Esempio n. 1
0
File: util.cpp Progetto: cpehle/lean
void get_rec_args(environment const & env, name const & n, buffer<buffer<bool>> & r) {
    lean_assert(inductive::is_inductive_decl(env, n));
    type_checker tc(env);
    name_generator ngen;
    declaration ind_decl   = env.get(n);
    declaration rec_decl   = env.get(inductive::get_elim_name(n));
    unsigned nparams       = *inductive::get_num_params(env, n);
    unsigned nminors       = *inductive::get_num_minor_premises(env, n);
    unsigned ntypeformers  = *inductive::get_num_type_formers(env, n);
    buffer<expr> rec_args;
    to_telescope(ngen, rec_decl.get_type(), rec_args);
    buffer<name> typeformer_names;
    for (unsigned i = nparams; i < nparams + ntypeformers; i++) {
        typeformer_names.push_back(mlocal_name(rec_args[i]));
    }
    lean_assert(typeformer_names.size() == ntypeformers);
    r.clear();
    // add minor premises
    for (unsigned i = nparams + ntypeformers; i < nparams + ntypeformers + nminors; i++) {
        r.push_back(buffer<bool>());
        buffer<bool> & bv = r.back();
        expr minor_type = mlocal_type(rec_args[i]);
        buffer<expr> minor_args;
        to_telescope(ngen, minor_type, minor_args);
        for (expr & minor_arg : minor_args) {
            buffer<expr> minor_arg_args;
            expr minor_arg_type = to_telescope(tc, mlocal_type(minor_arg), minor_arg_args);
            bv.push_back(is_typeformer_app(typeformer_names, minor_arg_type));
        }
    }
}
Esempio n. 2
0
bool is_lt(expr const & a, expr const & b, bool use_hash) {
    if (is_eqp(a, b))                    return false;
    unsigned wa = get_weight(a);
    unsigned wb = get_weight(b);
    if (wa < wb)                         return true;
    if (wa > wb)                         return false;
    if (a.kind() != b.kind())            return a.kind() < b.kind();
    if (use_hash) {
        if (a.hash() < b.hash())         return true;
        if (a.hash() > b.hash())         return false;
    }
    if (a == b)                          return false;
    switch (a.kind()) {
    case expr_kind::Var:
        return var_idx(a) < var_idx(b);
    case expr_kind::Constant:
        if (const_name(a) != const_name(b))
            return const_name(a) < const_name(b);
        else
            return is_lt(const_levels(a), const_levels(b), use_hash);
    case expr_kind::App:
        if (app_fn(a) != app_fn(b))
            return is_lt(app_fn(a), app_fn(b), use_hash);
        else
            return is_lt(app_arg(a), app_arg(b), use_hash);
    case expr_kind::Lambda: case expr_kind::Pi:
        if (binding_domain(a) != binding_domain(b))
            return is_lt(binding_domain(a), binding_domain(b), use_hash);
        else
            return is_lt(binding_body(a), binding_body(b), use_hash);
    case expr_kind::Let:
        if (let_type(a) != let_type(b))
            return is_lt(let_type(a), let_type(b), use_hash);
        else if (let_value(a) != let_value(b))
            return is_lt(let_value(a), let_value(b), use_hash);
        else
            return is_lt(let_body(a), let_body(b), use_hash);
    case expr_kind::Sort:
        return is_lt(sort_level(a), sort_level(b), use_hash);
    case expr_kind::Local: case expr_kind::Meta:
        if (mlocal_name(a) != mlocal_name(b))
            return mlocal_name(a) < mlocal_name(b);
        else
            return is_lt(mlocal_type(a), mlocal_type(b), use_hash);
    case expr_kind::Macro:
        if (macro_def(a) != macro_def(b))
            return macro_def(a) < macro_def(b);
        if (macro_num_args(a) != macro_num_args(b))
            return macro_num_args(a) < macro_num_args(b);
        for (unsigned i = 0; i < macro_num_args(a); i++) {
            if (macro_arg(a, i) != macro_arg(b, i))
                return is_lt(macro_arg(a, i), macro_arg(b, i), use_hash);
        }
        return false;
    }
    lean_unreachable(); // LCOV_EXCL_LINE
}
Esempio n. 3
0
 bool apply(expr const & a, expr const & b) {
     if (is_eqp(a, b))          return true;
     if (a.hash() != b.hash())  return false;
     if (a.kind() != b.kind())  return false;
     if (is_var(a))             return var_idx(a) == var_idx(b);
     if (m_cache.check(a, b))
         return true;
     switch (a.kind()) {
     case expr_kind::Var:
         lean_unreachable(); // LCOV_EXCL_LINE
     case expr_kind::Constant:
         return
             const_name(a) == const_name(b) &&
             compare(const_levels(a), const_levels(b), [](level const & l1, level const & l2) { return l1 == l2; });
     case expr_kind::Meta:
         return
             mlocal_name(a) == mlocal_name(b) &&
             apply(mlocal_type(a), mlocal_type(b));
     case expr_kind::Local:
         return
             mlocal_name(a) == mlocal_name(b) &&
             apply(mlocal_type(a), mlocal_type(b)) &&
             (!CompareBinderInfo || local_pp_name(a) == local_pp_name(b)) &&
             (!CompareBinderInfo || local_info(a) == local_info(b));
     case expr_kind::App:
         check_system();
         return
             apply(app_fn(a), app_fn(b)) &&
             apply(app_arg(a), app_arg(b));
     case expr_kind::Lambda: case expr_kind::Pi:
         check_system();
         return
             apply(binding_domain(a), binding_domain(b)) &&
             apply(binding_body(a), binding_body(b)) &&
             (!CompareBinderInfo || binding_name(a) == binding_name(b)) &&
             (!CompareBinderInfo || binding_info(a) == binding_info(b));
     case expr_kind::Let:
         check_system();
         return
             apply(let_type(a), let_type(b)) &&
             apply(let_value(a), let_value(b)) &&
             apply(let_body(a), let_body(b)) &&
             (!CompareBinderInfo || let_name(a) == let_name(b));
     case expr_kind::Sort:
         return sort_level(a) == sort_level(b);
     case expr_kind::Macro:
         check_system();
         if (macro_def(a) != macro_def(b) || macro_num_args(a) != macro_num_args(b))
             return false;
         for (unsigned i = 0; i < macro_num_args(a); i++) {
             if (!apply(macro_arg(a, i), macro_arg(b, i)))
                 return false;
         }
         return true;
     }
     lean_unreachable(); // LCOV_EXCL_LINE
 }
Esempio n. 4
0
bool expr_eq_fn::apply(expr const & a, expr const & b) {
    if (is_eqp(a, b))          return true;
    if (a.hash() != b.hash())  return false;
    if (a.kind() != b.kind())  return false;
    if (is_var(a))             return var_idx(a) == var_idx(b);
    if (m_counter >= LEAN_EQ_CACHE_THRESHOLD && is_shared(a) && is_shared(b)) {
        auto p = std::make_pair(a.raw(), b.raw());
        if (!m_eq_visited)
            m_eq_visited.reset(new expr_cell_pair_set);
        if (m_eq_visited->find(p) != m_eq_visited->end())
            return true;
        m_eq_visited->insert(p);
    }
    check_system("expression equality test");
    switch (a.kind()) {
    case expr_kind::Var:
        lean_unreachable(); // LCOV_EXCL_LINE
    case expr_kind::Constant:
        return
            const_name(a) == const_name(b) &&
            compare(const_levels(a), const_levels(b), [](level const & l1, level const & l2) { return l1 == l2; });
    case expr_kind::Local: case expr_kind::Meta:
        return
            mlocal_name(a) == mlocal_name(b) &&
            apply(mlocal_type(a), mlocal_type(b));
    case expr_kind::App:
        m_counter++;
        return
            apply(app_fn(a), app_fn(b)) &&
            apply(app_arg(a), app_arg(b));
    case expr_kind::Lambda: case expr_kind::Pi:
        m_counter++;
        return
            apply(binding_domain(a), binding_domain(b)) &&
            apply(binding_body(a), binding_body(b)) &&
            (!m_compare_binder_info || binding_info(a) == binding_info(b));
    case expr_kind::Sort:
        return sort_level(a) == sort_level(b);
    case expr_kind::Macro:
        m_counter++;
        if (macro_def(a) != macro_def(b) || macro_num_args(a) != macro_num_args(b))
            return false;
        for (unsigned i = 0; i < macro_num_args(a); i++) {
            if (!apply(macro_arg(a, i), macro_arg(b, i)))
                return false;
        }
        return true;
    case expr_kind::Let:
        m_counter++;
        return
            apply(let_type(a), let_type(b)) &&
            apply(let_value(a), let_value(b)) &&
            apply(let_body(a), let_body(b));
    }
    lean_unreachable(); // LCOV_EXCL_LINE
}
Esempio n. 5
0
bool is_lt_no_level_params(expr const & a, expr const & b) {
    if (is_eqp(a, b))                    return false;
    unsigned wa = get_weight(a);
    unsigned wb = get_weight(b);
    if (wa < wb)                         return true;
    if (wa > wb)                         return false;
    if (a.kind() != b.kind())            return a.kind() < b.kind();
    switch (a.kind()) {
    case expr_kind::Var:
        return var_idx(a) < var_idx(b);
    case expr_kind::Constant:
        if (const_name(a) != const_name(b))
            return const_name(a) < const_name(b);
        else
            return is_lt_no_level_params(const_levels(a), const_levels(b));
    case expr_kind::App:
        if (is_lt_no_level_params(app_fn(a), app_fn(b)))
            return true;
        else if (is_lt_no_level_params(app_fn(b), app_fn(a)))
            return false;
        else
            return is_lt_no_level_params(app_arg(a), app_arg(b));
    case expr_kind::Lambda: case expr_kind::Pi:
        if (is_lt_no_level_params(binding_domain(a), binding_domain(b)))
            return true;
        else if (is_lt_no_level_params(binding_domain(b), binding_domain(a)))
            return false;
        else
            return is_lt_no_level_params(binding_body(a), binding_body(b));
    case expr_kind::Sort:
        return is_lt_no_level_params(sort_level(a), sort_level(b));
    case expr_kind::Local: case expr_kind::Meta:
        if (mlocal_name(a) != mlocal_name(b))
            return mlocal_name(a) < mlocal_name(b);
        else
            return is_lt_no_level_params(mlocal_type(a), mlocal_type(b));
    case expr_kind::Macro:
        if (macro_def(a) != macro_def(b))
            return macro_def(a) < macro_def(b);
        if (macro_num_args(a) != macro_num_args(b))
            return macro_num_args(a) < macro_num_args(b);
        for (unsigned i = 0; i < macro_num_args(a); i++) {
            if (is_lt_no_level_params(macro_arg(a, i), macro_arg(b, i)))
                return true;
            else if (is_lt_no_level_params(macro_arg(b, i), macro_arg(a, i)))
                return false;
        }
        return false;
    }
    lean_unreachable();
}
Esempio n. 6
0
 expr apply(expr const & a) {
     check_system("max_sharing");
     auto r = m_expr_cache.find(a);
     if (r != m_expr_cache.end())
         return *r;
     expr res;
     switch (a.kind()) {
     case expr_kind::Var:
         res = a;
         break;
     case expr_kind::Constant:
         res = update_constant(a, map(const_levels(a), [&](level const & l) { return apply(l); }));
         break;
     case expr_kind::Sort:
         res = update_sort(a, apply(sort_level(a)));
         break;
     case expr_kind::App:
         res = update_app(a, apply(app_fn(a)), apply(app_arg(a)));
         break;
     case expr_kind::Lambda: case expr_kind::Pi:
         res = update_binding(a, apply(binding_domain(a)), apply(binding_body(a)));
         break;
     case expr_kind::Meta:  case expr_kind::Local:
         res = update_mlocal(a, apply(mlocal_type(a)));
         break;
     case expr_kind::Macro: {
         buffer<expr> new_args;
         for (unsigned i = 0; i < macro_num_args(a); i++)
             new_args.push_back(macro_arg(a, i));
         res = update_macro(a, new_args.size(), new_args.data());
         break;
     }}
     m_expr_cache.insert(res);
     return res;
 }
Esempio n. 7
0
expr update_mlocal(expr const & e, expr const & new_type) {
    if (is_eqp(mlocal_type(e), new_type))
        return e;
    else if (is_metavar(e))
        return mk_metavar(mlocal_name(e), new_type, e.get_tag());
    else
        return mk_local(mlocal_name(e), local_pp_name(e), new_type, local_info(e), e.get_tag());
}
Esempio n. 8
0
void collect_locals(expr const & e, collected_locals & ls, bool restricted) {
    if (!has_local(e))
        return;
    expr_set visited;
    std::function<void(expr const & e)> visit = [&](expr const & e) {
        if (!has_local(e))
            return;
        if (restricted && is_meta(e))
            return;
        if (visited.find(e) != visited.end())
            return;
        visited.insert(e);
        switch (e.kind()) {
        case expr_kind::Var: case expr_kind::Constant: case expr_kind::Sort:
            break; // do nothing
        case expr_kind::Local:
            if (!restricted)
                visit(mlocal_type(e));
            ls.insert(e);
            break;
        case expr_kind::Meta:
            lean_assert(!restricted);
            visit(mlocal_type(e));
            break;
        case expr_kind::Macro:
            for (unsigned i = 0; i < macro_num_args(e); i++)
                visit(macro_arg(e, i));
            break;
        case expr_kind::App:
            visit(app_fn(e));
            visit(app_arg(e));
            break;
        case expr_kind::Lambda:
        case expr_kind::Pi:
            visit(binding_domain(e));
            visit(binding_body(e));
            break;
        case expr_kind::Let:
            visit(let_type(e));
            visit(let_value(e));
            visit(let_body(e));
            break;
        }
    };
    visit(e);
}
Esempio n. 9
0
void assert_no_locals(name const & n, expr const & e) {
     if (!has_local(e))
        return;
    collected_locals ls;
    collect_locals(e, ls);

