Esempio n. 1
0
void mclvFree
(  mclVector**                 vecpp
)  
   {  if (*vecpp)
      {  mcxFree((*vecpp)->ivps)
      ;  mcxFree(*vecpp)
      ;  (*vecpp) = NULL
   ;  }
;  }
Esempio n. 2
0
static void free_pars
(  stream_state* iface
)
   {  dim i
   ;  for (i=0; i<iface->pars_n_alloc; i++)
      mcxFree(iface->pars[i].ivps)
   ;  mcxFree(iface->pars)
   ;  iface->pars = NULL
;  }
Esempio n. 3
0
void mclpARfree
(  mclpAR**    mclparp
)  
   {  if (*mclparp)
      {  mcxFree(mclparp[0]->ivps)
      ;  mcxFree(*mclparp)   
      ;  *mclparp   =  NULL
   ;  }
   }
Esempio n. 4
0
void mcxHeapFree
(  mcxHeap**   heap
)  
   {  if (*heap)
      {  if ((*heap)->base)
         mcxFree((*heap)->base)
         
      ;  mcxFree(*heap)
      ;  *heap       =  NULL
   ;  }
   }
Esempio n. 5
0
void  mcxGrimFree
(  mcxGrim** srcp
)
   {  grim_buf *this = (*srcp)->buf
   ;  while (this)
      {  grim_buf* tmp = this->prev
      ;  mcxFree(this->units)
      ;  mcxFree(this)
      ;  this = tmp
   ;  }
      mcxFree(*srcp)
   ;  *srcp = NULL
;  }
Esempio n. 6
0
void mclInterpretParamFree
(  mclInterpretParam **ipp
)
   {  if (*ipp)
      mcxFree(*ipp)
   ;  *ipp = NULL
;  }
Esempio n. 7
0
mcxHash* mcxHashNew
(  dim         n_buckets
,  u32         (*hash)(const void *a)
,  int         (*cmp) (const void *a, const void *b)
)
   {  mcxHash  *h
   ;  mcxbool ok  = FALSE
      
   ;  u8 n_bits   =  0

   ;  if (!n_buckets)
      {  mcxErr("mcxHashNew strange", "void alloc request")
      ;  n_buckets = 2
   ;  }

      if (!(h = mcxAlloc(sizeof(mcxHash), RETURN_ON_FAIL)))
      return NULL

   ;  while(n_buckets)
      {  n_buckets >>=  1
      ;  n_bits++
   ;  }

      h->load           =  0.5
   ;  h->n_entries      =  0
   ;  h->n_buckets      =  n_buckets = (1 << n_bits)
   ;  h->cmp            =  cmp
   ;  h->hash           =  hash
   ;  h->options        =  MCX_HASH_OPT_DEFAULTS

   ;  h->src_link       =  NULL

   ;  while (1)                        /* fixme 2nd arg below, have better choice? */
      {  h->src_link = mcxGrimNew(sizeof(hash_link), h->n_buckets, MCX_GRIM_ARITHMETIC)
      ;  if (!h->src_link)
         break

      ;  if
         (! (  h->buckets
            =  mcxNAlloc
               (  h->n_buckets
               ,  sizeof(mcx_bucket)
               ,  mcx_bucket_init
               ,  RETURN_ON_FAIL
         )  )  )
         break

      ;  ok = TRUE
      ;  break
   ;  }

      if (!ok)
      {  mcxGrimFree(&(h->src_link))
      ;  mcxFree(h)
      ;  return NULL
   ;  }

      return h
;  }
Esempio n. 8
0
void mclpFree
(  mclIvp**                   p_ivp
)  
   {  if (*p_ivp)
      {  mcxFree(*p_ivp)
      ;  *p_ivp   =  NULL
   ;  }
   }
Esempio n. 9
0
void mclvRelease
(  mclVector*        vec
)
   {  if (!vec)
      return
   ;  mcxFree(vec->ivps)
   ;  vec->ivps = NULL
   ;  vec->n_ivps = 0
;  }
Esempio n. 10
0
void mclgTFfree
(  mclgTF** tfpp
)
   {  mclgTF* tf = tfpp[0]
   ;  if (tf)
      {  mclpARfree(&(tf->par_edge))
      ;  mcxFree(tf)
      ;  tfpp[0] = NULL
   ;  }
   }
Esempio n. 11
0
void mcxHeapRelease
(  void* heapv
)  
   {  mcxHeap* heap = (mcxHeap*) heapv

   ;  if (heap->base)
      mcxFree(heap->base)
   ;  heap->base     = NULL
   ;  heap->heapSize = 0
;  }
Esempio n. 12
0
void mcxIOrelease
(  mcxIO*  xf
)
   {  if (xf)
      {  mcxIOclose(xf)

      ;  if (xf->fn)
         mcxTingFree(&(xf->fn))
      ;  if (xf->mode)
         mcxFree(xf->mode)
   ;  }
   }
Esempio n. 13
0
void mcxIOfree
(  mcxIO**  xfpp
)  
   {  if (*xfpp)
      {  mcxIO* xf = *xfpp
      ;  mcxIOrelease(xf)
      ;  mcxTingFree(&(xf->buffer))
      ;  if (xf->usr && xf->usr_free)
         xf->usr_free(xf->usr)
      ;  mcxFree(xf)
      ;  *xfpp =  NULL
   ;  }
   }
Esempio n. 14
0
mclVector* mclvInstantiate
(  mclVector*     dst_vec
,  dim            new_n_ivps
,  const mclIvp*  src_ivps
)
   {  mclIvp*     new_ivps
   ;  dim         old_n_ivps

   ;  if (!dst_vec && !(dst_vec = mclvInit(NULL)))    /* create */
      return NULL

   ;  old_n_ivps = dst_vec->n_ivps

                                    /* I've had a suspicion that some reallocs might be too lazy
                                     * to reuse shrunk array space.
                                    */
   ;  if (old_n_ivps / 2 > new_n_ivps)
      {  new_ivps = mcxAlloc(new_n_ivps * sizeof new_ivps[0], ENQUIRE_ON_FAIL)
      ;  if (new_ivps && !src_ivps)
         memcpy(new_ivps, dst_vec->ivps, new_n_ivps * sizeof new_ivps[0])
      ;  mcxFree(dst_vec->ivps)
      ;  dst_vec->ivps = new_ivps
   ;  }
      else
      dst_vec->ivps =  mcxRealloc(dst_vec->ivps, new_n_ivps * sizeof new_ivps[0], ENQUIRE_ON_FAIL)

   ;  if 
      (  !dst_vec->ivps
      && new_n_ivps
      )
      {  mcxMemDenied(stderr, "mclvInstantiate", "mclIvp", new_n_ivps)
      ;  return NULL
   ;  }
                                      /*  ^ do not free; *dst_vec could be array element */

      new_ivps = dst_vec->ivps

   ;  if (!src_ivps)                                  /* resize */
      {  dim k = old_n_ivps
      ;  while (k < new_n_ivps)
         {  mclpInit(new_ivps + k)
         ;  k++
      ;  }
      }
      else if (src_ivps && new_n_ivps)                /* copy   */
      memcpy(new_ivps, src_ivps, new_n_ivps * sizeof(mclIvp))

   ;  dst_vec->n_ivps = new_n_ivps
   ;  return dst_vec
;  }
Esempio n. 15
0
static mcxstatus get_interface
(  mclAlgParam** mlpp
,  const char* fn_input          /* Use this as input or mx_input */
,  const char* arg_shared
,  const char* arg_extra
,  mclx* mx_input                /* Use this as input or fn_input */
,  mcxbits CACHE
,  mcxOnFail ON_FAIL
)
   {  mcxTing* spec  =  mcxTingNew(arg_shared)
   ;  int argc1      =  0
   ;  char** argv1
   ;  mcxstatus status
   ;  mclAlgParam* mymlp =  NULL
   ;  mclAlgParam** mymlpp = mlpp ? mlpp : &mymlp

   ;  if (arg_extra)
      mcxTingPrintAfter(spec, " %s", arg_extra)

                           /* warning this clobbers spec->str */
   ;  argv1 = mcxOptParseString(spec->str, &argc1, ' ')
   ;  status
      =  mclAlgInterface
         (  mymlpp
         ,  argv1
         ,  argc1
         ,  fn_input
         ,  mx_input
         ,  CACHE
         )
      
