { new_ivps = mcxAlloc(new_n_ivps * sizeof new_ivps[0], ENQUIRE_ON_FAIL) ; if (new_ivps && !src_ivps) memcpy(new_ivps, dst_vec->ivps, new_n_ivps * sizeof new_ivps[0]) ; mcxFree(dst_vec->ivps) ; dst_vec->ivps = new_ivps ; } else dst_vec->ivps = mcxRealloc(dst_vec->ivps, new_n_ivps * sizeof new_ivps[0], ENQUIRE_ON_FAIL) ; if ( !dst_vec->ivps && new_n_ivps ) { mcxMemDenied(stderr, "mclvInstantiate", "mclIvp", new_n_ivps) ; return NULL ; } /* ^ do not free; *dst_vec could be array element */ new_ivps = dst_vec->ivps ; if (!src_ivps) /* resize */ { dim k = old_n_ivps ; while (k < new_n_ivps) { mclpInit(new_ivps + k) ; k++ ; } } else if (src_ivps && new_n_ivps) /* copy */ memcpy(new_ivps, src_ivps, new_n_ivps * sizeof(mclIvp)) ; dst_vec->n_ivps = new_n_ivps ; return dst_vec ; }
static mcxstatus get_interface ( mclAlgParam** mlpp , const char* fn_input /* Use this as input or mx_input */ , const char* arg_shared , const char* arg_extra , mclx* mx_input /* Use this as input or fn_input */ , mcxbits CACHE , mcxOnFail ON_FAIL ) { mcxTing* spec = mcxTingNew(arg_shared) ; int argc1 = 0 ; char** argv1 ; mcxstatus status ; mclAlgParam* mymlp = NULL ; mclAlgParam** mymlpp = mlpp ? mlpp : &mymlp ; if (arg_extra) mcxTingPrintAfter(spec, " %s", arg_extra) /* warning this clobbers spec->str */ ; argv1 = mcxOptParseString(spec->str, &argc1, ' ') ; status = mclAlgInterface ( mymlpp , argv1 , argc1 , fn_input , mx_input , CACHE ) ; if (status && ON_FAIL == EXIT_ON_FAIL) mcxExit(1) ; mcxFree(argv1) ; mcxTingFree(&spec) /* fixfixfixmefixmefffixme: mclAlgInterface might use opt->val * which points to somewhere in spec->str. Check. */ ; if (!mlpp) mclAlgParamFree(mymlpp, TRUE) ; return status ; }
void mclxInflateBoss ( mclMatrix* mx , double power , mclProcParam* mpp ) { int workLoad = N_COLS(mx) / mpp->n_ithreads ; int workTail = N_COLS(mx) % mpp->n_ithreads ; int i = 0 ; pthread_attr_t pthread_custom_attr ; pthread_t *threads_inflate = (pthread_t *) mcxAlloc ( mpp->n_ithreads*sizeof(pthread_t) , EXIT_ON_FAIL ) ; pthread_attr_init(&pthread_custom_attr) ; for (i=0;i<mpp->n_ithreads;i++) { mclvInflateLine_arg *a = (mclvInflateLine_arg *) malloc(sizeof(mclvInflateLine_arg)) ; a->id = i ; a->start = workLoad * i ; a->end = workLoad * (i+1) ; a->mx = mx ; a->power = power ; if (i+1==mpp->n_ithreads) a->end += workTail ; pthread_create ( &threads_inflate[i] , &pthread_custom_attr , (void *(*)(void*)) mclvInflateLine , (void *) a ) ; } for (i = 0; i < mpp->n_ithreads; i++) pthread_join(threads_inflate[i], NULL) ; mcxFree(threads_inflate) ; }
mcxGrim* mcxGrimNew ( dim sz_unit , dim n_units , mcxbits options ) { mcxGrim* src = mcxAlloc(sizeof(mcxGrim), RETURN_ON_FAIL) ; if (!src) return NULL ; if (!(src->buf = grim_buf_new(sz_unit, n_units))) { mcxFree(src) ; return NULL ; } src->buf->prev = NULL ; src->flags = options ; src->na = (void*) src->buf->units ; src->ct = 0 ; src->sz_unit = sz_unit ; return src ; }
grim_buf* grim_buf_new ( dim sz_unit , dim n_units ) { dim i ; grim_buf* buf ; char* units ; dim sz_load = sizeof(memnext) + sz_unit ; if (!(buf = mcxAlloc(sizeof(grim_buf), RETURN_ON_FAIL))) return NULL ; if ( !(buf->units = units = mcxAlloc(n_units * sz_load, RETURN_ON_FAIL) ) ) { mcxFree(buf) ; return NULL ; } buf->prev = NULL ; buf->n_units = n_units #if DEBUG ; fprintf (stderr, "Extending grim with <%lu> units\n", (ulong) n_units); #endif ; for (i=0;i<n_units-1;i++) ((memnext*) (units + i * sz_load))->next = (memnext*) (units + (i+1) * sz_load) ; ((memnext*) (buf->units + (n_units-1) * sz_load))->next = NULL ; return buf ; }
mclVector* mclvBinaryx ( const mclVector* vec1 , const mclVector* vec2 , mclVector* dst , double (*op)(pval arg1, pval arg2, pval arg3) , double arg3 ) { mclIvp *ivp1, *ivp2, *ivp1max, *ivp2max, *ivpk, *ivpl ; long n1n2 = vec1->n_ivps+vec2->n_ivps ; if (vec1->n_ivps + vec2->n_ivps == 0) return mclvInstantiate(dst, 0, NULL) ; ivpl = ivpk = mcxAlloc ( n1n2 * sizeof(mclIvp) , RETURN_ON_FAIL ) ; if (!ivpk) { mcxMemDenied(stderr, "mclvBinary", "mclIvp", n1n2) ; return NULL ; } ivp1 = vec1->ivps ; ivp2 = vec2->ivps ; ivp1max = ivp1 + vec1->n_ivps ; ivp2max = ivp2 + vec2->n_ivps ; { double rval ; while (ivp1 < ivp1max && ivp2 < ivp2max) { pval val1 = 0.0 ; pval val2 = 0.0 ; long idx ; if (ivp1->idx < ivp2->idx) { idx = ivp1->idx ; val1 = (ivp1++)->val ; } else if (ivp1->idx > ivp2->idx) { idx = ivp2->idx ; val2 = (ivp2++)->val ; } else { idx = ivp1->idx ; val1 = (ivp1++)->val ; val2 = (ivp2++)->val ; } if ((rval = op(val1, val2, arg3)) != 0.0) { ivpl->idx = idx ; (ivpl++)->val = rval ; } } while (ivp1 < ivp1max) { if ((rval = op(ivp1->val, 0.0, arg3)) != 0.0) { ivpl->idx = ivp1->idx ; (ivpl++)->val = rval ; } ivp1++ ; } while (ivp2 < ivp2max) { if ((rval = op(0.0, ivp2->val, arg3)) != 0.0) { ivpl->idx = ivp2->idx ; (ivpl++)->val = rval ; } ivp2++ ; } } dst = mclvInstantiate(dst, ivpl-ivpk, ivpk) ; mcxFree(ivpk) ; return dst ; }