    lean_trace(name({"debug", "inductive_compiler"}),
               tout() << "\n\nerror: found locals in '" << n << "'\n" << e << "\n";
               for (expr const & l : ls.get_collected()) {
                   tout() << mlocal_name(l) << "." << mlocal_pp_name(l) << " : " << mlocal_type(l) << "\n";
               });
Esempio n. 10
0
bool goal::validate_locals() const {
    buffer<expr> locals;
    get_app_args(m_meta, locals);
    if (!::lean::validate_locals(m_type, locals.size(), locals.data()))
        return false;
    unsigned i = locals.size();
    while (i > 0) {
        --i;
        if (!::lean::validate_locals(mlocal_type(locals[i]), i, locals.data()))
            return false;
    }
    return true;
}
Esempio n. 11
0
format congr_rule::pp(formatter const & fmt) const {
    format r;
    r += format("#") + format(length(m_metas));
    format r1;
    for (expr const & h : m_congr_hyps) {
        r1 += space() + paren(fmt(mlocal_type(h)));
    }
    r += group(r1);
    r += space() + format(":") + space();
    format r2 = paren(fmt(m_lhs));
    r2       += space() + format("↦") + space() + paren(fmt(m_rhs));
    r += group(r2);
    return r;
}
Esempio n. 12
0
 virtual optional<constraints> next() {
     while (!empty(m_local_instances)) {
         expr inst         = head(m_local_instances);
         m_local_instances = tail(m_local_instances);
         if (!is_local(inst))
             continue;
         if (auto r = try_instance(inst, mlocal_type(inst)))
             return r;
     }
     while (!empty(m_instances)) {
         name inst   = head(m_instances);
         m_instances = tail(m_instances);
         if (auto cs = try_instance(inst))
             return cs;
     }
     return optional<constraints>();
 }
Esempio n. 13
0
    expr apply(expr const & e, unsigned offset) {
        bool shared = false;
        if (m_use_cache && is_shared(e)) {
            if (auto r = m_cache->find(e, offset))
                return *r;
            shared = true;
        }
        check_interrupted();
        check_memory("replace");