   ;  if (status && ON_FAIL == EXIT_ON_FAIL)
      mcxExit(1)

   ;  mcxFree(argv1)
   ;  mcxTingFree(&spec)
                     /* fixfixfixmefixmefffixme: mclAlgInterface might use opt->val
                      * which points to somewhere in spec->str. Check.
                     */

   ;  if (!mlpp)
      mclAlgParamFree(mymlpp, TRUE)

   ;  return status
;  }
Esempio n. 16
0
void mclxInflateBoss
(  mclMatrix*        mx
,  double            power
,  mclProcParam*     mpp
)
   {  int            workLoad    =  N_COLS(mx) / mpp->n_ithreads
   ;  int            workTail    =  N_COLS(mx) % mpp->n_ithreads
   ;  int            i           =  0
   ;  pthread_attr_t pthread_custom_attr

   ;  pthread_t *threads_inflate
      =  (pthread_t *) mcxAlloc
         (  mpp->n_ithreads*sizeof(pthread_t)
         ,  EXIT_ON_FAIL
         )

   ;  pthread_attr_init(&pthread_custom_attr)

   ;  for (i=0;i<mpp->n_ithreads;i++)
      {
         mclvInflateLine_arg *a
                     =  (mclvInflateLine_arg *)
                        malloc(sizeof(mclvInflateLine_arg))
      ;  a->id       =  i
      ;  a->start    =  workLoad * i
      ;  a->end      =  workLoad * (i+1)
      ;  a->mx       =  mx
      ;  a->power    =  power

      ;  if (i+1==mpp->n_ithreads)
         a->end   +=  workTail

      ;  pthread_create
         (  &threads_inflate[i]
         ,  &pthread_custom_attr
         ,  (void *(*)(void*)) mclvInflateLine
         ,  (void *) a
         )
   ;  }

      for (i = 0; i < mpp->n_ithreads; i++)
      pthread_join(threads_inflate[i], NULL)

   ;  mcxFree(threads_inflate)
;  }
Esempio n. 17
0
mcxGrim* mcxGrimNew
(  dim sz_unit
,  dim n_units
,  mcxbits options
)  
   {  mcxGrim* src = mcxAlloc(sizeof(mcxGrim), RETURN_ON_FAIL)
   ;  if (!src)
      return NULL

   ;  if (!(src->buf = grim_buf_new(sz_unit, n_units)))
      {  mcxFree(src)
      ;  return NULL
   ;  }

      src->buf->prev = NULL
   ;  src->flags =  options 
   ;  src->na    =  (void*) src->buf->units
   ;  src->ct    =  0
   ;  src->sz_unit =  sz_unit

   ;  return src
;  }
Esempio n. 18
0
grim_buf* grim_buf_new
(  dim      sz_unit
,  dim      n_units
)
   {  dim i
   ;  grim_buf* buf
   ;  char* units
   ;  dim sz_load = sizeof(memnext) + sz_unit
      
   ;  if (!(buf = mcxAlloc(sizeof(grim_buf), RETURN_ON_FAIL)))
      return NULL

   ;  if
      ( !(buf->units
      =  units
      =  mcxAlloc(n_units * sz_load, RETURN_ON_FAIL)
      )  )
      {  mcxFree(buf)
      ;  return NULL
   ;  }

      buf->prev =  NULL
   ;  buf->n_units =  n_units

#if DEBUG
;  fprintf (stderr, "Extending grim with <%lu> units\n", (ulong) n_units);
#endif

   ;  for (i=0;i<n_units-1;i++)
         ((memnext*) (units + i * sz_load))->next
      =   (memnext*) (units + (i+1) * sz_load)

   ;  ((memnext*) (buf->units + (n_units-1) * sz_load))->next = NULL

   ;  return buf
;  }
Esempio n. 19
0
mclVector* mclvBinaryx
(  const mclVector*  vec1
,  const mclVector*  vec2
,  mclVector*        dst
,  double           (*op)(pval arg1, pval arg2, pval arg3)
,  double            arg3
)  
   {  mclIvp  *ivp1, *ivp2, *ivp1max, *ivp2max, *ivpk, *ivpl
   ;  long n1n2 = vec1->n_ivps+vec2->n_ivps

   ;  if (vec1->n_ivps + vec2->n_ivps == 0)
      return mclvInstantiate(dst, 0, NULL)

   ;  ivpl  =  ivpk 
            =  mcxAlloc
               (  n1n2 * sizeof(mclIvp)
               ,  RETURN_ON_FAIL
               )
   ;  if (!ivpk)
      {  mcxMemDenied(stderr, "mclvBinary", "mclIvp", n1n2)
      ;  return NULL
   ;  }

      ivp1     =  vec1->ivps
   ;  ivp2     =  vec2->ivps

   ;  ivp1max  =  ivp1 + vec1->n_ivps
   ;  ivp2max  =  ivp2 + vec2->n_ivps
   ;
      
      {  double rval

      ;  while (ivp1 < ivp1max && ivp2 < ivp2max)
         {  pval val1 =  0.0
         ;  pval val2 =  0.0
         ;  long idx

         ;  if (ivp1->idx < ivp2->idx)
            {  idx   =  ivp1->idx
            ;  val1  =  (ivp1++)->val
         ;  }
            else if (ivp1->idx > ivp2->idx)
            {  idx   =  ivp2->idx
            ;  val2  =  (ivp2++)->val
         ;  }
            else
            {  idx   =  ivp1->idx
            ;  val1  =  (ivp1++)->val
            ;  val2  =  (ivp2++)->val
         ;  }

            if ((rval = op(val1, val2, arg3)) != 0.0)
            {  ivpl->idx      =  idx
            ;  (ivpl++)->val  =  rval
         ;  }
         }

         while (ivp1 < ivp1max)
         {  if ((rval = op(ivp1->val, 0.0, arg3)) != 0.0)
            {  ivpl->idx      =  ivp1->idx
            ;  (ivpl++)->val  =  rval
         ;  }
            ivp1++
      ;  }

         while (ivp2 < ivp2max)
         {  if ((rval = op(0.0, ivp2->val, arg3)) != 0.0)
            {  ivpl->idx      =  ivp2->idx
            ;  (ivpl++)->val  =  rval
         ;  }
            ivp2++
      ;  }
      }

      dst = mclvInstantiate(dst, ivpl-ivpk, ivpk)
   ;  mcxFree(ivpk)
   ;  return dst
;  }
Esempio n. 20
0
double mclvKBar
(  mclVector   *vec
,  dim         k
,  double      ignore            /*    ignore elements relative to this  */
,  int         mode
)  
   {  int      have_even   =  (k+1) % 2
   ;  dim      n_inserted  =  0
   ;  double   ans         =  0.0
   ;  mclIvp * vecivp      =  vec->ivps
   ;  mclIvp*  vecmaxivp   =  vecivp + vec->n_ivps
   ;  pval *   heap
                                 /* can select everything */
   ;  if (k >= vec->n_ivps)
      return mode == KBAR_SELECT_LARGE ? -FLT_MAX : FLT_MAX

                                 /* let's select nothing, it might even help */
   ;  if (!(heap =  mcxAlloc ((k+have_even)*sizeof(pval), RETURN_ON_FAIL)))
      return mode == KBAR_SELECT_LARGE ? FLT_MAX : -FLT_MAX

   ;  if (mode == KBAR_SELECT_LARGE)
      {  if (have_even)
         *(heap+k) =  PVAL_MAX

      ;  while(vecivp < vecmaxivp)
         {  pval val =  vecivp->val

         ;  if (val >= ignore)
            NOTHING
         ;  else if (n_inserted < k)
            {  dim d =  n_inserted

            ;  while (d != 0 && *(heap+(d-1)/2) > val)
               { *(heap+d) =  *(heap+(d-1)/2)
               ;  d = (d-1)/2
            ;  }
               *(heap+d) =  val
            ;  n_inserted++
         ;  }
            else if (val > *heap)
            {  dim root  =  0
            ;  dim d