double mclvKBar ( mclVector *vec , dim k , double ignore /* ignore elements relative to this */ , int mode ) { int have_even = (k+1) % 2 ; dim n_inserted = 0 ; double ans = 0.0 ; mclIvp * vecivp = vec->ivps ; mclIvp* vecmaxivp = vecivp + vec->n_ivps ; pval * heap /* can select everything */ ; if (k >= vec->n_ivps) return mode == KBAR_SELECT_LARGE ? -FLT_MAX : FLT_MAX /* let's select nothing, it might even help */ ; if (!(heap = mcxAlloc ((k+have_even)*sizeof(pval), RETURN_ON_FAIL))) return mode == KBAR_SELECT_LARGE ? FLT_MAX : -FLT_MAX ; if (mode == KBAR_SELECT_LARGE) { if (have_even) *(heap+k) = PVAL_MAX ; while(vecivp < vecmaxivp) { pval val = vecivp->val ; if (val >= ignore) NOTHING ; else if (n_inserted < k) { dim d = n_inserted ; while (d != 0 && *(heap+(d-1)/2) > val) { *(heap+d) = *(heap+(d-1)/2) ; d = (d-1)/2 ; } *(heap+d) = val ; n_inserted++ ; } else if (val > *heap) { dim root = 0 ; dim d ; while((d = 2*root+1) < k) { if (*(heap+d) > *(heap+d+1)) d++ ; if (val > *(heap+d)) { *(heap+root) = *(heap+d) ; root = d ; } else break ; } *(heap+root) = val ; } vecivp++ ; } } else if (mode == KBAR_SELECT_SMALL) { if (have_even) *(heap+k) = -PVAL_MAX ; while(vecivp < vecmaxivp) { pval val = vecivp->val ; if (val < ignore) NOTHING ; else if (n_inserted < k) { dim d = n_inserted ; while (d != 0 && *(heap+(d-1)/2) < val) { *(heap+d) = *(heap+(d-1)/2) ; d = (d-1)/2 ; } *(heap+d) = val ; n_inserted++ ; } else if (val < *heap) { dim root = 0 ; dim d ; while((d = 2*root+1) < k) { if (*(heap+d) < *(heap+d+1)) d++ ; if (val < *(heap+d)) { *(heap+root) = *(heap+d) ; root = d ; } else break ; } *(heap+root) = val ; } vecivp++ ; } } else { mcxErr("mclvKBar PBD", "invalid mode") ; mcxExit(1) ; } ans = *heap ; mcxFree(heap) ; return ans ; }
mclgTF* mclgTFparse ( mcxLink* encoding_link , mcxTing* thestring ) { mclgTF* gtf = mcxAlloc(sizeof gtf[0], EXIT_ON_FAIL) ; const char* me = "mclgTFparse" ; const char* a = thestring->str ; const char* z = thestring->str + thestring->len ; mcxTing* func = mcxTingEmpty(NULL, thestring->len) ; mcxTing* arg = mcxTingEmpty(NULL, thestring->len) ; int n = 0 ; if (!(gtf->par_edge = mclpARensure(NULL, 10))) return NULL /* +memleak gtf */ ; if (!(gtf->par_graph = mclpARensure(NULL, 10))) return NULL /* +memleak gtf, gtf->par_edge */ ; if ( thestring && !mcxStrChrAint(thestring->str, isspace, thestring->len) ) return gtf ; while (a < z) { const char* val, *key ; char* onw = NULL ; int tfe = -1, tfg = -1 ; mcxbool nought = FALSE ; unsigned char k0 ; double d ; int t ; mcxTingEmpty(arg, z-a) ; mcxTingEmpty(func, z-a) ; n = 0 ; if ((t = sscanf(a, " %[a-z_#-] ( )%n", func->str, &n)) >= 1 && n > 0) NOTHING ; else if ((t = sscanf(a, " %[a-z_#-] ( %[^)_ ] )%n", func->str, arg->str, &n)) >= 2 && n > 0) NOTHING ; else break ; a += n ; key= func->str ; val= arg->str ; k0 = key[0] ; d = strtod(val, &onw) ; if (!val || !strlen(val)) nought = TRUE ; else if (val == onw) { mcxErr(me, "failed to parse number <%s>", val) ; break ; } if (k0 == '#') { if (!strcmp(key, "#ceilnb")) tfg = MCLG_TF_CEILNB ; else if (!strcmp(key, "#knn")) tfg = MCLG_TF_KNN ; else if (!strcmp(key, "#n")) tfg = MCLG_TF_TOPN ; else if (!strcmp(key, "#ils")) tfg = MCLG_TF_ILS ; else if (!strcmp(key, "#mcl")) tfg = MCLG_TF_MCL ; else if (!strcmp(key, "#arcmcl")) tfg = MCLG_TF_ARC_MCL ; else if (!strcmp(key, "#arcsub")) tfg = MCLG_TF_ARCSUB ; else if (!strcmp(key, "#arcmax")) tfg = MCLG_TF_ARCMAX ; else if (!strcmp(key, "#arcmingq")) tfg = MCLG_TF_ARCMINGQ ; else if (!strcmp(key, "#arcmingt")) tfg = MCLG_TF_ARCMINGT ; else if (!strcmp(key, "#arcmimlq")) tfg = MCLG_TF_ARCMINLQ ; else if (!strcmp(key, "#arcminlt")) tfg = MCLG_TF_ARCMINLT ; else if (!strcmp(key, "#arcdiffgq")) tfg = MCLG_TF_ARCDIFFGQ ; else if (!strcmp(key, "#arcdiffgt")) tfg = MCLG_TF_ARCDIFFGT ; else if (!strcmp(key, "#arcdifflq")) tfg = MCLG_TF_ARCDIFFLQ ; else if (!strcmp(key, "#arcdifflt")) tfg = MCLG_TF_ARCDIFFLT ; else if (!strcmp(key, "#arcmaxgq")) tfg = MCLG_TF_ARCMAXGQ ; else if (!strcmp(key, "#arcmaxgt")) tfg = MCLG_TF_ARCMAXGT ; else if (!strcmp(key, "#arcmaxlq")) tfg = MCLG_TF_ARCMAXLQ ; else if (!strcmp(key, "#arcmaxlt")) tfg = MCLG_TF_ARCMAXLT ; else if (!strcmp(key, "#selfrm")) tfg = MCLG_TF_SELFRM ; else if (!strcmp(key, "#selfmax")) tfg = MCLG_TF_SELFMAX ; else if (!strcmp(key, "#normself")) tfg = MCLG_TF_NORMSELF ; else if (!strcmp(key, "#add")) tfg = MCLG_TF_ADD ; else if (!strcmp(key, "#max")) tfg = MCLG_TF_MAX ; else if (!strcmp(key, "#min")) tfg = MCLG_TF_MIN ; else if (!strcmp(key, "#mul")) tfg = MCLG_TF_MUL ; else if (!strcmp(key, "#tug")) tfg = MCLG_TF_TUG ; else if (!strcmp(key, "#ssq")) tfg = MCLG_TF_SSQ ; else if (!strcmp(key, "#qt")) tfg = MCLG_TF_QT ; else if (!strcmp(key, "#tp") || !strcmp(key, "#rev")) tfg = MCLG_TF_TRANSPOSE ; else if (!strcmp(key, "#step")) tfg = MCLG_TF_STEP ; else if (!strcmp(key, "#thread")) tfg = MCLG_TF_THREAD ; else if (!strcmp(key, "#shrug")) tfg = MCLG_TF_SHRUG ; else if (!strcmp(key, "#shuffle")) tfg = MCLG_TF_SHUFFLE ; } else { if (!strcmp(key, "gq")) tfe = MCLX_UNARY_GQ ; else if (!strcmp(key, "gt")) tfe = MCLX_UNARY_GT ; else if (!strcmp(key, "lt")) tfe = MCLX_UNARY_LT ; else if (!strcmp(key, "lq")) tfe = MCLX_UNARY_LQ ; else if (!strcmp(key, "rand")) tfe = MCLX_UNARY_RAND ; else if (!strcmp(key, "mul")) tfe = MCLX_UNARY_MUL ; else if (!strcmp(key, "scale")) tfe = MCLX_UNARY_SCALE ; else if (!strcmp(key, "add")) tfe = MCLX_UNARY_ADD ; else if (!strcmp(key, "abs")) tfe = MCLX_UNARY_ABS ; else if (!strcmp(key, "ceil")) tfe = MCLX_UNARY_CEIL ; else if (!strcmp(key, "floor")) tfe = MCLX_UNARY_FLOOR ; else if (!strcmp(key, "pow")) tfe = MCLX_UNARY_POW ; else if (!strcmp(key, "exp")) tfe = MCLX_UNARY_EXP ; else if (!strcmp(key, "log")) tfe = MCLX_UNARY_LOG ; else if (!strcmp(key, "neglog")) tfe = MCLX_UNARY_NEGLOG ; } if (tfe < 0 && tfg < 0) { mcxErr(me, "unknown value transform <%s>", key) ; break ; } if (tfe >= 0) { if (nought) { if ( tfe == MCLX_UNARY_LOG || tfe == MCLX_UNARY_ABS || tfe == MCLX_UNARY_EXP || tfe == MCLX_UNARY_NEGLOG ) d = 0.0 ; else { mcxErr(me, "transform <%s> needs value", key) ; break ; } ; } mclpARextend(gtf->par_edge, tfe, d) ; } else if (tfg >= 0) { if (nought) { if ( tfg >= MCLG_TF_DUMMY_NOVALUE_START && tfg <= MCLG_TF_DUMMY_NOVALUE_END ) d = 0.0 ; else if (tfg == MCLG_TF_TUG || tfg == MCLG_TF_SHRUG) d = 1000.0 ; else if (tfg == MCLG_TF_STEP) d = 2.0 ; else { mcxErr(me, "transform <%s> needs value", key) ; break ; } ; } mclpARextend(gtf->par_edge, MCLX_UNARY_UNUSED, 0.0) ; mclpARextend(gtf->par_graph, tfg, d) ; } a = mcxStrChrAint(a, isspace, z-a) ; if (!a || a[0] != ',') break ; a++ ; } if (a) { mcxErr(me, "trailing part <%s> not matched", a) ; mclpARfree(&(gtf->par_edge)) ; mcxFree(gtf) ; gtf = NULL ; } return gtf ; }
static void vary_threshold ( mcxIO* xf , FILE* fp , int vary_a , int vary_z , int vary_s , int vary_n , unsigned mode ) { dim cor_i = 0, j ; int step ; mclx* mx ; unsigned long noe ; pval* allvals ; dim n_allvals = 0 ; double sum_vals = 0.0 ; mx = mclxRead(xf, EXIT_ON_FAIL) ; mcxIOclose(xf) ; if (transform) mclgTFexec(mx, transform) ; noe = mclxNrofEntries(mx) ; allvals = mcxAlloc(noe * sizeof allvals[0], EXIT_ON_FAIL) ; if (!weight_scale) { if (mode == 'c') weight_scale = 1.0 ; else weight_scale = vary_n ; } n_allvals = get_n_sort_allvals(mx, allvals, noe, &sum_vals, FALSE) ; if (mode == 'c') { double smallest = n_allvals ? allvals[n_allvals-1] : -DBL_MAX ; if (vary_a * 1.0 / vary_n < smallest) { while (vary_a * 1.0 / vary_n < smallest) vary_a++ ; vary_a-- ; } mcxTell ( me , "smallest correlation is %.2f, using starting point %.2f" , smallest , vary_a * 1.0 / vary_n ) ; } if (output_flags & OUTPUT_TABLE) { ;fprintf(fp, "L\tD\tR\tS\tcce\tEWmean\tEWmed\tEWiqr\tNDmean\tNDmed\tNDiqr\tCCF\t%s\n", mode == 'k' ? "kNN" : mode == 'l' ? "N" : "Cutoff") ;} else { if (output_flags & OUTPUT_KEY) { ;fprintf(fp, "-------------------------------------------------------------------------------\n") ;fprintf(fp, " L Percentage of nodes in the largest component\n") ;fprintf(fp, " D Percentage of nodes in components of size at most %d [-div option]\n", (int) divide_g) ;fprintf(fp, " R Percentage of nodes not in L or D: 100 - L -D\n") ;fprintf(fp, " S Percentage of nodes that are singletons\n") ;fprintf(fp, " cce Expected size of component, nodewise [ sum(sz^2) / sum^2(sz) ]\n") ;fprintf(fp, "*EW Edge weight traits (mean, median and IQR, all scaled!)