        if (optional<expr> r = m_f(e, offset)) {
            return save_result(e, offset, *r, shared);
        } else {
            switch (e.kind()) {
            case expr_kind::Constant: case expr_kind::Sort: case expr_kind::Var:
                return save_result(e, offset, e, shared);
            case expr_kind::Meta:     case expr_kind::Local: {
                expr new_t = apply(mlocal_type(e), offset);
                return save_result(e, offset, update_mlocal(e, new_t), shared);
            }
            case expr_kind::App: {
                expr new_f = apply(app_fn(e), offset);
                expr new_a = apply(app_arg(e), offset);
                return save_result(e, offset, update_app(e, new_f, new_a), shared);
            }
            case expr_kind::Pi: case expr_kind::Lambda: {
                expr new_d = apply(binding_domain(e), offset);
                expr new_b = apply(binding_body(e), offset+1);
                return save_result(e, offset, update_binding(e, new_d, new_b), shared);
            }
            case expr_kind::Macro: {
                buffer<expr> new_args;
                unsigned nargs = macro_num_args(e);
                for (unsigned i = 0; i < nargs; i++)
                    new_args.push_back(apply(macro_arg(e, i), offset));
                return save_result(e, offset, update_macro(e, new_args.size(), new_args.data()), shared);
            }}
            lean_unreachable();
        }
    }
Esempio n. 14
0
/**
    \brief Given a sequence metas: <tt>(?m_1 ...) (?m_2 ... ) ... (?m_k ...)</tt>,
    we say ?m_i is "redundant" if it occurs in the type of some ?m_j.
    This procedure removes from metas any redundant element.
*/
static void remove_redundant_metas(buffer<expr> & metas) {
    buffer<expr> mvars;
    for (expr const & m : metas)
        mvars.push_back(get_app_fn(m));
    unsigned k = 0;
    for (unsigned i = 0; i < metas.size(); i++) {
        bool found = false;
        for (unsigned j = 0; j < metas.size(); j++) {
            if (j != i) {
                if (occurs(mvars[i], mlocal_type(mvars[j]))) {
                    found = true;
                    break;
                }
            }
        }
        if (!found) {
            metas[k] = metas[i];
            k++;
        }
    }
    metas.shrink(k);
}
Esempio n. 15
0
 expr visit_binding(expr e) {
     expr_kind k = e.kind();
     buffer<expr>  es;
     buffer<expr>  ls;
     while (e.kind() == k) {
         expr d = visit(instantiate_rev(binding_domain(e), ls.size(), ls.data()));
         expr l = mk_local(m_tc.mk_fresh_name(), binding_name(e), d, binding_info(e));
         ls.push_back(l);
         es.push_back(e);
         e = binding_body(e);
     }
     e = visit(instantiate_rev(e, ls.size(), ls.data()));
     expr r = abstract_locals(e, ls.size(), ls.data());
     while (!ls.empty()) {
         expr d = mlocal_type(ls.back());
         ls.pop_back();
         d = abstract_locals(d, ls.size(), ls.data());
         r = update_binding(es.back(), d, r);
         es.pop_back();
     }
     return r;
 }
Esempio n. 16
0
optional<expr> placeholder_type(expr const & e) {
    if (is_local(e) && is_placeholder(e))
        return some_expr(mlocal_type(e));
    else
        return none_expr();
}
Esempio n. 17
0
tactic contradiction_tactic() {
    auto fn = [=](environment const & env, io_state const & ios, proof_state const & s) {
        goals const & gs = s.get_goals();
        if (empty(gs)) {
            throw_no_goal_if_enabled(s);
            return optional<proof_state>();
        }
        goal const & g      = head(gs);
        expr const & t      = g.get_type();
        substitution subst  = s.get_subst();
        auto tc             = mk_type_checker(env);
        auto conserv_tc     = mk_type_checker(env, UnfoldReducible);
        buffer<expr> hyps;
        g.get_hyps(hyps);
        for (expr const & h : hyps) {
            expr h_type = mlocal_type(h);
            h_type      = tc->whnf(h_type).first;
            expr lhs, rhs, arg;
            if (is_false(env, h_type)) {
                assign(subst, g, mk_false_rec(*tc, h, t));
                return some_proof_state(proof_state(s, tail(gs), subst));
            } else if (is_not(env, h_type, arg)) {
                optional<expr> h_pos;
                for (expr const & h_prime : hyps) {
                    constraint_seq cs;
                    if (conserv_tc->is_def_eq(arg, mlocal_type(h_prime), justification(), cs) && !cs) {
                        h_pos = h_prime;
                        break;
                    }
                }
                if (h_pos) {
                    assign(subst, g, mk_absurd(*tc, t, *h_pos, h));
                    return some_proof_state(proof_state(s, tail(gs), subst));
                }
            } else if (is_eq(h_type, lhs, rhs)) {
                lhs = tc->whnf(lhs).first;
                rhs = tc->whnf(rhs).first;
                optional<name> lhs_c = is_constructor_app(env, lhs);
                optional<name> rhs_c = is_constructor_app(env, rhs);
                if (lhs_c && rhs_c && *lhs_c != *rhs_c) {
                    if (optional<name> I_name = inductive::is_intro_rule(env, *lhs_c)) {
                        name no_confusion(*I_name, "no_confusion");
                        try {
                            expr I      = tc->whnf(tc->infer(lhs).first).first;
                            buffer<expr> args;
                            expr I_fn   = get_app_args(I, args);
                            if (is_constant(I_fn)) {
                                level t_lvl = sort_level(tc->ensure_type(t).first);
                                expr V = mk_app(mk_app(mk_constant(no_confusion, cons(t_lvl, const_levels(I_fn))), args),
                                                t, lhs, rhs, h);
                                if (auto r = lift_down_if_hott(*tc, V)) {
                                    check_term(*tc, *r);
                                    assign(subst, g, *r);
                                    return some_proof_state(proof_state(s, tail(gs), subst));
                                }
                            }
                        } catch (kernel_exception & ex) {
                            regular(env, ios) << ex << "\n";
                        }
                    }
                }
            }
        }
        return none_proof_state();
    };
    return tactic01(fn);
}
Esempio n. 18
0
bool abstract_expr_manager::is_equal(expr const & a, expr const & b) {
    if (is_eqp(a, b))          return true;
    if (a.kind() != b.kind())  return false;
    if (is_var(a))             return var_idx(a) == var_idx(b);
    bool is_eq;
    switch (a.kind()) {
    case expr_kind::Var:
        lean_unreachable(); // LCOV_EXCL_LINE
    case expr_kind::Constant: case expr_kind::Sort:
        return a == b;
    case expr_kind::Meta: case expr_kind::Local:
        return mlocal_name(a) == mlocal_name(b) && is_equal(mlocal_type(a), mlocal_type(b));
    case expr_kind::Lambda: case expr_kind::Pi:
        if (!is_equal(binding_domain(a), binding_domain(b))) return false;
        // see comment at abstract_expr_manager::hash
        m_locals.push_back(instantiate_rev(m_tctx.mk_tmp_local(binding_domain(a)), m_locals.size(), m_locals.data()));
        is_eq = is_equal(binding_body(a), binding_body(b));
        m_locals.pop_back();
        return is_eq;
    case expr_kind::Macro:
        if (macro_def(a) != macro_def(b) || macro_num_args(a) != macro_num_args(b))
            return false;
        for (unsigned i = 0; i < macro_num_args(a); i++) {
            if (!is_equal(macro_arg(a, i), macro_arg(b, i)))
                return false;
        }
        return true;
    case expr_kind::App:
        buffer<expr> a_args, b_args;
        expr const & f_a   = get_app_args(a, a_args);
        expr const & f_b   = get_app_args(b, b_args);
        if (!is_equal(f_a, f_b))
            return false;
        if (a_args.size() != b_args.size())
            return false;
        unsigned prefix_sz = m_congr_lemma_manager.get_specialization_prefix_size(instantiate_rev(f_a, m_locals.size(), m_locals.data()), a_args.size());
        for (unsigned i = 0; i < prefix_sz; i++) {
            if (!is_equal(a_args[i], b_args[i]))
                return false;
        }
        expr new_f_a       = a;
        unsigned rest_sz   = a_args.size() - prefix_sz;
        for (unsigned i = 0; i < rest_sz; i++) {
            new_f_a = app_fn(new_f_a);
        }
        new_f_a = instantiate_rev(new_f_a, m_locals.size(), m_locals.data());
        optional<congr_lemma> congr = m_congr_lemma_manager.mk_congr(new_f_a, rest_sz);
        bool not_equal = false;
        if (!congr) {
            for (unsigned i = prefix_sz; i < a_args.size(); ++i) {
                if (!is_equal(a_args[i], b_args[i])) {
                    not_equal = true;
                    break;
                }
            }
        } else {
            lean_assert(length(congr->get_arg_kinds()) == rest_sz);
            unsigned i = prefix_sz;
            for_each(congr->get_arg_kinds(), [&](congr_arg_kind const & c_kind) {
                    if (not_equal)
                        return;
                    if (c_kind != congr_arg_kind::Cast && !is_equal(a_args[i], b_args[i])) {
                        not_equal = true;
                    }
                    i++;
                });
        }
        return !not_equal;
    }
    lean_unreachable(); // LCOV_EXCL_LINE
}
Esempio n. 19
0
expr update_local(expr const & e, binder_info const & bi) {
    return update_local(e, mlocal_type(e), bi);
}
Esempio n. 20
0
expr update_local(expr const & e, expr const & new_type, binder_info const & bi) {
    if (is_eqp(mlocal_type(e), new_type) && local_info(e) == bi)
        return e;
    else
        return mk_local(mlocal_name(e), local_pp_name(e), new_type, bi, e.get_tag());
}
Esempio n. 21
0
void add_congr_core(environment const & env, simp_rule_sets & s, name const & n) {
    declaration const & d = env.get(n);
    type_checker tc(env);
    buffer<level> us;
    unsigned num_univs = d.get_num_univ_params();
    for (unsigned i = 0; i < num_univs; i++) {
        us.push_back(mk_meta_univ(name(*g_prefix, i)));
    }
    levels ls = to_list(us);
    expr pr   = mk_constant(n, ls);
    expr e    = instantiate_type_univ_params(d, ls);
    buffer<bool> explicit_args;
    buffer<expr> metas;
    unsigned idx = 0;
    while (is_pi(e)) {
        expr mvar = mk_metavar(name(*g_prefix, idx), binding_domain(e));
        idx++;
        explicit_args.push_back(is_explicit(binding_info(e)));
        metas.push_back(mvar);
        e   = instantiate(binding_body(e), mvar);
        pr  = mk_app(pr, mvar);
    }
    expr rel, lhs, rhs;
    if (!is_simp_relation(env, e, rel, lhs, rhs) || !is_constant(rel)) {
        throw exception(sstream() << "invalid congruence rule, '" << n
                        << "' resulting type is not of the form t ~ s, where '~' is a transitive and reflexive relation");
    }
    name_set found_mvars;
    buffer<expr> lhs_args, rhs_args;
    expr const & lhs_fn = get_app_args(lhs, lhs_args);
    expr const & rhs_fn = get_app_args(rhs, rhs_args);
    if (is_constant(lhs_fn)) {
        if (!is_constant(rhs_fn) || const_name(lhs_fn) != const_name(rhs_fn) || lhs_args.size() != rhs_args.size()) {
            throw exception(sstream() << "invalid congruence rule, '" << n
                            << "' resulting type is not of the form (" << const_name(lhs_fn) << "  ...) "
                            << "~ (" << const_name(lhs_fn) << " ...), where ~ is '" << const_name(rel) << "'");
        }
        for (expr const & lhs_arg : lhs_args) {
            if (is_sort(lhs_arg))
                continue;
            if (!is_metavar(lhs_arg) || found_mvars.contains(mlocal_name(lhs_arg))) {
                throw exception(sstream() << "invalid congruence rule, '" << n
                                << "' the left-hand-side of the congruence resulting type must be of the form ("
                                << const_name(lhs_fn) << " x_1 ... x_n), where each x_i is a distinct variable or a sort");
            }
            found_mvars.insert(mlocal_name(lhs_arg));
        }
    } else if (is_binding(lhs)) {
        if (lhs.kind() != rhs.kind()) {
            throw exception(sstream() << "invalid congruence rule, '" << n
                            << "' kinds of the left-hand-side and right-hand-side of "
                            << "the congruence resulting type do not match");
        }
        if (!is_valid_congr_rule_binding_lhs(lhs, found_mvars)) {
            throw exception(sstream() << "invalid congruence rule, '" << n
                            << "' left-hand-side of the congruence resulting type must "
                            << "be of the form (fun/Pi (x : A), B x)");
        }
    } else {
        throw exception(sstream() << "invalid congruence rule, '" << n
                        << "' left-hand-side is not an application nor a binding");
    }