            ;  while((d = 2*root+1) < k)
               {  if (*(heap+d) > *(heap+d+1))
                  d++
               ;  if (val > *(heap+d))
                  {  *(heap+root) = *(heap+d)
                  ;  root = d
               ;  }
                  else break
            ;  }
               *(heap+root) = val
         ;  }
            vecivp++
      ;  }
      }

      else if (mode == KBAR_SELECT_SMALL)
      {  if (have_even)
         *(heap+k) = -PVAL_MAX

      ;  while(vecivp < vecmaxivp)
         {  pval val = vecivp->val

         ;  if (val < ignore)
            NOTHING
         ;  else if (n_inserted < k)
            {  dim d = n_inserted

            ;  while (d != 0 && *(heap+(d-1)/2) < val)
               { *(heap+d) = *(heap+(d-1)/2)
               ;  d = (d-1)/2
            ;  }
               *(heap+d) = val
            ;  n_inserted++
         ;  }
            else if (val < *heap)
            {  dim root = 0
            ;  dim d

            ;  while((d = 2*root+1) < k)
               {  if (*(heap+d) < *(heap+d+1))
                  d++
               ;  if (val < *(heap+d))
                  {  *(heap+root) = *(heap+d)
                  ;  root = d
               ;  }
                  else break
            ;  }
               *(heap+root) = val
         ;  }
            vecivp++
      ;  }
      }
      else
      {  mcxErr("mclvKBar PBD", "invalid mode")
      ;  mcxExit(1)
   ;  }

      ans = *heap
   ;  mcxFree(heap)
   ;  return ans
;  }
Esempio n. 21
0
mclgTF* mclgTFparse
(  mcxLink*    encoding_link
,  mcxTing*    thestring
)
   {  mclgTF* gtf = mcxAlloc(sizeof gtf[0], EXIT_ON_FAIL)
   ;  const char* me = "mclgTFparse"
   ;  const char* a  = thestring->str
   ;  const char* z  = thestring->str + thestring->len
   ;  mcxTing* func  =  mcxTingEmpty(NULL, thestring->len)
   ;  mcxTing* arg   =  mcxTingEmpty(NULL, thestring->len)
   ;  int n = 0

   ;  if (!(gtf->par_edge = mclpARensure(NULL, 10)))
      return NULL     /* +memleak gtf */

   ;  if (!(gtf->par_graph = mclpARensure(NULL, 10)))
      return NULL     /* +memleak gtf, gtf->par_edge */

   ;  if
      (  thestring
      && !mcxStrChrAint(thestring->str, isspace, thestring->len)
      )
      return gtf

   ;  while (a < z)
      {  const char* val, *key
      ;  char* onw = NULL
      ;  int tfe = -1, tfg = -1
      ;  mcxbool nought = FALSE
      ;  unsigned char k0
      ;  double d
      ;  int t

      ;  mcxTingEmpty(arg, z-a)
      ;  mcxTingEmpty(func, z-a)
      ;  n = 0

      ;  if ((t = sscanf(a, " %[a-z_#-] ( )%n", func->str, &n)) >= 1 && n > 0)
         NOTHING
      ;  else if ((t = sscanf(a, " %[a-z_#-] ( %[^)_ ] )%n", func->str, arg->str, &n)) >= 2 && n > 0)
         NOTHING
      ;  else
         break

      ;  a += n  
      ;  key=  func->str
      ;  val=  arg->str
      ;  k0 =  key[0]
      ;  d  =  strtod(val, &onw)

      ;  if (!val || !strlen(val))
         nought = TRUE

      ;  else if (val == onw)
         {  mcxErr(me, "failed to parse number <%s>", val)
         ;  break
      ;  }

         if (k0 == '#')
         {  if (!strcmp(key, "#ceilnb"))
            tfg = MCLG_TF_CEILNB
         ;  else if (!strcmp(key, "#knn"))
            tfg = MCLG_TF_KNN
         ;  else if (!strcmp(key, "#n"))
            tfg = MCLG_TF_TOPN
         ;  else if (!strcmp(key, "#ils"))
            tfg = MCLG_TF_ILS
         ;  else if (!strcmp(key, "#mcl"))
            tfg = MCLG_TF_MCL
         ;  else if (!strcmp(key, "#arcmcl"))
            tfg = MCLG_TF_ARC_MCL

         ;  else if (!strcmp(key, "#arcsub"))
            tfg = MCLG_TF_ARCSUB
         ;  else if (!strcmp(key, "#arcmax"))
            tfg = MCLG_TF_ARCMAX

         ;  else if (!strcmp(key, "#arcmingq"))
            tfg = MCLG_TF_ARCMINGQ
         ;  else if (!strcmp(key, "#arcmingt"))
            tfg = MCLG_TF_ARCMINGT
         ;  else if (!strcmp(key, "#arcmimlq"))
            tfg = MCLG_TF_ARCMINLQ
         ;  else if (!strcmp(key, "#arcminlt"))
            tfg = MCLG_TF_ARCMINLT

         ;  else if (!strcmp(key, "#arcdiffgq"))
            tfg = MCLG_TF_ARCDIFFGQ
         ;  else if (!strcmp(key, "#arcdiffgt"))
            tfg = MCLG_TF_ARCDIFFGT
         ;  else if (!strcmp(key, "#arcdifflq"))
            tfg = MCLG_TF_ARCDIFFLQ
         ;  else if (!strcmp(key, "#arcdifflt"))
            tfg = MCLG_TF_ARCDIFFLT

         ;  else if (!strcmp(key, "#arcmaxgq"))
            tfg = MCLG_TF_ARCMAXGQ
         ;  else if (!strcmp(key, "#arcmaxgt"))
            tfg = MCLG_TF_ARCMAXGT
         ;  else if (!strcmp(key, "#arcmaxlq"))
            tfg = MCLG_TF_ARCMAXLQ
         ;  else if (!strcmp(key, "#arcmaxlt"))
            tfg = MCLG_TF_ARCMAXLT

         ;  else if (!strcmp(key, "#selfrm"))
            tfg = MCLG_TF_SELFRM
         ;  else if (!strcmp(key, "#selfmax"))
            tfg = MCLG_TF_SELFMAX
         ;  else if (!strcmp(key, "#normself"))
            tfg = MCLG_TF_NORMSELF

         ;  else if (!strcmp(key, "#add"))
            tfg = MCLG_TF_ADD
         ;  else if (!strcmp(key, "#max"))
            tfg = MCLG_TF_MAX
         ;  else if (!strcmp(key, "#min"))
            tfg = MCLG_TF_MIN
         ;  else if (!strcmp(key, "#mul"))
            tfg = MCLG_TF_MUL

         ;  else if (!strcmp(key, "#tug"))
            tfg = MCLG_TF_TUG
         ;  else if (!strcmp(key, "#ssq"))
            tfg = MCLG_TF_SSQ
         ;  else if (!strcmp(key, "#qt"))
            tfg = MCLG_TF_QT
         ;  else if (!strcmp(key, "#tp") || !strcmp(key, "#rev"))
            tfg = MCLG_TF_TRANSPOSE
         ;  else if (!strcmp(key, "#step"))
            tfg = MCLG_TF_STEP
         ;  else if (!strcmp(key, "#thread"))
            tfg = MCLG_TF_THREAD
         ;  else if (!strcmp(key, "#shrug"))
            tfg = MCLG_TF_SHRUG
         ;  else if (!strcmp(key, "#shuffle"))
            tfg = MCLG_TF_SHUFFLE
      ;  }
         else
         {  if (!strcmp(key, "gq"))
            tfe = MCLX_UNARY_GQ
         ;  else if (!strcmp(key, "gt"))
            tfe = MCLX_UNARY_GT
         ;  else if (!strcmp(key, "lt"))
            tfe = MCLX_UNARY_LT
         ;  else if (!strcmp(key, "lq"))
            tfe = MCLX_UNARY_LQ
         ;  else if (!strcmp(key, "rand"))
            tfe = MCLX_UNARY_RAND
         ;  else if (!strcmp(key, "mul"))
            tfe = MCLX_UNARY_MUL
         ;  else if (!strcmp(key, "scale"))
            tfe = MCLX_UNARY_SCALE
         ;  else if (!strcmp(key, "add"))
            tfe = MCLX_UNARY_ADD
         ;  else if (!strcmp(key, "abs"))
            tfe = MCLX_UNARY_ABS
         ;  else if (!strcmp(key, "ceil"))
            tfe = MCLX_UNARY_CEIL
         ;  else if (!strcmp(key, "floor"))
            tfe = MCLX_UNARY_FLOOR
         ;  else if (!strcmp(key, "pow"))
            tfe = MCLX_UNARY_POW
         ;  else if (!strcmp(key, "exp"))
            tfe = MCLX_UNARY_EXP
         ;  else if (!strcmp(key, "log"))
            tfe = MCLX_UNARY_LOG
         ;  else if (!strcmp(key, "neglog"))
            tfe = MCLX_UNARY_NEGLOG
      ;  }