\n") ;fprintf(fp, " Scaling is used to avoid printing of fractional parts throughout.\n") ;fprintf(fp, " The scaling factor is %.2f [-report-scale option]\n", weight_scale) ;fprintf(fp, " ND Node degree traits [mean, median and IQR]\n") ;fprintf(fp, " CCF Clustering coefficient %s\n", compute_flags & COMPUTE_CLCF ? "(not computed; use --clcf to include this)" : "") ;fprintf(fp, " eff Induced component efficiency %s\n", compute_flags & COMPUTE_EFF ? "(not computed; use --eff to include this)" : "") ;if (mode == 'c') fprintf(fp, "Cutoff The threshold used.\n") ;else if (mode == 't') fprintf(fp, "*Cutoff The threshold with scale factor %.2f and fractional parts removed\n", weight_scale) ;else if (mode == 'k') fprintf(fp, "k-NN The knn parameter\n") ;else if (mode == 'l') fprintf(fp, "N The knn parameter (merge mode)\n") ;else if (mode == 'n') fprintf(fp, "ceil The ceil parameter\n") ;fprintf(fp, "Total number of nodes: %lu\n", (ulong) N_COLS(mx)) ;} fprintf(fp, "-------------------------------------------------------------------------------\n") ;fprintf(fp, " L D R S cce *EWmean *EWmed *EWiqr NDmean NDmed NDiqr CCF eff %6s \n", mode == 'k' ? "k-NN" : mode == 'l' ? "N" : mode == 'n' ? "Ceil" : "Cutoff") ;fprintf(fp, "-------------------------------------------------------------------------------\n") ; } for (step = vary_a; step <= vary_z; step += vary_s) { double cutoff = step * 1.0 / vary_n ; double eff = -1.0 ; mclv* nnodes = mclvCanonical(NULL, N_COLS(mx), 0.0) ; mclv* degree = mclvCanonical(NULL, N_COLS(mx), 0.0) ; dim i, n_sample = 0 ; double cor, y_prev, iqr = 0.0 ; mclx* cc = NULL, *res = NULL ; mclv* sz, *ccsz = NULL ; int step2 = vary_z + vary_a - step ; sum_vals = 0.0 ; if (mode == 't' || mode == 'c') mclxSelectValues(mx, &cutoff, NULL, MCLX_EQT_GQ) , res = mx ; else if (mode == 'k') { res = rebase_g ? mclxCopy(mx) : mx ; mclxKNNdispatch(res, step2, n_thread_l, 1) ; } else if (mode == 'l') { res = mx ; mclxKNNdispatch(res, step2, n_thread_l, 0) ; } else if (mode == 'n') { res = rebase_g ? mclxCopy(mx) : mx ; mclv* cv = mclgCeilNB(res, step2, NULL, NULL, NULL) ; mclvFree(&cv) ; } sz = mclxColSizes(res, MCL_VECTOR_COMPLETE) ; mclvSortDescVal(sz) ; cc = clmUGraphComponents(res, NULL) /* fixme: user has to specify -tf '#max()' if graph is directed */ ; if (cc) { ccsz = mclxColSizes(cc, MCL_VECTOR_COMPLETE) ; if (compute_flags & COMPUTE_EFF) { clmPerformanceTable pftable ; clmPerformance(mx, cc, &pftable) ; eff = pftable.efficiency ; } } if (mode == 't' || mode == 'c') { for ( ; n_allvals > 0 && allvals[n_allvals-1] < cutoff ; n_allvals-- ) ; sum_vals = 0.0 ; for (i=0;i<n_allvals;i++) sum_vals += allvals[i] ; } else if (mode == 'k' || mode == 'n' || mode == 'l') { n_allvals = get_n_sort_allvals(res, allvals, noe, &sum_vals, FALSE) ; } levels[cor_i].sim_median= mcxMedian(allvals, n_allvals, sizeof allvals[0], pval_get_double, &iqr) ; levels[cor_i].sim_iqr = iqr ; levels[cor_i].sim_mean = n_allvals ? sum_vals / n_allvals : 0.0 ; levels[cor_i].nb_median = mcxMedian(sz->ivps, sz->n_ivps, sizeof sz->ivps[0], ivp_get_double, &iqr) ; levels[cor_i].nb_iqr = iqr ; levels[cor_i].nb_mean = mclvSum(sz) / N_COLS(res) ; levels[cor_i].cc_exp = cc ? mclvPowSum(ccsz, 2.0) / N_COLS(res) : 0 ; levels[cor_i].nb_sum = mclxNrofEntries(res) ; if (compute_flags & COMPUTE_CLCF) { mclv* clcf = mclgCLCFdispatch(res, n_thread_l) ; levels[cor_i].clcf = mclvSum(clcf) / N_COLS(mx) ; mclvFree(&clcf) ; } else levels[cor_i].clcf = 0.0 ; levels[cor_i].threshold = mode == 'k' || mode == 'l' || mode == 'n' ? step2 : cutoff ; levels[cor_i].bigsize = cc ? cc->cols[0].n_ivps : 0 ; levels[cor_i].n_single = 0 ; levels[cor_i].n_edge = n_allvals ; levels[cor_i].n_lq = 0 ; if (cc) for (i=0;i<N_COLS(cc);i++) { dim n = cc->cols[N_COLS(cc)-1-i].n_ivps ; if (n == 1) levels[cor_i].n_single++ ; if (n <= divide_g) levels[cor_i].n_lq += n ; else break ; } if (levels[cor_i].bigsize <= divide_g) levels[cor_i].bigsize = 0 ; y_prev = sz->ivps[0].val /* wiki says: A scale-free network is a network whose degree distribution follows a power law, at least asymptotically. That is, the fraction P(k) of nodes in the network having k connections to other nodes goes for large values of k as P(k) ~ k^−g where g is a constant whose value is typically in the