    buffer<expr> congr_hyps;
    lean_assert(metas.size() == explicit_args.size());
    for (unsigned i = 0; i < metas.size(); i++) {
        expr const & mvar = metas[i];
        if (explicit_args[i] && !found_mvars.contains(mlocal_name(mvar))) {
            buffer<expr> locals;
            expr type = mlocal_type(mvar);
            while (is_pi(type)) {
                expr local = mk_local(tc.mk_fresh_name(), binding_domain(type));
                locals.push_back(local);
                type = instantiate(binding_body(type), local);
            }
            expr h_rel, h_lhs, h_rhs;
            if (!is_simp_relation(env, type, h_rel, h_lhs, h_rhs) || !is_constant(h_rel))
                continue;
            unsigned j = 0;
            for (expr const & local : locals) {
                j++;
                if (!only_found_mvars(mlocal_type(local), found_mvars)) {
                    throw exception(sstream() << "invalid congruence rule, '" << n
                                    << "' argument #" << j << " of parameter #" << (i+1) << " contains "
                                    << "unresolved parameters");
                }
            }
            if (!only_found_mvars(h_lhs, found_mvars)) {
                throw exception(sstream() << "invalid congruence rule, '" << n
                                << "' argument #" << (i+1) << " is not a valid hypothesis, the left-hand-side contains "
                                << "unresolved parameters");
            }
            if (!is_valid_congr_hyp_rhs(h_rhs, found_mvars)) {
                throw exception(sstream() << "invalid congruence rule, '" << n
                                << "' argument #" << (i+1) << " is not a valid hypothesis, the right-hand-side must be "
                                << "of the form (m l_1 ... l_n) where m is parameter that was not "
                                << "'assigned/resolved' yet and l_i's are locals");
            }
            found_mvars.insert(mlocal_name(mvar));
            congr_hyps.push_back(mvar);
        }
    }
    congr_rule rule(n, ls, to_list(metas), lhs, rhs, pr, to_list(congr_hyps));
    s.insert(const_name(rel), rule);
}
Esempio n. 22
0
environment mk_no_confusion(environment const & env, name const & n) {
    optional<environment> env1 = mk_no_confusion_type(env, n);
    if (!env1)
        return env;
    environment new_env = *env1;
    type_checker tc(new_env);
    inductive::inductive_decls decls   = *inductive::is_inductive_decl(new_env, n);
    unsigned nparams                   = std::get<1>(decls);
    name_generator ngen;
    declaration no_confusion_type_decl = new_env.get(name{n, "no_confusion_type"});
    declaration cases_decl             = new_env.get(name(n, "cases_on"));
    level_param_names lps              = no_confusion_type_decl.get_univ_params();
    levels ls                          = param_names_to_levels(lps);
    expr no_confusion_type_type        = instantiate_type_univ_params(no_confusion_type_decl, ls);
    name eq_name("eq");
    name heq_name("heq");
    name eq_refl_name{"eq", "refl"};
    name heq_refl_name{"heq", "refl"};
    buffer<expr> args;
    expr type = no_confusion_type_type;
    type = to_telescope(ngen, type, args, some(mk_implicit_binder_info()));
    lean_assert(args.size() >= nparams + 3);
    unsigned nindices = args.size() - nparams - 3; // 3 is for P v1 v2
    expr range        = mk_app(mk_constant(no_confusion_type_decl.get_name(), ls), args);
    expr P            = args[args.size()-3];
    expr v1           = args[args.size()-2];
    expr v2           = args[args.size()-1];
    expr v_type       = mlocal_type(v1);
    level v_lvl       = sort_level(tc.ensure_type(v_type).first);
    expr eq_v         = mk_app(mk_constant(eq_name, to_list(v_lvl)), v_type);
    expr H12          = mk_local(ngen.next(), "H12", mk_app(eq_v, v1, v2), binder_info());
    args.push_back(H12);
    name no_confusion_name{n, "no_confusion"};
    expr no_confusion_ty = Pi(args, range);
    // The gen proof is of the form
    //   (fun H11 : v1 = v1, cases_on Params (fun Indices v1, no_confusion_type Params Indices P v1 v1) Indices v1
    //        <for-each case>
    //        (fun H : (equations -> P), H (refl) ... (refl))
    //        ...
    //   )