         if (tfe < 0 && tfg < 0)
         {  mcxErr(me, "unknown value transform <%s>", key)
         ;  break
      ;  }

         if (tfe >= 0)
         {  if (nought)
            {  if
               (  tfe == MCLX_UNARY_LOG || tfe == MCLX_UNARY_ABS
               || tfe == MCLX_UNARY_EXP || tfe == MCLX_UNARY_NEGLOG
               )
               d = 0.0
            ;  else
               {  mcxErr(me, "transform <%s> needs value", key)
               ;  break
            ;  }
         ;  }
            mclpARextend(gtf->par_edge, tfe, d)
      ;  }
         else if (tfg >= 0)
         {  if (nought)
            {  if
               (  tfg >= MCLG_TF_DUMMY_NOVALUE_START
               && tfg <= MCLG_TF_DUMMY_NOVALUE_END
               )
               d = 0.0
            ;  else if (tfg == MCLG_TF_TUG || tfg == MCLG_TF_SHRUG)
               d = 1000.0
            ;  else if (tfg == MCLG_TF_STEP)
               d = 2.0
            ;  else
               {  mcxErr(me, "transform <%s> needs value", key)
               ;  break
            ;  }
         ;  }
            mclpARextend(gtf->par_edge, MCLX_UNARY_UNUSED, 0.0)
         ;  mclpARextend(gtf->par_graph, tfg, d)
      ;  }

         a = mcxStrChrAint(a, isspace, z-a)
      ;  if (!a || a[0] != ',')
         break
      ;  a++
   ;  }

      if (a)
      {  mcxErr(me, "trailing part <%s> not matched", a)
      ;  mclpARfree(&(gtf->par_edge))
      ;  mcxFree(gtf)
      ;  gtf = NULL
   ;  }

      return gtf
;  }
Esempio n. 22
0
static void vary_threshold
(  mcxIO* xf
,  FILE*  fp
,  int vary_a
,  int vary_z
,  int vary_s
,  int vary_n
,  unsigned mode
)
   {  dim cor_i = 0, j
   ;  int step

   ;  mclx* mx
   ;  unsigned long noe
   ;  pval*  allvals
   ;  dim  n_allvals = 0
   ;  double sum_vals = 0.0

   ;  mx = mclxRead(xf, EXIT_ON_FAIL)
   ;  mcxIOclose(xf)

   ;  if (transform)
      mclgTFexec(mx, transform)

   ;  noe = mclxNrofEntries(mx)
   ;  allvals = mcxAlloc(noe * sizeof allvals[0], EXIT_ON_FAIL)

   ;  if (!weight_scale)
      {  if (mode == 'c')
         weight_scale = 1.0
      ;  else
         weight_scale = vary_n
   ;  }

      n_allvals = get_n_sort_allvals(mx, allvals, noe, &sum_vals, FALSE)

   ;  if (mode == 'c')
      {  double smallest = n_allvals ? allvals[n_allvals-1] : -DBL_MAX
      ;  if (vary_a * 1.0 / vary_n < smallest)
         {  while (vary_a * 1.0 / vary_n < smallest)
            vary_a++
         ;  vary_a--
      ;  }
         mcxTell
         (  me
         ,  "smallest correlation is %.2f, using starting point %.2f"
         ,  smallest
         ,  vary_a * 1.0 / vary_n
         )
   ;  }

      if (output_flags & OUTPUT_TABLE)
      {
;fprintf(fp, "L\tD\tR\tS\tcce\tEWmean\tEWmed\tEWiqr\tNDmean\tNDmed\tNDiqr\tCCF\t%s\n", mode == 'k' ? "kNN" : mode == 'l' ? "N" : "Cutoff")
;}    else
      {  if (output_flags & OUTPUT_KEY)
 {
;fprintf(fp, "-------------------------------------------------------------------------------\n")
;fprintf(fp, " L       Percentage of nodes in the largest component\n")
;fprintf(fp, " D       Percentage of nodes in components of size at most %d [-div option]\n", (int) divide_g)
;fprintf(fp, " R       Percentage of nodes not in L or D: 100 - L -D\n")
;fprintf(fp, " S       Percentage of nodes that are singletons\n")
;fprintf(fp, " cce     Expected size of component, nodewise [ sum(sz^2) / sum^2(sz) ]\n")
;fprintf(fp, "*EW      Edge weight traits (mean, median and IQR, all scaled!)\n")
;fprintf(fp, "            Scaling is used to avoid printing of fractional parts throughout.\n")
;fprintf(fp, "            The scaling factor is %.2f [-report-scale option]\n", weight_scale)
;fprintf(fp, " ND      Node degree traits [mean, median and IQR]\n")
;fprintf(fp, " CCF     Clustering coefficient %s\n", compute_flags & COMPUTE_CLCF ? "(not computed; use --clcf to include this)" : "")
;fprintf(fp, " eff     Induced component efficiency %s\n", compute_flags & COMPUTE_EFF ? "(not computed; use --eff to include this)" : "")

;if (mode == 'c')
 fprintf(fp, "Cutoff   The threshold used.\n")
;else if (mode == 't')
 fprintf(fp, "*Cutoff  The threshold with scale factor %.2f and fractional parts removed\n", weight_scale)
;else if (mode == 'k')
 fprintf(fp, "k-NN     The knn parameter\n")
;else if (mode == 'l')
 fprintf(fp, "N        The knn parameter (merge mode)\n")
;else if (mode == 'n')
 fprintf(fp, "ceil     The ceil parameter\n")
;fprintf(fp, "Total number of nodes: %lu\n", (ulong) N_COLS(mx))
;}
 fprintf(fp, "-------------------------------------------------------------------------------\n")
;fprintf(fp, "  L   D   R   S     cce *EWmean  *EWmed *EWiqr NDmean  NDmed  NDiqr CCF  eff %6s \n", mode == 'k' ? "k-NN" : mode == 'l' ? "N" : mode == 'n' ? "Ceil" : "Cutoff")
;fprintf(fp, "-------------------------------------------------------------------------------\n")
;     }

      for (step = vary_a; step <= vary_z; step += vary_s)
      {  double cutoff = step * 1.0 / vary_n
      ;  double eff = -1.0
      ;  mclv* nnodes = mclvCanonical(NULL, N_COLS(mx), 0.0)
      ;  mclv* degree = mclvCanonical(NULL, N_COLS(mx), 0.0)
      ;  dim i, n_sample = 0
      ;  double cor, y_prev, iqr = 0.0
      ;  mclx* cc = NULL, *res = NULL
      ;  mclv* sz, *ccsz = NULL
      ;  int step2 = vary_z + vary_a - step

      ;  sum_vals = 0.0
      
      ;  if (mode == 't' || mode == 'c')
            mclxSelectValues(mx, &cutoff, NULL, MCLX_EQT_GQ)
         ,  res = mx
      ;  else if (mode == 'k')
         {  res = rebase_g ? mclxCopy(mx) : mx
         ;  mclxKNNdispatch(res, step2, n_thread_l, 1)
      ;  }
         else if (mode == 'l')
         {  res = mx
         ;  mclxKNNdispatch(res, step2, n_thread_l, 0)
      ;  }
         else if (mode == 'n')
         {  res = rebase_g ? mclxCopy(mx) : mx
         ;  mclv* cv = mclgCeilNB(res, step2, NULL, NULL, NULL)
         ;  mclvFree(&cv)
      ;  }

         sz = mclxColSizes(res, MCL_VECTOR_COMPLETE)
      ;  mclvSortDescVal(sz)