range 2<g<3, although occasionally it may lie outside these bounds. */ ; for (i=1;i<sz->n_ivps;i++) { double y = sz->ivps[i].val ; if (y > y_prev - 0.5) continue /* same as node degree seen last */ ; nnodes->ivps[n_sample].val = log( (i*1.0) / (1.0*N_COLS(res))) /* x = #nodes >= k, as fraction */ ; degree->ivps[n_sample].val = log(y_prev ? y_prev : 1) /* y = k = degree of node */ ; n_sample++ ;if(0)fprintf(stderr, "k=%.0f\tn=%d\t%.3f\t%.3f\n", (double) y_prev, (int) i, (double) nnodes->ivps[n_sample-1].val, (double) degree->ivps[n_sample-1].val) ; y_prev = y ; } nnodes->ivps[n_sample].val = 0 ; nnodes->ivps[n_sample++].val = log(y_prev ? y_prev : 1) ;if(0){fprintf(stderr, "k=%.0f\tn=%d\t%.3f\t%.3f\n", (double) sz->ivps[sz->n_ivps-1].val, (int) N_COLS(res), (double) nnodes->ivps[n_sample-1].val, (double) degree->ivps[n_sample-1].val) ;} ; mclvResize(nnodes, n_sample) ; mclvResize(degree, n_sample) ; cor = pearson(nnodes, degree, n_sample) ; levels[cor_i].degree_cor = cor * cor ;if(0)fprintf(stdout, "cor at cutoff %.2f %.3f\n\n", cutoff, levels[cor_i-1].degree_cor) ; mclvFree(&nnodes) ; mclvFree(°ree) ; mclvFree(&sz) ; mclvFree(&ccsz) ; mclxFree(&cc) ; if(output_flags & OUTPUT_TABLE) { fprintf ( fp , "%lu\t%lu\t%lu\t%lu\t%lu" "\t%6g\t%6g\t%6g" "\t%6g\t%lu\t%6g" , (ulong) levels[cor_i].bigsize , (ulong) levels[cor_i].n_lq , (ulong) N_COLS(mx) - levels[cor_i].bigsize - levels[cor_i].n_lq , (ulong) levels[cor_i].n_single , (ulong) levels[cor_i].cc_exp , (double) levels[cor_i].sim_mean , (double) levels[cor_i].sim_median , (double) levels[cor_i].sim_iqr , (double) levels[cor_i].nb_mean , (ulong) levels[cor_i].nb_median , (double) levels[cor_i].nb_iqr ) ; if (compute_flags & COMPUTE_CLCF) fprintf(fp, "\t%6g", levels[cor_i].clcf) ; else fputs("\tNA", fp) ; if (eff >= 0.0) fprintf(fp, "\t%4g", eff) ; else fputs("\tNA", fp) ; fprintf(fp, "\t%6g", (double) levels[cor_i].threshold) ; fputc('\n', fp) ; } else { fprintf ( fp , "%3d %3d %3d %3d %7d " "%7.0f %7.0f %6.0f" "%6.1f %6.0f %6.0f" , 0 ? 1 : (int) (0.5 + (100.0 * levels[cor_i].bigsize) / N_COLS(mx)) , 0 ? 1 : (int) (0.5 + (100.0 * levels[cor_i].n_lq) / N_COLS(mx)) , 0 ? 1 : (int) (0.5 + (100.0 * (N_COLS(mx) - levels[cor_i].bigsize - levels[cor_i].n_lq)) / N_COLS(mx)) , 0 ? 1 : (int) (0.5 + (100.0 * levels[cor_i].n_single) / N_COLS(mx)) , 0 ? 1 : (int) (0.5 + levels[cor_i].cc_exp) , 0 ? 1.0 : (double) (levels[cor_i].sim_mean * weight_scale) , 0 ? 1.0 : (double) (levels[cor_i].sim_median * weight_scale) , 0 ? 1.0 : (double) (levels[cor_i].sim_iqr * weight_scale) , 0 ? 1.0 : (double) (levels[cor_i].nb_mean ) , 0 ? 1.0 : (double) (levels[cor_i].nb_median + 0.5 ) , 0 ? 1.0 : (double) (levels[cor_i].nb_iqr + 0.5 ) ) ; if (compute_flags & COMPUTE_CLCF) fprintf(fp, " %3d", 0 ? 1 : (int) (0.5 + (100.0 * levels[cor_i].clcf))) ; else fputs(" -", fp) ; if (eff >= 0.0) fprintf(fp, " %3d", (int) (0.5 + 1000 * eff)) ; else fputs(" -", fp) ; if (mode == 'c') fprintf(fp, "%8.2f\n", (double) levels[cor_i].threshold) ; else if (mode == 't') fprintf(fp, "%8.0f\n", (double) levels[cor_i].threshold * weight_scale) ; else if (mode == 'k' || mode == 'n' || mode == 'l') fprintf(fp, "%8.0f\n", (double) levels[cor_i].threshold) ; } ; cor_i++ ; if (res != mx) mclxFree(&res) ; } if (!(output_flags & OUTPUT_TABLE)) { if (weefreemen) { fprintf(fp, "-------------------------------------------------------------------------------\n") ;fprintf(fp, "The graph below plots the R^2 squared value for the fit of a log-log plot of\n") ;fprintf(fp, "<node degree k> versus <#nodes with degree >= k>, for the network resulting\n") ;fprintf(fp, "from applying a particular %s cutoff.\n", mode == 'c' ? "correlation" : "similarity") ;fprintf(fp, "-------------------------------------------------------------------------------\n") ; for (j=0;j<cor_i;j++) { dim jj ; for (jj=30;jj<=100;jj++) { char c = ' ' ; if (jj * 0.01 < levels[j].degree_cor && (jj+1.0) * 0.01 > levels[j].degree_cor) c = 'X' ; else if (jj % 5 == 0) c = '|' ; fputc(c, fp) ; } if (mode == 'c') fprintf(fp, "%8.2f\n", (double) levels[j].threshold) ; else fprintf(fp, "%8.0f\n", (double) levels[j].threshold * weight_scale) ; } fprintf(fp, "|----+----|----+----|----+----|----+----|----+----|----+----|----+----|--------\n") ;fprintf(fp, "| R^2 0.4 0.5 0.6 0.7 0.8 0.9 | 1.0 -o)\n") ;fprintf(fp, "+----+----+----+----+----+---------+----+----+----+----+----+----+----+ /\\\\\n") ;fprintf(fp, "| 2 4 6 8 2 4 6 8 | 2 4 6 8 | 2 4 6 8 | 2 4 6 8 | 2 4 6 8 | 2 4 6 8 | _\\_/\n") ;fprintf(fp, "+----+----|----+----|----+----|----+----|----+----|----+----|----+----+--------\n") ; } else fprintf(fp, "-------------------------------------------------------------------------------\n") ; } mclxFree(&mx) ; mcxFree(allvals) ; }