    // H11 is for creating the generalization
    expr H11          = mk_local(ngen.next(), "H11", mk_app(eq_v, v1, v1), binder_info());
    // Create the type former (fun Indices v1, no_confusion_type Params Indices P v1 v1)
    buffer<expr> type_former_args;
    for (unsigned i = nparams; i < nparams + nindices; i++)
        type_former_args.push_back(args[i]);
    type_former_args.push_back(v1);
    buffer<expr> no_confusion_type_args;
    for (unsigned i = 0; i < nparams + nindices; i++)
        no_confusion_type_args.push_back(args[i]);
    no_confusion_type_args.push_back(P);
    no_confusion_type_args.push_back(v1);
    no_confusion_type_args.push_back(v1);
    expr no_confusion_type_app = mk_app(mk_constant(no_confusion_type_decl.get_name(), ls), no_confusion_type_args);
    expr type_former = Fun(type_former_args, no_confusion_type_app);
    // create cases_on
    levels clvls   = ls;
    expr cases_on  = mk_app(mk_app(mk_constant(cases_decl.get_name(), clvls), nparams, args.data()), type_former);
    cases_on       = mk_app(mk_app(cases_on, nindices, args.data() + nparams), v1);
    expr cot       = tc.infer(cases_on).first;

    while (is_pi(cot)) {
        buffer<expr> minor_args;
        expr minor = to_telescope(tc, binding_domain(cot), minor_args);
        lean_assert(!minor_args.empty());
        expr H  = minor_args.back();
        expr Ht = mlocal_type(H);
        buffer<expr> refl_args;
        while (is_pi(Ht)) {
            buffer<expr> eq_args;
            expr eq_fn = get_app_args(binding_domain(Ht), eq_args);
            if (const_name(eq_fn) == eq_name) {
                refl_args.push_back(mk_app(mk_constant(eq_refl_name, const_levels(eq_fn)), eq_args[0], eq_args[1]));
            } else {
                refl_args.push_back(mk_app(mk_constant(heq_refl_name, const_levels(eq_fn)), eq_args[0], eq_args[1]));
            }
            Ht = binding_body(Ht);
        }
        expr pr  = mk_app(H, refl_args);
        cases_on = mk_app(cases_on, Fun(minor_args, pr));
        cot = binding_body(cot);
    }
    expr gen = Fun(H11, cases_on);
    // Now, we use gen to build the final proof using eq.rec
    //
    //  eq.rec InductiveType v1 (fun (a : InductiveType), v1 = a -> no_confusion_type Params Indices v1 a) gen v2 H12 H12
    //
    name eq_rec_name{"eq", "rec"};
    expr eq_rec = mk_app(mk_constant(eq_rec_name, {head(ls), v_lvl}), v_type, v1);
    // create eq_rec type_former
    //    (fun (a : InductiveType), v1 = a -> no_confusion_type Params Indices v1 a)
    expr a   = mk_local(ngen.next(), "a",   v_type, binder_info());
    expr H1a = mk_local(ngen.next(), "H1a", mk_app(eq_v, v1, a), binder_info());
    // reusing no_confusion_type_args... we just replace the last argument with a
    no_confusion_type_args.pop_back();
    no_confusion_type_args.push_back(a);
    expr no_confusion_type_app_1a = mk_app(mk_constant(no_confusion_type_decl.get_name(), ls), no_confusion_type_args);
    expr rec_type_former = Fun(a, Pi(H1a, no_confusion_type_app_1a));
    // finalize eq_rec
    eq_rec = mk_app(mk_app(eq_rec, rec_type_former, gen, v2, H12), H12);
    //
    expr no_confusion_val = Fun(args, eq_rec);