      ;  cc = clmUGraphComponents(res, NULL)     /* fixme: user has to specify -tf '#max()' if graph is directed */
      ;  if (cc)
         {  ccsz = mclxColSizes(cc, MCL_VECTOR_COMPLETE)
         ;  if (compute_flags & COMPUTE_EFF)
            {  clmPerformanceTable pftable
            ;  clmPerformance(mx, cc, &pftable)
            ;  eff = pftable.efficiency
         ;  }
         }

         if (mode == 't' || mode == 'c')
         {  for
            (
            ;  n_allvals > 0 && allvals[n_allvals-1] < cutoff
            ;  n_allvals--
            )
         ;  sum_vals = 0.0
         ;  for (i=0;i<n_allvals;i++)
            sum_vals += allvals[i]
      ;  }
         else if (mode == 'k' || mode == 'n' || mode == 'l')
         {  n_allvals = get_n_sort_allvals(res, allvals, noe, &sum_vals, FALSE)
      ;  }

         levels[cor_i].sim_median=  mcxMedian(allvals, n_allvals, sizeof allvals[0], pval_get_double, &iqr)
      ;  levels[cor_i].sim_iqr   =  iqr
      ;  levels[cor_i].sim_mean  =  n_allvals ? sum_vals / n_allvals : 0.0

      ;  levels[cor_i].nb_median =  mcxMedian(sz->ivps, sz->n_ivps, sizeof sz->ivps[0], ivp_get_double, &iqr)
      ;  levels[cor_i].nb_iqr    =  iqr
      ;  levels[cor_i].nb_mean   =  mclvSum(sz) / N_COLS(res)
      ;  levels[cor_i].cc_exp    =  cc ? mclvPowSum(ccsz, 2.0) / N_COLS(res) : 0
      ;  levels[cor_i].nb_sum    =  mclxNrofEntries(res)

      ;  if (compute_flags & COMPUTE_CLCF)
         {  mclv* clcf = mclgCLCFdispatch(res, n_thread_l)
         ;  levels[cor_i].clcf   =  mclvSum(clcf) / N_COLS(mx)
         ;  mclvFree(&clcf)
      ;  }
         else
         levels[cor_i].clcf = 0.0

      ;  levels[cor_i].threshold =  mode == 'k' || mode == 'l' || mode == 'n' ? step2 : cutoff
      ;  levels[cor_i].bigsize   =  cc ? cc->cols[0].n_ivps : 0
      ;  levels[cor_i].n_single  =  0
      ;  levels[cor_i].n_edge    =  n_allvals
      ;  levels[cor_i].n_lq      =  0

      ;  if (cc)
         for (i=0;i<N_COLS(cc);i++)
         {  dim n = cc->cols[N_COLS(cc)-1-i].n_ivps
         ;  if (n == 1)
            levels[cor_i].n_single++
         ;  if (n <= divide_g)
            levels[cor_i].n_lq += n
         ;  else
            break
      ;  }

         if (levels[cor_i].bigsize <= divide_g)
         levels[cor_i].bigsize = 0

      ;  y_prev = sz->ivps[0].val

                  /* wiki says:
                     A scale-free network is a network whose degree distribution follows a power
                     law, at least asymptotically. That is, the fraction P(k) of nodes in the
                     network having k connections to other nodes goes for large values of k as P(k)
                     ~ k^−g where g is a constant whose value is typically in the range 2<g<3,
                     although occasionally it may lie outside these bounds.
                 */
      ;  for (i=1;i<sz->n_ivps;i++)
         {  double y = sz->ivps[i].val
         ;  if (y > y_prev - 0.5)
            continue                                              /* same as node degree seen last */
         ;  nnodes->ivps[n_sample].val = log( (i*1.0) / (1.0*N_COLS(res)))    /* x = #nodes >= k, as fraction   */
         ;  degree->ivps[n_sample].val = log(y_prev ? y_prev : 1)            /* y = k = degree of node         */
         ;  n_sample++
;if(0)fprintf(stderr, "k=%.0f\tn=%d\t%.3f\t%.3f\n", (double) y_prev, (int) i, (double) nnodes->ivps[n_sample-1].val, (double) degree->ivps[n_sample-1].val)
         ;  y_prev = y
      ;  }
         nnodes->ivps[n_sample].val = 0
      ;  nnodes->ivps[n_sample++].val = log(y_prev ? y_prev : 1)
;if(0){fprintf(stderr, "k=%.0f\tn=%d\t%.3f\t%.3f\n", (double) sz->ivps[sz->n_ivps-1].val, (int) N_COLS(res), (double) nnodes->ivps[n_sample-1].val, (double) degree->ivps[n_sample-1].val)
;}

      ;  mclvResize(nnodes, n_sample)
      ;  mclvResize(degree, n_sample)
      ;  cor = pearson(nnodes, degree, n_sample)

      ;  levels[cor_i].degree_cor =  cor * cor

;if(0)fprintf(stdout, "cor at cutoff %.2f %.3f\n\n", cutoff, levels[cor_i-1].degree_cor)
      ;  mclvFree(&nnodes)
      ;  mclvFree(&degree)
      ;  mclvFree(&sz)
      ;  mclvFree(&ccsz)
      ;  mclxFree(&cc)

;  if(output_flags & OUTPUT_TABLE)
   {  fprintf
      (  fp
      ,  "%lu\t%lu\t%lu\t%lu\t%lu"
         "\t%6g\t%6g\t%6g"
         "\t%6g\t%lu\t%6g"

      ,  (ulong) levels[cor_i].bigsize
      ,  (ulong) levels[cor_i].n_lq
      ,  (ulong) N_COLS(mx) - levels[cor_i].bigsize - levels[cor_i].n_lq
      ,  (ulong) levels[cor_i].n_single
      ,  (ulong) levels[cor_i].cc_exp

      ,  (double) levels[cor_i].sim_mean
      ,  (double) levels[cor_i].sim_median
      ,  (double) levels[cor_i].sim_iqr

      ,  (double) levels[cor_i].nb_mean
      ,  (ulong) levels[cor_i].nb_median
      ,  (double) levels[cor_i].nb_iqr
      )

   ;  if (compute_flags & COMPUTE_CLCF) fprintf(fp, "\t%6g", levels[cor_i].clcf)   ;  else fputs("\tNA", fp)
   ;  if (eff >= 0.0) fprintf(fp, "\t%4g", eff)              ;  else fputs("\tNA", fp)

   ;  fprintf(fp, "\t%6g", (double) levels[cor_i].threshold)
   ;  fputc('\n', fp)
;  }
   else
   {  fprintf
      (  fp
      ,  "%3d %3d %3d %3d %7d "
         "%7.0f %7.0f %6.0f"
         "%6.1f %6.0f %6.0f"

      ,  0 ? 1 : (int) (0.5 + (100.0 * levels[cor_i].bigsize) / N_COLS(mx))
      ,  0 ? 1 : (int) (0.5 + (100.0 * levels[cor_i].n_lq) / N_COLS(mx))
      ,  0 ? 1 : (int) (0.5 + (100.0 * (N_COLS(mx) - levels[cor_i].bigsize - levels[cor_i].n_lq)) / N_COLS(mx))
      ,  0 ? 1 : (int) (0.5 + (100.0 * levels[cor_i].n_single) / N_COLS(mx))
      ,  0 ? 1 : (int) (0.5 + levels[cor_i].cc_exp)

      ,  0 ? 1.0 : (double) (levels[cor_i].sim_mean   * weight_scale)
      ,  0 ? 1.0 : (double) (levels[cor_i].sim_median * weight_scale)
      ,  0 ? 1.0 : (double) (levels[cor_i].sim_iqr    * weight_scale)

      ,  0 ? 1.0 : (double) (levels[cor_i].nb_mean                 )
      ,  0 ? 1.0 : (double) (levels[cor_i].nb_median + 0.5         )
      ,  0 ? 1.0 : (double) (levels[cor_i].nb_iqr + 0.5            )
      )

   ;  if (compute_flags & COMPUTE_CLCF)
      fprintf(fp, " %3d", 0 ? 1 : (int) (0.5 + (100.0 * levels[cor_i].clcf)))
   ;  else
      fputs("   -", fp)

   ;  if (eff >= 0.0)
      fprintf(fp, "  %3d", (int) (0.5 + 1000 * eff))
   ;  else
      fputs("    -", fp)