mcxIO* mcxIOrenew ( mcxIO* xf , const char* name , const char* mode ) { mcxbool twas_stdio = xf && xf->stdio /* it was one of STD{IN,OUT,ERR} */ ; if ( mode && !strstr(mode, "w") && !strstr(mode, "r") && !strstr(mode, "a") ) { mcxErr ("mcxIOrenew PBD", "unsupported open mode <%s>", mode) ; return NULL ; } if ( getenv("TINGEA_PLUS_APPEND") && ( name && (uchar) name[0] == '+' ) && ( mode && strchr(mode, 'w') ) ) { name++ /* user can specify -o +foo to append to foo */ ; mode = "a" ; } if (!xf) /* case 1) create a new one */ { if (!name || !mode) { mcxErr("mcxIOrenew PBD", "too few arguments") ; return NULL ; } if (!(xf = (mcxIO*) mcxAlloc(sizeof(mcxIO), RETURN_ON_FAIL))) return NULL ; if (!(xf->fn = mcxTingEmpty(NULL, 20))) return NULL ; if (!(xf->buffer = mcxTingEmpty(NULL, getpagesize()))) return NULL ; xf->fp = NULL ; xf->mode = NULL ; xf->usr = NULL ; xf->usr_reset = NULL ; xf->buffer_consumed = 0 ; } else if (xf->stdio) /* case 2) have one, don't close */ NOTHING ; else if (mcxIOwarnOpenfp(xf, "mcxIOrenew")) mcxIOclose(xf) /* case 3) have one, warn and close if open */ ; mcxIOreset(xf) ; if (name && !mcxTingWrite(xf->fn, name)) return NULL ; if (mode) { if (xf->mode) mcxFree(xf->mode) ; xf->mode = mcxStrDup(mode) ; } xf->stdio = begets_stdio(xf->fn->str, xf->mode) /* name changed, no longer stdio */ ; if (twas_stdio && !xf->stdio) xf->fp = NULL ; if (xf->stdio && mode && strchr(mode, 'a')) /* recently added */ { if (xf->mode) mcxFree(xf->mode) ; xf->mode = mcxStrDup("w") ; } return xf ; }
int main ( int argc , const char* argv[] ) { mcxIO *xfcl = NULL , *xfctrl = NULL , *xfcoarse= NULL , *xfbase = NULL , *xfcone = NULL , *xfstack = NULL ; mclx* mxbase, *cl, *cl_coarse, *clprev, *clctrl = NULL ; mcxTing* shared = mcxTingNew("-I 4 -overlap split") ; mcxbool root = TRUE ; mcxbool have_bootstrap = FALSE ; const char* plexprefix = NULL ; const char* stem = "mcl" ; mcxbool same = FALSE ; mcxbool plex = TRUE ; mcxbool add_transpose = FALSE ; const char* b2opts = NULL ; const char* b1opts = NULL ; mcxbits write_modes = 0 ; mclAlgParam* mlp = NULL ; mcxstatus status = STATUS_OK ; mcxstatus parse_status = STATUS_OK ; int multiplex_idx = 1 ; int N = 0 ; int n_ite = 0 ; dim n_components = 0, n_cls = 0 ; int a = 1, i= 0 ; int n_arg_read = 0 ; int delta = 0 ; mcxOption* opts, *opt ; mcxTing* cline = mcxOptArgLine(argv+1, argc-1, '\'') ; mclgTF* transform = NULL ; mcxTing* transform_spec = NULL ; double iaf = 0.84 ; mclx_app_init(stderr) ; if (0) mcxLogLevel = MCX_LOG_AGGR | MCX_LOG_MODULE | MCX_LOG_IO | MCX_LOG_GAUGE | MCX_LOG_WARN ; else mcxLogLevelSetByString("xf4g1") ; mcxOptAnchorSortById(options, sizeof(options)/sizeof(mcxOptAnchor) -1) ; if (argc == 2 && argv[1][0] == '-' && mcxOptIsInfo(argv[1], options)) delta = 1 ; else if (argc < 2) { help(options, shared) ; exit(0) ; } opts = mcxOptExhaust (options, (char**) argv, argc, 2-delta, &n_arg_read, &parse_status) ; if (parse_status != STATUS_OK) { mcxErr(me, "initialization failed") ; exit(1) ; } ; for (opt=opts;opt->anch;opt++) { mcxOptAnchor* anch = opt->anch ; switch(anch->id) { case MY_OPT_HELP : help(options, shared) ; exit(0) ; case MY_OPT_APROPOS : help(options, shared) ; exit(0) ; break ; case MY_OPT_NMAX : N = atoi(opt->val) ; break ; case MY_OPT_Z : help(NULL, shared) ; exit(0) ; break ; case MY_OPT_SHARED : mcxTingPrintAfter(shared, " %s", opt->val) ; break ; case MY_OPT_TRANSFORM : transform_spec = mcxTingNew(opt->val) ; break ; case MY_OPT_B1 : b1opts = opt->val ; break ; case MY_OPT_B2 : b2opts = opt->val ; break ; case ALG_OPT_SETENV : mcxSetenv(opt->val) ; break ; case ALG_OPT_QUIET : mcxLogLevelSetByString(opt->val) ; break ; case MY_OPT_HDP : hdp_g = atof(opt->val) ; break ; case MY_OPT_ADDTP : add_transpose = TRUE ; break ; case MY_OPT_ANNOT /* only used in command-line copying */ : break ; case MY_OPT_IAF : iaf = atof(opt->val) / 100 ; break ; case MY_OPT_WRITE : if (strstr(opt->val, "stack")) write_modes |= OUTPUT_STACK ; if (strstr(opt->val, "cone")) write_modes |= OUTPUT_CONE ; if (strstr(opt->val, "levels")) write_modes |= OUTPUT_STEPS ; if (strstr(opt->val, "coarse")) write_modes |= OUTPUT_COARSE ; if (strstr(opt->val, "base")) write_modes |= OUTPUT_BASE ; break ; case MY_OPT_BASENAME : xfbase = mcxIOnew(opt->val, "w") ; break ; case MY_OPT_COARSE : xfcoarse = mcxIOnew(opt->val, "w") ; break ; case MY_OPT_CONE : xfcone = mcxIOnew(opt->val, "w") ; break ; case MY_OPT_ROOT : root = strchr("1yY", (u8) opt->val[0]) ? TRUE : FALSE ; break ; case MY_OPT_STACK : xfstack = mcxIOnew(opt->val, "w") ; break ; case MY_OPT_STEM : stem = opt->val ; break ; case MY_OPT_MULTIPLEX : plex = strchr("yY1", (unsigned char) opt->val[0]) ? TRUE : FALSE ; break ; case MY_OPT_DISPATCH : dispatch_g = TRUE ; break ; case MY_OPT_INTEGRATE : integrate_g = TRUE ; break ; case MY_OPT_CONTRACT : break ; case MY_OPT_SUBCLUSTERX : subclusterx_g = TRUE, subcluster_g = TRUE ; break ; case MY_OPT_SUBCLUSTER : subcluster_g = TRUE ; break ; case MY_OPT_CONTROL : xfctrl = mcxIOnew(opt->val, "r") ; break ; case MY_OPT_CL : xfcl = mcxIOnew(opt->val, "r") ; have_bootstrap = TRUE ; break ; case MY_OPT_VERSION : app_report_version(me) ; exit(0) ; default : mcxExit(1) ; } } mcxOptFree(&opts) ; a = 2 + n_arg_read ; if (a < argc) { if (strcmp(argv[a], "--")) mcxDie ( 1 , me , "trailing %s options require standalone '--' separator (found %s)" , integrate_g ? "integrate" : "mcl" , argv[a] ) ; a++ ; } if (subcluster_g + dispatch_g + integrate_g > 1) mcxDie(1, me, "too many modes!") ; if (N && N < argc-a) mcxErr(me, "-n argument leaves spurious option specifications") ; srandom(mcxSeed(89315)) ; signal(SIGALRM, mclSigCatch) ; if (dispatch_g) plexprefix = "dis" ; else if (!write_modes || (write_modes & OUTPUT_STEPS)) plexprefix = stem ; { mcxTing* tg = mcxTingEmpty(NULL, 30) ; if ((write_modes & OUTPUT_COARSE) && !xfcoarse) mcxTingPrint(tg, "%s.%s", stem, "coarse") , xfcoarse = mcxIOnew(tg->str, "w") ; if ((write_modes & OUTPUT_BASE) && !xfbase) mcxTingPrint(tg, "%s.%s", stem, "base") , xfbase = mcxIOnew(tg->str, "w") ; if ( (!write_modes || (write_modes & OUTPUT_CONE)) && !xfcone ) { mcxTingPrint(tg, "%s.%s", stem, "cone") ; xfcone = mcxIOnew(tg->str, "w") ; mcxIOopen(xfcone, EXIT_ON_FAIL) ; fprintf(xfcone->fp, "# %s %s\n", argv[0], cline->str) ; } if ((write_modes & OUTPUT_STACK) && !xfstack) { mcxTingPrint(tg, "%s.%s", stem, "stack") ; xfstack = mcxIOnew(tg->str, "w") ; mcxIOopen(xfstack, EXIT_ON_FAIL) ; fprintf(xfstack->fp, "# %s %s\n", argv[0], cline->str) ; } mcxTingFree(&tg) ; } if (integrate_g) { for (i=a;i<argc;i++) { mcxIO* xf = mcxIOnew(argv[i], "r") ; mclx* cl = mclxRead(xf, EXIT_ON_FAIL) ; mclxCatPush(&stck_g, cl, NULL, NULL, mclxCBdomStack, NULL, "dummy-integrate", n_cls++) ; } integrate_results(&stck_g) ; if (xfstack) mclxCatWrite(xfstack, &stck_g, MCLXIO_VALUE_NONE, RETURN_ON_FAIL) ; if (xfcone) mclxCatConify(&stck_g) , mclxCatWrite(xfcone, &stck_g, MCLXIO_VALUE_NONE, RETURN_ON_FAIL) ; return 0 ; } for (i=a;i<argc;i++) { if (get_interface(NULL, argv[1], shared->str, argv[i], NULL, 0, RETURN_ON_FAIL)) mcxDie(1, me, "error while testing mcl options viability (%s)", argv[i]) ; } mcxLog(MCX_LOG_APP, me, "pid %ld", (long) getpid()) /* make sure clusters align with this cluster * status: does not seem promising. */ ; if (xfctrl) clctrl = mclxRead(xfctrl, EXIT_ON_FAIL) ; /* * Below: compute cl and mxbase. */ ; if (xfcl) { cl = mclxRead(xfcl, EXIT_ON_FAIL) ; write_clustering (cl, NULL, xfcone, xfstack, plexprefix, multiplex_idx++, NULL) ; if (subcluster_g || dispatch_g) mclxCatPush(&stck_g, cl, NULL, NULL, mclxCBdomStack, NULL, "dummy-mclcm", n_cls++) ; mcxIOfree(&xfcl) ; if (!b1opts && !b2opts) b1opts = "" ; mxbase = get_base(argv[1], NULL, b1opts, b2opts) ; } else { mcxbits CACHE = b1opts || b2opts ? ALG_CACHE_INPUT /* cache, transform later */ : ALG_CACHE_START ; get_interface ( &mlp , argv[1] , shared->str , a < argc ? argv[a] : NULL , NULL , CACHE , EXIT_ON_FAIL ) ; if (a < argc) a++ ; if ((status = mclAlgorithm(mlp)) == STATUS_FAIL) { mcxErr(me, "failed at initial run") ; exit(1) ; } cl_coarse = mclAlgParamRelease(mlp, mlp->cl_result) ; cl_coarse = control_test(cl_coarse, clctrl) ; write_clustering (cl_coarse, NULL, xfcone, xfstack, plexprefix, multiplex_idx++, mlp) ; if (subcluster_g || dispatch_g) mclxCatPush(&stck_g, cl_coarse, NULL, NULL, mclxCBdomStack, NULL, "dummy-mclcm", n_cls++) ; cl = cl_coarse ; n_ite++ ; if (b1opts || b2opts) { mclx* mx_input = mclAlgParamRelease(mlp, mlp->mx_input) ; mxbase = get_base(NULL, mx_input, b1opts, b2opts) /* ^ get_base frees mx_input */ ; } else mxbase = mclAlgParamRelease(mlp, mlp->mx_start) ; } clprev = cl ; mclAlgParamFree(&mlp, TRUE) ; if (xfbase) { dim nre = mclxNrofEntries(mxbase) ; mcxLog(MCX_LOG_APP, me, "base has %lu entries", (ulong) nre) ; mclxaWrite(mxbase, xfbase, MCLXIO_VALUE_GETENV, EXIT_ON_FAIL) ; mcxIOclose(xfbase) ; } if (subcluster_g || dispatch_g) iaf = iaf ? 