    bool opaque       = false;
    bool use_conv_opt = true;
    declaration new_d = mk_definition(new_env, no_confusion_name, lps, no_confusion_ty, no_confusion_val,
                                      opaque, no_confusion_type_decl.get_module_idx(), use_conv_opt);
    new_env = module::add(new_env, check(new_env, new_d));
    return add_protected(new_env, no_confusion_name);
}
Esempio n. 23
0
static environment mk_brec_on(environment const & env, name const & n, bool ind) {
    if (!is_recursive_datatype(env, n))
        return env;
    if (is_inductive_predicate(env, n))
        return env;
    inductive::inductive_decls decls = *inductive::is_inductive_decl(env, n);
    type_checker tc(env);
    name_generator ngen;
    unsigned nparams       = std::get<1>(decls);
    declaration ind_decl   = env.get(n);
    declaration rec_decl   = env.get(inductive::get_elim_name(n));
    // declaration below_decl = env.get(name(n, ind ? "ibelow" : "below"));
    unsigned nindices      = *inductive::get_num_indices(env, n);
    unsigned nminors       = *inductive::get_num_minor_premises(env, n);
    unsigned ntypeformers  = length(std::get<2>(decls));
    level_param_names lps  = rec_decl.get_univ_params();
    bool is_reflexive      = is_reflexive_datatype(tc, n);
    level  lvl             = mk_param_univ(head(lps));
    levels lvls            = param_names_to_levels(tail(lps));
    level rlvl;
    level_param_names blps;
    levels blvls; // universe level parameters of brec_on/binduction_on
    // The arguments of brec_on (binduction_on) are the ones in the recursor - minor premises.
    // The universe we map to is also different (l+1 for below of reflexive types) and (0 fo ibelow).
    expr ref_type;
    if (ind) {
        // we are eliminating to Prop
        blps       = tail(lps);
        blvls      = lvls;
        rlvl       = mk_level_zero();
        ref_type   = instantiate_univ_param(rec_decl.get_type(), param_id(lvl), mk_level_zero());
    } else if (is_reflexive) {
        blps    = lps;
        blvls   = cons(lvl, lvls);
        rlvl    = get_datatype_level(ind_decl.get_type());
        // if rlvl is of the form (max 1 l), then rlvl <- l
        if (is_max(rlvl) && is_one(max_lhs(rlvl)))
            rlvl = max_rhs(rlvl);
        rlvl       = mk_max(mk_succ(lvl), rlvl);
        // inner_prod, inner_prod_intro, pr1, pr2 do not use the same universe levels for
        // reflective datatypes.
        ref_type   = instantiate_univ_param(rec_decl.get_type(), param_id(lvl), mk_succ(lvl));
    } else {
        // we can simplify the universe levels for non-reflexive datatypes
        blps        = lps;
        blvls       = cons(lvl, lvls);
        rlvl        = mk_max(mk_level_one(), lvl);
        ref_type    = rec_decl.get_type();
    }
    buffer<expr> ref_args;
    to_telescope(ngen, ref_type, ref_args);
    if (ref_args.size() != nparams + ntypeformers + nminors + nindices + 1)
        throw_corrupted(n);

    // args contains the brec_on/binduction_on arguments
    buffer<expr> args;
    buffer<name> typeformer_names;
    // add parameters and typeformers
    for (unsigned i = 0; i < nparams; i++)
        args.push_back(ref_args[i]);
    for (unsigned i = nparams; i < nparams + ntypeformers; i++) {
        args.push_back(ref_args[i]);
        typeformer_names.push_back(mlocal_name(ref_args[i]));
    }
    // add indices and major premise
    for (unsigned i = nparams + ntypeformers + nminors; i < ref_args.size(); i++)
        args.push_back(ref_args[i]);
    // create below terms (one per datatype)
    //    (below.{lvls} params type-formers)
    // Remark: it also creates the result type
    buffer<expr> belows;
    expr result_type;
    unsigned k = 0;
    for (auto const & decl : std::get<2>(decls)) {
        name const & n1 = inductive::inductive_decl_name(decl);
        if (n1 == n) {
            result_type = ref_args[nparams + k];
            for (unsigned i = nparams + ntypeformers + nminors; i < ref_args.size(); i++)
                result_type = mk_app(result_type, ref_args[i]);
        }
        k++;
        name bname = name(n1, ind ? "ibelow" : "below");
        expr below = mk_constant(bname, blvls);
        for (unsigned i = 0; i < nparams; i++)
            below = mk_app(below, ref_args[i]);
        for (unsigned i = nparams; i < nparams + ntypeformers; i++)
            below = mk_app(below, ref_args[i]);
        belows.push_back(below);
    }
    // create functionals (one for each type former)
    //     Pi idxs t, below idxs t -> C idxs t
    buffer<expr> Fs;
    name F_name("F");
    for (unsigned i = nparams, j = 0; i < nparams + ntypeformers; i++, j++) {
        expr const & C = ref_args[i];
        buffer<expr> F_args;
        to_telescope(ngen, mlocal_type(C), F_args);
        expr F_result = mk_app(C, F_args);
        expr F_below  = mk_app(belows[j], F_args);
        F_args.push_back(mk_local(ngen.next(), "f", F_below, binder_info()));
        expr F_type   = Pi(F_args, F_result);
        expr F        = mk_local(ngen.next(), F_name.append_after(j+1), F_type, binder_info());
        Fs.push_back(F);
        args.push_back(F);
    }

    // We define brec_on/binduction_on using the recursor for this type
    levels rec_lvls       = cons(rlvl, lvls);
    expr rec              = mk_constant(rec_decl.get_name(), rec_lvls);
    // add parameters to rec
    for (unsigned i = 0; i < nparams; i++)
        rec = mk_app(rec, ref_args[i]);
    // add type formers to rec
    //     Pi indices t, prod (C ... t) (below ... t)
    for (unsigned i = nparams, j = 0; i < nparams + ntypeformers; i++, j++) {
        expr const & C = ref_args[i];
        buffer<expr> C_args;
        to_telescope(ngen, mlocal_type(C), C_args);
        expr C_t     = mk_app(C, C_args);
        expr below_t = mk_app(belows[j], C_args);
        expr prod    = mk_prod(tc, C_t, below_t, ind);
        rec = mk_app(rec, Fun(C_args, prod));
    }
    // add minor premises to rec
    for (unsigned i = nparams + ntypeformers, j = 0; i < nparams + ntypeformers + nminors; i++, j++) {
        expr minor = ref_args[i];
        expr minor_type = mlocal_type(minor);
        buffer<expr> minor_args;
        minor_type = to_telescope(ngen, minor_type, minor_args);
        buffer<expr> pairs;
        for (expr & minor_arg : minor_args) {
            buffer<expr> minor_arg_args;
            expr minor_arg_type = to_telescope(tc, mlocal_type(minor_arg), minor_arg_args);
            if (auto k = is_typeformer_app(typeformer_names, minor_arg_type)) {
                buffer<expr> C_args;
                get_app_args(minor_arg_type, C_args);
                expr new_minor_arg_type = mk_prod(tc, minor_arg_type, mk_app(belows[*k], C_args), ind);
                minor_arg = update_mlocal(minor_arg, Pi(minor_arg_args, new_minor_arg_type));
                if (minor_arg_args.empty()) {
                    pairs.push_back(minor_arg);
                } else {
                    expr r = mk_app(minor_arg, minor_arg_args);
                    expr r_1 = Fun(minor_arg_args, mk_pr1(tc, r, ind));
                    expr r_2 = Fun(minor_arg_args, mk_pr2(tc, r, ind));
                    pairs.push_back(mk_pair(tc, r_1, r_2, ind));
                }
            }
        }
        expr b = foldr([&](expr const & a, expr const & b) { return mk_pair(tc, a, b, ind); },
                       [&]() { return mk_unit_mk(rlvl, ind); },
                       pairs.size(), pairs.data());
        unsigned F_idx = *is_typeformer_app(typeformer_names, minor_type);
        expr F = Fs[F_idx];
        buffer<expr> F_args;
        get_app_args(minor_type, F_args);
        F_args.push_back(b);
        expr new_arg = mk_pair(tc, mk_app(F, F_args), b, ind);
        rec = mk_app(rec, Fun(minor_args, new_arg));
    }
    // add indices and major to rec
    for (unsigned i = nparams + ntypeformers + nminors; i < ref_args.size(); i++)
        rec = mk_app(rec, ref_args[i]);