   ;  if (mode == 'c')
      fprintf(fp, "%8.2f\n", (double) levels[cor_i].threshold)
   ;  else if (mode == 't')
      fprintf(fp, "%8.0f\n", (double) levels[cor_i].threshold  * weight_scale)
   ;  else if (mode == 'k' || mode == 'n' || mode == 'l')
      fprintf(fp, "%8.0f\n", (double) levels[cor_i].threshold)
 ; }

      ;  cor_i++
      ;  if (res != mx)
         mclxFree(&res)
   ;  }

   if (!(output_flags & OUTPUT_TABLE))
   {  if (weefreemen)
      {
fprintf(fp, "-------------------------------------------------------------------------------\n")
;fprintf(fp, "The graph below plots the R^2 squared value for the fit of a log-log plot of\n")
;fprintf(fp, "<node degree k> versus <#nodes with degree >= k>, for the network resulting\n")
;fprintf(fp, "from applying a particular %s cutoff.\n", mode == 'c' ? "correlation" : "similarity")
;fprintf(fp, "-------------------------------------------------------------------------------\n")
   ;  for (j=0;j<cor_i;j++)
      {  dim jj
      ;  for (jj=30;jj<=100;jj++)
         {  char c = ' '
         ;  if (jj * 0.01 < levels[j].degree_cor && (jj+1.0) * 0.01 > levels[j].degree_cor)
            c = 'X'
         ;  else if (jj % 5 == 0)
            c = '|'
         ;  fputc(c, fp)
      ;  }
         if (mode == 'c')
         fprintf(fp, "%8.2f\n", (double) levels[j].threshold)
      ;  else
         fprintf(fp, "%8.0f\n", (double) levels[j].threshold * weight_scale)
   ;  }

 fprintf(fp, "|----+----|----+----|----+----|----+----|----+----|----+----|----+----|--------\n")
;fprintf(fp, "| R^2   0.4       0.5       0.6       0.7       0.8       0.9    |  1.0    -o)\n")
;fprintf(fp, "+----+----+----+----+----+---------+----+----+----+----+----+----+----+    /\\\\\n")
;fprintf(fp, "| 2 4 6 8   2 4 6 8 | 2 4 6 8 | 2 4 6 8 | 2 4 6 8 | 2 4 6 8 | 2 4 6 8 |   _\\_/\n")
;fprintf(fp, "+----+----|----+----|----+----|----+----|----+----|----+----|----+----+--------\n")
;     }
      else
      fprintf(fp, "-------------------------------------------------------------------------------\n")
;  }

      mclxFree(&mx)
   ;  mcxFree(allvals)
;  }
Esempio n. 23
0
mcxIO* mcxIOrenew
(  mcxIO*            xf
,  const char*       name
,  const char*       mode
)
   {  mcxbool twas_stdio = xf && xf->stdio      /* it was one of STD{IN,OUT,ERR} */
   ;  if
      (  mode
      && !strstr(mode, "w") && !strstr(mode, "r") && !strstr(mode, "a")
      )
      {  mcxErr ("mcxIOrenew PBD", "unsupported open mode <%s>", mode)
      ;  return NULL
   ;  }

      if
      (  getenv("TINGEA_PLUS_APPEND")
      && (  name && (uchar) name[0] == '+' )
      && (  mode && strchr(mode, 'w') )
      )
      {  name++               /* user can specify -o +foo to append to foo */
      ;  mode = "a"
   ;  }

      if (!xf)                /* case 1)   create a new one */
      {  if (!name || !mode)
         {  mcxErr("mcxIOrenew PBD", "too few arguments")
         ;  return NULL
      ;  }

         if (!(xf = (mcxIO*) mcxAlloc(sizeof(mcxIO), RETURN_ON_FAIL)))
         return NULL

      ;  if (!(xf->fn = mcxTingEmpty(NULL, 20)))
         return NULL

      ;  if (!(xf->buffer = mcxTingEmpty(NULL, getpagesize())))
         return NULL

      ;  xf->fp      =  NULL
      ;  xf->mode    =  NULL
      ;  xf->usr     =  NULL
      ;  xf->usr_reset =  NULL
      ;  xf->buffer_consumed = 0
   ;  }
      else if (xf->stdio)     /* case 2)   have one, don't close */
      NOTHING
   ;  else if (mcxIOwarnOpenfp(xf, "mcxIOrenew"))
      mcxIOclose(xf)          /* case 3)   have one, warn and close if open */

   ;  mcxIOreset(xf)

   ;  if (name && !mcxTingWrite(xf->fn, name))
      return NULL

   ;  if (mode)
      {  if (xf->mode)
         mcxFree(xf->mode)
      ;  xf->mode = mcxStrDup(mode)
   ;  }

      xf->stdio = begets_stdio(xf->fn->str, xf->mode)

                                       /* name changed, no longer stdio */
   ;  if (twas_stdio && !xf->stdio)
      xf->fp = NULL

   ;  if (xf->stdio && mode && strchr(mode, 'a'))     /* recently added */
      {  if (xf->mode)
         mcxFree(xf->mode)
      ;  xf->mode = mcxStrDup("w")
   ;  }

      return xf
;  }
Esempio n. 24
0
int main
(  int                  argc
,  const char*          argv[]
)  
   {  mcxIO
         *xfcl    =  NULL
      ,  *xfctrl  =  NULL
      ,  *xfcoarse=  NULL
      ,  *xfbase  =  NULL
      ,  *xfcone  =  NULL
      ,  *xfstack =  NULL

   ;  mclx* mxbase, *cl, *cl_coarse, *clprev, *clctrl = NULL

   ;  mcxTing* shared = mcxTingNew("-I 4 -overlap split")
   ;  mcxbool root = TRUE
   ;  mcxbool have_bootstrap = FALSE
   ;  const char* plexprefix = NULL
   ;  const char* stem = "mcl"
   ;  mcxbool same = FALSE
   ;  mcxbool plex = TRUE
   ;  mcxbool add_transpose = FALSE
   ;  const char* b2opts = NULL
   ;  const char* b1opts = NULL
   ;  mcxbits write_modes = 0

   ;  mclAlgParam* mlp        =  NULL
   ;  mcxstatus status        =  STATUS_OK
   ;  mcxstatus parse_status  =  STATUS_OK
   ;  int multiplex_idx = 1
   ;  int N = 0
   ;  int n_ite = 0
   ;  dim n_components = 0, n_cls = 0


   ;  int a =  1, i= 0
   ;  int n_arg_read = 0
   ;  int delta = 0
   ;  mcxOption* opts, *opt
   ;  mcxTing* cline = mcxOptArgLine(argv+1, argc-1, '\'')
   ;  mclgTF* transform  =  NULL
   ;  mcxTing* transform_spec = NULL


   ;  double iaf = 0.84

   ;  mclx_app_init(stderr)

   ;  if (0)
      mcxLogLevel =
      MCX_LOG_AGGR | MCX_LOG_MODULE | MCX_LOG_IO | MCX_LOG_GAUGE | MCX_LOG_WARN
   ;  else
      mcxLogLevelSetByString("xf4g1")

   ;  mcxOptAnchorSortById(options, sizeof(options)/sizeof(mcxOptAnchor) -1)

   ;  if (argc == 2 && argv[1][0] == '-' && mcxOptIsInfo(argv[1], options))
      delta = 1
   ;  else if (argc < 2)
      {  help(options, shared)
      ;  exit(0)
   ;  }

      opts = mcxOptExhaust
            (options, (char**) argv, argc, 2-delta, &n_arg_read, &parse_status)

   ;  if (parse_status != STATUS_OK)
      {  mcxErr(me, "initialization failed")
      ;  exit(1)
   ;  }