1/iaf : 1.414 ; while ( (!dispatch_g && (!N || n_ite < N)) || (dispatch_g && a < argc) ) { mclx* mx_coarse = NULL, *clnext = NULL ; dim dist_new_prev = 0, dist_prev_new = 0 ; mclx* clnew = NULL ; mcxbool faith = FALSE ; double inflation = -1.0 ; if (subcluster_g) mx_coarse = subclusterx_g ? mclxBlockPartition(mxbase, clprev, 50) : mclxBlockUnion(mxbase, clprev) /* have to copy mxbase as mx_coarse is freed. * Even if it were not freed, it is probably transformed. */ ; else if (dispatch_g) mx_coarse = mclxCopy(mxbase) ; else { mx_coarse = get_coarse(mxbase, clprev, add_transpose) ; if (n_ite == 1) { mclx* cc = clmUGraphComponents(mx_coarse, NULL) /* fixme; mx_coarse garantueed UD ? */ ; n_components = N_COLS(cc) ; mclxFree(&cc) ; } } if (xfcoarse) write_coarse(xfcoarse, mx_coarse) ; get_interface ( &mlp , NULL , shared->str , a < argc ? argv[a] : NULL , mx_coarse , ALG_CACHE_START , EXIT_ON_FAIL ) ; inflation = mlp->mpp->mainInflation ; BIT_OFF(mlp->modes, ALG_DO_SHOW_PID | ALG_DO_SHOW_JURY) ; if ((status = mclAlgorithm(mlp)) == STATUS_FAIL) { mcxErr(me, "failed") ; mcxExit(1) ; } cl_coarse = mclAlgParamRelease(mlp, mlp->cl_result) ; if (xfcoarse) mclxaWrite(cl_coarse, xfcoarse, MCLXIO_VALUE_NONE, RETURN_ON_FAIL) ; if (dispatch_g || subcluster_g) clnext = cl_coarse ; else clnext = mclxCompose(clprev, cl_coarse, 0) , clnext = control_test(clnext, clctrl) , mclxFree(&cl_coarse) ; clmSJDistance (clprev, clnext, NULL, NULL, &dist_prev_new, &dist_new_prev) ; if (dist_prev_new + dist_new_prev) { write_clustering (clnext, clprev, xfcone, xfstack, plexprefix, multiplex_idx++, mlp) ; clnew = clnext ; if (subcluster_g || dispatch_g) mclxCatPush(&stck_g, clnext, NULL, NULL, mclxCBdomStack, NULL, "dummy-mclcm", n_cls++) ; else mclxFree(&clprev) ; clprev = clnew ; } else if ( N_COLS(clnext) > n_components && inflation * iaf > 1.2 && inflation * iaf < 10 ) { mclxFree(&clnext) ; inflation *= iaf ; mcxTingPrintAfter(shared, " -I %.2f", inflation) ; mcxLog(MCX_LOG_APP, me, "setting inflation to %.2f", inflation) ; faith = TRUE ; } /* i.e. vanilla mode, contraction */ else if (!subcluster_g && !dispatch_g) { mclx* cc ; mclxFree(&clnext) ; mclxAddTranspose(mx_coarse, 1.0) ; cc = clmUGraphComponents(mx_coarse, NULL) ; if (N_COLS(cc) < N_COLS(clprev)) { mclx* ccback = mclxCompose(clprev, cc, 0) ; write_clustering (ccback, clprev, xfcone, xfstack, plexprefix, multiplex_idx++, NULL) ; mclxFree(&clprev) ; clprev = ccback ; mcxTell(me, "connected components added as root clustering") ; } if (root && N_COLS(cc) > 1) { mclx* root = mclxCartesian ( mclvCanonical(NULL, 1, 0) , mclvCopy(NULL, mxbase->dom_cols) , 1.0 ) ; write_clustering (root, clprev, xfcone, xfstack, plexprefix, multiplex_idx++, NULL) ; mclxFree(&clprev) ; mcxTell(me, "universe added as root clustering") ; clprev = root ; clnew = NULL ; } mclxFree(&cc) ; } else if (subcluster_g || dispatch_g) mclxFree(&clnext) ; mclAlgParamFree(&mlp, TRUE) /* frees mx_coarse */ ; if (!clnew && !faith) { same = TRUE ; break ; } a++ ; if (dispatch_g && a == argc) break ; n_ite++ ; } if (same) mcxLog(MCX_LOG_MODULE, me, "no further contraction: halting") ; if (dispatch_g) integrate_results(&stck_g) ; else if (subcluster_g) mclxCatReverse(&stck_g) ; if (dispatch_g || subcluster_g) { dim j ; if (xfstack) mclxCatWrite(xfstack, &stck_g, MCLXIO_VALUE_NONE, RETURN_ON_FAIL) ; if (xfcone && ! mclxCatConify(&stck_g)) mclxCatWrite(xfcone, &stck_g, MCLXIO_VALUE_NONE, RETURN_ON_FAIL) ; for (j=0;j<stck_g.n_level;j++) { mclxAnnot* an = stck_g.level+j ; mclxFree(&an->mx) ; } mcxFree(stck_g.level) ; } mcxIOfree(&xfcoarse) ; mcxIOfree(&xfbase) ; mcxIOfree(&xfcone) ; mcxIOfree(&xfstack) ; mcxTingFree(&shared) ; if (!dispatch_g && !subcluster_g) /* fixme fixme fixme */ mclxFree(&clprev) ; mclxFree(&mxbase) ; mclvFree(&start_col_sums_g) ; mcxTingFree(&cline) ; helpful_reminder() ; return STATUS_OK ; }
static void mcxIOcleanpat ( mcxIOpat* md ) { mcxFree(md->circle) ; }