    name brec_on_name  = name(n, ind ? "binduction_on" : "brec_on");
    expr brec_on_type  = Pi(args, result_type);
    expr brec_on_value = Fun(args, mk_pr1(tc, rec, ind));

    bool use_conv_opt = true;
    declaration new_d = mk_definition(env, brec_on_name, blps, brec_on_type, brec_on_value,
                                      use_conv_opt);
    environment new_env = module::add(env, check(env, new_d));
    new_env = set_reducible(new_env, brec_on_name, reducible_status::Reducible);
    if (!ind)
        new_env = add_unfold_hint(new_env, brec_on_name, nparams + nindices + ntypeformers);
    return add_protected(new_env, brec_on_name);
}
Esempio n. 24
0
optional<environment> mk_no_confusion_type(environment const & env, name const & n) {
    optional<inductive::inductive_decls> decls = inductive::is_inductive_decl(env, n);
    if (!decls)
        throw exception(sstream() << "error in 'no_confusion' generation, '" << n << "' is not an inductive datatype");
    if (is_inductive_predicate(env, n))
        return optional<environment>(); // type is a proposition
    name_generator ngen;
    unsigned nparams       = std::get<1>(*decls);
    declaration ind_decl   = env.get(n);
    declaration cases_decl = env.get(name(n, "cases_on"));
    level_param_names lps  = cases_decl.get_univ_params();
    level  rlvl            = mk_param_univ(head(lps));
    levels ilvls           = param_names_to_levels(tail(lps));
    if (length(ilvls) != length(ind_decl.get_univ_params()))
        return optional<environment>(); // type does not have only a restricted eliminator
    expr ind_type          = instantiate_type_univ_params(ind_decl, ilvls);
    name eq_name("eq");
    name heq_name("heq");
    // All inductive datatype parameters and indices are arguments
    buffer<expr> args;
    ind_type = to_telescope(ngen, ind_type, args, some(mk_implicit_binder_info()));
    if (!is_sort(ind_type) || args.size() < nparams)
        throw_corrupted(n);
    lean_assert(!(env.impredicative() && is_zero(sort_level(ind_type))));
    unsigned nindices      = args.size() - nparams;
    // Create inductive datatype
    expr I = mk_app(mk_constant(n, ilvls), args);
    // Add (P : Type)
    expr P = mk_local(ngen.next(), "P", mk_sort(rlvl), binder_info());
    args.push_back(P);
    // add v1 and v2 elements of the inductive type
    expr v1 = mk_local(ngen.next(), "v1", I, binder_info());
    expr v2 = mk_local(ngen.next(), "v2", I, binder_info());
    args.push_back(v1);
    args.push_back(v2);
    expr R  = mk_sort(rlvl);
    name no_confusion_type_name{n, "no_confusion_type"};
    expr no_confusion_type_type = Pi(args, R);
    // Create type former
    buffer<expr> type_former_args;
    for (unsigned i = nparams; i < nparams + nindices; i++)
        type_former_args.push_back(args[i]);
    type_former_args.push_back(v1);
    expr type_former = Fun(type_former_args, R);
    // Create cases_on
    levels clvls   = levels(mk_succ(rlvl), ilvls);
    expr cases_on  = mk_app(mk_app(mk_constant(cases_decl.get_name(), clvls), nparams, args.data()), type_former);
    cases_on       = mk_app(cases_on, nindices, args.data() + nparams);
    expr cases_on1 = mk_app(cases_on, v1);
    expr cases_on2 = mk_app(cases_on, v2);
    type_checker tc(env);
    expr t1        = tc.infer(cases_on1).first;
    expr t2        = tc.infer(cases_on2).first;
    buffer<expr> outer_cases_on_args;
    unsigned idx1 = 0;
    while (is_pi(t1)) {
        buffer<expr> minor1_args;
        expr minor1 = to_telescope(tc, binding_domain(t1), minor1_args);
        expr curr_t2  = t2;
        buffer<expr> inner_cases_on_args;
        unsigned idx2 = 0;
        while (is_pi(curr_t2)) {
            buffer<expr> minor2_args;
            expr minor2 = to_telescope(tc, binding_domain(curr_t2), minor2_args);
            if (idx1 != idx2) {
                // infeasible case, constructors do not match
                inner_cases_on_args.push_back(Fun(minor2_args, P));
            } else {
                if (minor1_args.size() != minor2_args.size())
                    throw_corrupted(n);
                buffer<expr> rtype_hyp;
                // add equalities
                for (unsigned i = 0; i < minor1_args.size(); i++) {
                    expr lhs      = minor1_args[i];
                    expr rhs      = minor2_args[i];
                    expr lhs_type = mlocal_type(lhs);
                    expr rhs_type = mlocal_type(rhs);
                    level l       = sort_level(tc.ensure_type(lhs_type).first);
                    expr h_type;
                    if (tc.is_def_eq(lhs_type, rhs_type).first) {
                        h_type = mk_app(mk_constant(eq_name, to_list(l)), lhs_type, lhs, rhs);
                    } else {
                        h_type = mk_app(mk_constant(heq_name, to_list(l)), lhs_type, lhs, rhs_type, rhs);
                    }
                    rtype_hyp.push_back(mk_local(ngen.next(), local_pp_name(lhs).append_after("_eq"), h_type, binder_info()));
                }
                inner_cases_on_args.push_back(Fun(minor2_args, mk_arrow(Pi(rtype_hyp, P), P)));
            }
            idx2++;
            curr_t2 = binding_body(curr_t2);
        }
        outer_cases_on_args.push_back(Fun(minor1_args, mk_app(cases_on2, inner_cases_on_args)));
        idx1++;
        t1 = binding_body(t1);
    }
    expr no_confusion_type_value = Fun(args, mk_app(cases_on1, outer_cases_on_args));