   ;  for (opt=opts;opt->anch;opt++)
      {  mcxOptAnchor* anch = opt->anch

      ;  switch(anch->id)
         {  case MY_OPT_HELP
         :  help(options, shared)
         ;  exit(0)
         ;

            case MY_OPT_APROPOS
         :  help(options, shared)
         ;  exit(0)
         ;  break
         ;

            case MY_OPT_NMAX
         :  N = atoi(opt->val)
         ;  break
         ;

            case MY_OPT_Z
         :  help(NULL, shared)
         ;  exit(0)
         ;  break
         ;

            case MY_OPT_SHARED
         :  mcxTingPrintAfter(shared, " %s", opt->val)
         ;  break
         ;

            case MY_OPT_TRANSFORM
         :  transform_spec = mcxTingNew(opt->val)
         ;  break
         ;

            case MY_OPT_B1
         :  b1opts = opt->val
         ;  break
         ;

            case MY_OPT_B2
         :  b2opts = opt->val
         ;  break
         ;

            case ALG_OPT_SETENV
         :  mcxSetenv(opt->val)
         ;  break
         ;

            case ALG_OPT_QUIET
         :  mcxLogLevelSetByString(opt->val)
         ;  break
         ;

            case MY_OPT_HDP
         :  hdp_g = atof(opt->val)
         ;  break
         ;

            case MY_OPT_ADDTP
         :  add_transpose = TRUE
         ;  break
         ;

            case MY_OPT_ANNOT       /* only used in command-line copying */
         :  break
         ;

            case MY_OPT_IAF
         :  iaf = atof(opt->val) / 100
         ;  break
         ;

            case MY_OPT_WRITE
         :  if (strstr(opt->val, "stack"))
            write_modes |= OUTPUT_STACK
         ;  if (strstr(opt->val, "cone"))
            write_modes |= OUTPUT_CONE
         ;  if (strstr(opt->val, "levels"))
            write_modes |= OUTPUT_STEPS
         ;  if (strstr(opt->val, "coarse"))
            write_modes |= OUTPUT_COARSE
         ;  if (strstr(opt->val, "base"))
            write_modes |= OUTPUT_BASE
         ;  break
         ;

            case MY_OPT_BASENAME
         :  xfbase = mcxIOnew(opt->val, "w")
         ;  break
         ;

            case MY_OPT_COARSE
         :  xfcoarse = mcxIOnew(opt->val, "w")
         ;  break
         ;

            case MY_OPT_CONE
         :  xfcone = mcxIOnew(opt->val, "w")
         ;  break
         ;

            case MY_OPT_ROOT
         :  root = strchr("1yY", (u8) opt->val[0]) ? TRUE : FALSE
         ;  break
         ;

            case MY_OPT_STACK
         :  xfstack = mcxIOnew(opt->val, "w")
         ;  break
         ;

            case MY_OPT_STEM
         :  stem = opt->val
         ;  break
         ;

            case MY_OPT_MULTIPLEX
         :  plex = strchr("yY1", (unsigned char) opt->val[0]) ? TRUE : FALSE
         ;  break
         ;

            case MY_OPT_DISPATCH
         :  dispatch_g = TRUE
         ;  break
         ;

            case MY_OPT_INTEGRATE
         :  integrate_g = TRUE
         ;  break
         ;

            case MY_OPT_CONTRACT
         :  break
         ;

            case MY_OPT_SUBCLUSTERX
         :  subclusterx_g = TRUE,  subcluster_g = TRUE
         ;  break
         ;

            case MY_OPT_SUBCLUSTER
         :  subcluster_g = TRUE
         ;  break
         ;

            case MY_OPT_CONTROL
         :  xfctrl = mcxIOnew(opt->val, "r")
         ;  break
         ;

            case MY_OPT_CL
         :  xfcl = mcxIOnew(opt->val, "r")
         ;  have_bootstrap = TRUE
         ;  break
         ;

            case MY_OPT_VERSION
         :  app_report_version(me)
         ;  exit(0)
         ;

            default
         :  mcxExit(1)
         ;
         }
      }

      mcxOptFree(&opts)

   ;  a = 2 + n_arg_read

   ;  if (a < argc)
      {  if (strcmp(argv[a], "--"))
         mcxDie
         (  1
         ,  me
         ,  "trailing %s options require standalone '--' separator (found %s)"
         ,  integrate_g ? "integrate" : "mcl"
         ,  argv[a]
         )
      ;  a++
   ;  }

      if (subcluster_g + dispatch_g + integrate_g > 1)
      mcxDie(1, me, "too many modes!")

   ;  if (N && N < argc-a)
      mcxErr(me, "-n argument leaves spurious option specifications")

   ;  srandom(mcxSeed(89315))
   ;  signal(SIGALRM, mclSigCatch)

   ;  if (dispatch_g)
      plexprefix = "dis"
   ;  else if (!write_modes || (write_modes & OUTPUT_STEPS))
      plexprefix = stem

   ;  {  mcxTing* tg = mcxTingEmpty(NULL, 30)
      ;  if ((write_modes & OUTPUT_COARSE) && !xfcoarse)
            mcxTingPrint(tg, "%s.%s", stem, "coarse")
         ,  xfcoarse = mcxIOnew(tg->str, "w")

      ;  if ((write_modes & OUTPUT_BASE) && !xfbase)
            mcxTingPrint(tg, "%s.%s", stem, "base")
         ,  xfbase = mcxIOnew(tg->str, "w")

      ;  if
         (  (!write_modes || (write_modes & OUTPUT_CONE))
         && !xfcone
         )
         {  mcxTingPrint(tg, "%s.%s", stem, "cone")
         ;  xfcone = mcxIOnew(tg->str, "w")
         ;  mcxIOopen(xfcone, EXIT_ON_FAIL)
         ;  fprintf(xfcone->fp, "# %s %s\n", argv[0], cline->str)
      ;  }

         if ((write_modes & OUTPUT_STACK) && !xfstack)
         {  mcxTingPrint(tg, "%s.%s", stem, "stack")
         ;  xfstack = mcxIOnew(tg->str, "w")
         ;  mcxIOopen(xfstack, EXIT_ON_FAIL)
         ;  fprintf(xfstack->fp, "# %s %s\n", argv[0], cline->str)
      ;  }

         mcxTingFree(&tg)
   ;  }

      if (integrate_g)
      {  for (i=a;i<argc;i++)
         {  mcxIO* xf = mcxIOnew(argv[i], "r")
         ;  mclx* cl = mclxRead(xf, EXIT_ON_FAIL)
         ;  mclxCatPush(&stck_g, cl, NULL, NULL, mclxCBdomStack, NULL, "dummy-integrate", n_cls++)
      ;  }

         integrate_results(&stck_g)

      ;  if (xfstack)
         mclxCatWrite(xfstack, &stck_g, MCLXIO_VALUE_NONE, RETURN_ON_FAIL)

      ;  if (xfcone)
            mclxCatConify(&stck_g)
         ,  mclxCatWrite(xfcone, &stck_g, MCLXIO_VALUE_NONE, RETURN_ON_FAIL)

      ;  return 0
   ;  }

      for (i=a;i<argc;i++)
      {  if (get_interface(NULL, argv[1], shared->str, argv[i], NULL, 0, RETURN_ON_FAIL))
         mcxDie(1, me, "error while testing mcl options viability (%s)", argv[i])
   ;  }


      mcxLog(MCX_LOG_APP, me, "pid %ld", (long) getpid())

                        /* make sure clusters align with this cluster
                         * status: does not seem promising.
                        */
   ;  if (xfctrl)
      clctrl = mclxRead(xfctrl, EXIT_ON_FAIL)
   ;

                        /*
                         * Below: compute cl and mxbase.
                        */
   ;  if (xfcl)
      {  cl = mclxRead(xfcl, EXIT_ON_FAIL)
      ;  write_clustering
         (cl, NULL, xfcone, xfstack, plexprefix, multiplex_idx++, NULL)

      ;  if (subcluster_g || dispatch_g)
         mclxCatPush(&stck_g, cl, NULL, NULL, mclxCBdomStack, NULL, "dummy-mclcm", n_cls++)

      ;  mcxIOfree(&xfcl)
      ;  if (!b1opts && !b2opts)
         b1opts = ""
      ;  mxbase = get_base(argv[1], NULL, b1opts, b2opts)
   ;  }
      else
      {  mcxbits CACHE  =     b1opts || b2opts
                           ?  ALG_CACHE_INPUT       /* cache, transform later */
                           :  ALG_CACHE_START
      ;  get_interface
         (  &mlp
         ,  argv[1]
         ,  shared->str
         ,  a < argc ? argv[a] : NULL
         ,  NULL
         ,  CACHE
         ,  EXIT_ON_FAIL
         )
      ;  if (a < argc)
         a++

      ;  if ((status = mclAlgorithm(mlp)) == STATUS_FAIL)
         {  mcxErr(me, "failed at initial run")
         ;  exit(1)
      ;  }

         cl_coarse =  mclAlgParamRelease(mlp, mlp->cl_result)
      ;  cl_coarse =  control_test(cl_coarse, clctrl)

      ;  write_clustering
         (cl_coarse, NULL, xfcone, xfstack, plexprefix, multiplex_idx++, mlp)

      ;  if (subcluster_g || dispatch_g)
         mclxCatPush(&stck_g, cl_coarse, NULL, NULL, mclxCBdomStack, NULL, "dummy-mclcm", n_cls++)

      ;  cl = cl_coarse
      ;  n_ite++

      ;  if (b1opts || b2opts)
         {  mclx* mx_input =  mclAlgParamRelease(mlp, mlp->mx_input)
         ;  mxbase = get_base(NULL, mx_input, b1opts, b2opts)
                           /* ^ get_base frees mx_input */
      ;  }
         else
         mxbase =  mclAlgParamRelease(mlp, mlp->mx_start)
   ;  }

      clprev = cl

   ;  mclAlgParamFree(&mlp, TRUE)

   ;  if (xfbase)
      {  dim nre = mclxNrofEntries(mxbase)
      ;  mcxLog(MCX_LOG_APP, me, "base has %lu entries", (ulong) nre)
      ;  mclxaWrite(mxbase, xfbase, MCLXIO_VALUE_GETENV, EXIT_ON_FAIL)
      ;  mcxIOclose(xfbase)
   ;  }

      if (subcluster_g || dispatch_g)
      iaf = iaf ? 1/iaf : 1.414

   ;  while
      (  (!dispatch_g && (!N || n_ite < N))
      || (dispatch_g && a < argc)
      )
      {  mclx* mx_coarse   =  NULL, *clnext = NULL

      ;  dim dist_new_prev = 0, dist_prev_new = 0
      ;  mclx* clnew = NULL
      ;  mcxbool faith = FALSE
      ;  double inflation = -1.0

      ;  if (subcluster_g)
         mx_coarse
         =     subclusterx_g
            ?  mclxBlockPartition(mxbase, clprev, 50)
            :  mclxBlockUnion(mxbase, clprev)

                  /* have to copy mxbase as mx_coarse is freed.
                   * Even if it were not freed, it is probably transformed.
                  */
      ;  else if (dispatch_g)
         mx_coarse = mclxCopy(mxbase)

      ;  else
         {  mx_coarse = get_coarse(mxbase, clprev, add_transpose)

         ;  if (n_ite == 1)
            {  mclx* cc = clmUGraphComponents(mx_coarse, NULL)   /* fixme; mx_coarse garantueed UD ? */
            ;  n_components = N_COLS(cc)
            ;  mclxFree(&cc)
         ;  }
         }

         if (xfcoarse)
         write_coarse(xfcoarse, mx_coarse)

      ;  get_interface
         (  &mlp
         ,  NULL
         ,  shared->str
         ,  a < argc ? argv[a] : NULL
         ,  mx_coarse
         ,  ALG_CACHE_START
         ,  EXIT_ON_FAIL
         )

      ;  inflation = mlp->mpp->mainInflation
      ;  BIT_OFF(mlp->modes, ALG_DO_SHOW_PID | ALG_DO_SHOW_JURY)

      ;  if ((status = mclAlgorithm(mlp)) == STATUS_FAIL)
         {  mcxErr(me, "failed")
         ;  mcxExit(1)
      ;  }

         cl_coarse = mclAlgParamRelease(mlp, mlp->cl_result)

      ;  if (xfcoarse)
         mclxaWrite(cl_coarse, xfcoarse, MCLXIO_VALUE_NONE, RETURN_ON_FAIL)

      ;  if (dispatch_g || subcluster_g)
         clnext = cl_coarse
      ;  else
            clnext = mclxCompose(clprev, cl_coarse, 0)
         ,  clnext = control_test(clnext, clctrl)
         ,  mclxFree(&cl_coarse)

      ;  clmSJDistance
         (clprev, clnext, NULL, NULL, &dist_prev_new, &dist_new_prev)

      ;  if (dist_prev_new + dist_new_prev)
         {  write_clustering
            (clnext, clprev, xfcone, xfstack, plexprefix, multiplex_idx++, mlp)
         ;  clnew = clnext

         ;  if (subcluster_g || dispatch_g)
            mclxCatPush(&stck_g, clnext, NULL, NULL, mclxCBdomStack, NULL, "dummy-mclcm", n_cls++)
         ;  else
            mclxFree(&clprev)

         ;  clprev = clnew
      ;  }
         else if
         (  N_COLS(clnext) > n_components
         && inflation * iaf > 1.2
         && inflation * iaf < 10
         )
         {  mclxFree(&clnext)
         ;  inflation *= iaf
         ;  mcxTingPrintAfter(shared, " -I %.2f", inflation)
         ;  mcxLog(MCX_LOG_APP, me, "setting inflation to %.2f", inflation)
         ;  faith = TRUE
      ;  }
                                       /* i.e. vanilla mode, contraction */
         else if (!subcluster_g && !dispatch_g)
         {  mclx* cc
         ;  mclxFree(&clnext)

         ;  mclxAddTranspose(mx_coarse, 1.0)
         ;  cc = clmUGraphComponents(mx_coarse, NULL)  

         ;  if (N_COLS(cc) < N_COLS(clprev))
            {  mclx* ccback = mclxCompose(clprev, cc, 0)
            ;  write_clustering
               (ccback, clprev, xfcone, xfstack, plexprefix, multiplex_idx++, NULL)
            ;  mclxFree(&clprev)
            ;  clprev = ccback
            ;  mcxTell(me, "connected components added as root clustering")
         ;  }

            if (root && N_COLS(cc) > 1)
            {  mclx* root =   mclxCartesian
                              (  mclvCanonical(NULL, 1, 0)
                              ,  mclvCopy(NULL, mxbase->dom_cols)
                              ,  1.0
                              )
            ;  write_clustering
               (root, clprev, xfcone, xfstack, plexprefix, multiplex_idx++, NULL)

            ;  mclxFree(&clprev)

            ;  mcxTell(me, "universe added as root clustering")
            ;  clprev = root
            ;  clnew = NULL
         ;  }

            mclxFree(&cc)
      ;  }
         else if (subcluster_g || dispatch_g)
         mclxFree(&clnext)

      ;  mclAlgParamFree(&mlp, TRUE)                        /* frees mx_coarse */

      ;  if (!clnew && !faith)
         {  same = TRUE
         ;  break
      ;  }

         a++

      ;  if (dispatch_g && a == argc)
         break

      ;  n_ite++
   ;  }

      if (same)
      mcxLog(MCX_LOG_MODULE, me, "no further contraction: halting")

   ;  if (dispatch_g)
      integrate_results(&stck_g)
   ;  else if (subcluster_g)
      mclxCatReverse(&stck_g)

   ;  if (dispatch_g || subcluster_g)
      {  dim j
      ;  if (xfstack)
         mclxCatWrite(xfstack, &stck_g, MCLXIO_VALUE_NONE, RETURN_ON_FAIL)
      ;  if (xfcone && ! mclxCatConify(&stck_g))
         mclxCatWrite(xfcone, &stck_g, MCLXIO_VALUE_NONE, RETURN_ON_FAIL)
      ;  for (j=0;j<stck_g.n_level;j++)
         {  mclxAnnot* an = stck_g.level+j
         ;  mclxFree(&an->mx)
      ;  }
         mcxFree(stck_g.level)
   ;  }

      mcxIOfree(&xfcoarse)
   ;  mcxIOfree(&xfbase)
   ;  mcxIOfree(&xfcone)
   ;  mcxIOfree(&xfstack)

   ;  mcxTingFree(&shared)

   ;  if (!dispatch_g && !subcluster_g)          /* fixme fixme fixme */
      mclxFree(&clprev)

   ;  mclxFree(&mxbase)
   ;  mclvFree(&start_col_sums_g)
   ;  mcxTingFree(&cline)
   ;  helpful_reminder()
   ;  return STATUS_OK
;  }
Esempio n. 25
0
static void mcxIOcleanpat
(  mcxIOpat* md
)
   {  mcxFree(md->circle)
;  }