    bool opaque       = false;
    bool use_conv_opt = true;
    declaration new_d = mk_definition(env, no_confusion_type_name, lps, no_confusion_type_type, no_confusion_type_value,
                                      opaque, ind_decl.get_module_idx(), use_conv_opt);
    environment new_env = module::add(env, check(env, new_d));
    return some(add_protected(new_env, no_confusion_type_name));
}
Esempio n. 25
0
static environment mk_below(environment const & env, name const & n, bool ibelow) {
    if (!is_recursive_datatype(env, n))
        return env;
    if (is_inductive_predicate(env, n))
        return env;
    inductive::inductive_decls decls = *inductive::is_inductive_decl(env, n);
    type_checker tc(env);
    name_generator ngen;
    unsigned nparams       = std::get<1>(decls);
    declaration ind_decl   = env.get(n);
    declaration rec_decl   = env.get(inductive::get_elim_name(n));
    unsigned nindices      = *inductive::get_num_indices(env, n);
    unsigned nminors       = *inductive::get_num_minor_premises(env, n);
    unsigned ntypeformers  = length(std::get<2>(decls));
    level_param_names lps  = rec_decl.get_univ_params();
    bool is_reflexive      = is_reflexive_datatype(tc, n);
    level  lvl             = mk_param_univ(head(lps));
    levels lvls            = param_names_to_levels(tail(lps));
    level_param_names blvls; // universe level parameters of ibelow/below
    level  rlvl;  // universe level of the resultant type
    // The arguments of below (ibelow) are the ones in the recursor - minor premises.
    // The universe we map to is also different (l+1 for below of reflexive types) and (0 fo ibelow).
    expr ref_type;
    expr Type_result;
    if (ibelow) {
        // we are eliminating to Prop
        blvls      = tail(lps);
        rlvl       = mk_level_zero();
        ref_type   = instantiate_univ_param(rec_decl.get_type(), param_id(lvl), mk_level_zero());
    } else if (is_reflexive) {
        blvls = lps;
        rlvl  = get_datatype_level(ind_decl.get_type());
        // if rlvl is of the form (max 1 l), then rlvl <- l
        if (is_max(rlvl) && is_one(max_lhs(rlvl)))
            rlvl = max_rhs(rlvl);
        rlvl       = mk_max(mk_succ(lvl), rlvl);
        ref_type   = instantiate_univ_param(rec_decl.get_type(), param_id(lvl), mk_succ(lvl));
    } else {
        // we can simplify the universe levels for non-reflexive datatypes
        blvls       = lps;
        rlvl        = mk_max(mk_level_one(), lvl);
        ref_type    = rec_decl.get_type();
    }
    Type_result        = mk_sort(rlvl);
    buffer<expr> ref_args;
    to_telescope(ngen, ref_type, ref_args);
    if (ref_args.size() != nparams + ntypeformers + nminors + nindices + 1)
        throw_corrupted(n);

    // args contains the below/ibelow arguments
    buffer<expr> args;
    buffer<name> typeformer_names;
    // add parameters and typeformers
    for (unsigned i = 0; i < nparams; i++)
        args.push_back(ref_args[i]);
    for (unsigned i = nparams; i < nparams + ntypeformers; i++) {
        args.push_back(ref_args[i]);
        typeformer_names.push_back(mlocal_name(ref_args[i]));
    }
    // we ignore minor premises in below/ibelow
    for (unsigned i = nparams + ntypeformers + nminors; i < ref_args.size(); i++)
        args.push_back(ref_args[i]);

    // We define below/ibelow using the recursor for this type
    levels rec_lvls       = cons(mk_succ(rlvl), lvls);
    expr rec              = mk_constant(rec_decl.get_name(), rec_lvls);
    for (unsigned i = 0; i < nparams; i++)
        rec = mk_app(rec, args[i]);
    // add type formers
    for (unsigned i = nparams; i < nparams + ntypeformers; i++) {
        buffer<expr> targs;
        to_telescope(ngen, mlocal_type(args[i]), targs);
        rec = mk_app(rec, Fun(targs, Type_result));
    }
    // add minor premises
    for (unsigned i = nparams + ntypeformers; i < nparams + ntypeformers + nminors; i++) {
        expr minor = ref_args[i];
        expr minor_type = mlocal_type(minor);
        buffer<expr> minor_args;
        minor_type = to_telescope(ngen, minor_type, minor_args);
        buffer<expr> prod_pairs;
        for (expr & minor_arg : minor_args) {
            buffer<expr> minor_arg_args;
            expr minor_arg_type = to_telescope(tc, mlocal_type(minor_arg), minor_arg_args);
            if (is_typeformer_app(typeformer_names, minor_arg_type)) {
                expr fst  = mlocal_type(minor_arg);
                minor_arg = update_mlocal(minor_arg, Pi(minor_arg_args, Type_result));
                expr snd = Pi(minor_arg_args, mk_app(minor_arg, minor_arg_args));
                prod_pairs.push_back(mk_prod(tc, fst, snd, ibelow));
            }
        }
        expr new_arg = foldr([&](expr const & a, expr const & b) { return mk_prod(tc, a, b, ibelow); },
                             [&]() { return mk_unit(rlvl, ibelow); },
                             prod_pairs.size(), prod_pairs.data());
        rec = mk_app(rec, Fun(minor_args, new_arg));
    }

    // add indices and major premise
    for (unsigned i = nparams + ntypeformers; i < args.size(); i++) {
        rec = mk_app(rec, args[i]);
    }

    name below_name  = ibelow ? name{n, "ibelow"} : name{n, "below"};
    expr below_type  = Pi(args, Type_result);
    expr below_value = Fun(args, rec);

    bool use_conv_opt = true;
    declaration new_d = mk_definition(env, below_name, blvls, below_type, below_value,
                                      use_conv_opt);
    environment new_env = module::add(env, check(env, new_d));
    new_env = set_reducible(new_env, below_name, reducible_status::Reducible);
    if (!ibelow)
        new_env = add_unfold_hint(new_env, below_name, nparams + nindices + ntypeformers);
    return add_protected(new_env, below_name);
}
Esempio n. 26
0
expr replace_visitor::visit_mlocal(expr const & e) {
    lean_assert(is_mlocal(e));
    return update_mlocal(e, visit(mlocal_type(e)));
}
Esempio n. 27
0
bool light_lt_manager::is_lt(expr const & a, expr const & b) {
    if (is_eqp(a, b)) return false;
    unsigned wa = get_weight(a);
    unsigned wb = get_weight(b);
    if (wa < wb)                         return true;
    if (wa > wb)                         return false;
    if (is_constant(get_app_fn(a))) {
        unsigned const * light_arg = m_lrs.find(const_name(get_app_fn(a)));
        if (light_arg) {
            buffer<expr> args;
            get_app_args(a, args);
            if (args.size() > *light_arg) return is_lt(args[*light_arg], b);
        }
    }
    if (is_constant(get_app_fn(b))) {
        unsigned const * light_arg = m_lrs.find(const_name(get_app_fn(b)));
        if (light_arg) {
            buffer<expr> args;
            get_app_args(b, args);
            if (args.size() > *light_arg) return !is_lt(args[*light_arg], a);
        }
    }
    if (a.kind() != b.kind())            return a.kind() < b.kind();
    if (a == b)                          return false;
    switch (a.kind()) {
    case expr_kind::Var:
        return var_idx(a) < var_idx(b);
    case expr_kind::Constant:
        if (const_name(a) != const_name(b))
            return const_name(a) < const_name(b);
        else
            return ::lean::is_lt(const_levels(a), const_levels(b), false);
    case expr_kind::App:
        if (app_fn(a) != app_fn(b))
            return is_lt(app_fn(a), app_fn(b));
        else
            return is_lt(app_arg(a), app_arg(b));
    case expr_kind::Lambda: case expr_kind::Pi:
        if (binding_domain(a) != binding_domain(b))
            return is_lt(binding_domain(a), binding_domain(b));
        else
            return is_lt(binding_body(a), binding_body(b));
    case expr_kind::Sort:
        return ::lean::is_lt(sort_level(a), sort_level(b), false);
    case expr_kind::Local: case expr_kind::Meta:
        if (mlocal_name(a) != mlocal_name(b))
            return mlocal_name(a) < mlocal_name(b);
        else
            return is_lt(mlocal_type(a), mlocal_type(b));
    case expr_kind::Macro:
        if (macro_def(a) != macro_def(b))
            return macro_def(a) < macro_def(b);
        if (macro_num_args(a) != macro_num_args(b))
            return macro_num_args(a) < macro_num_args(b);
        for (unsigned i = 0; i < macro_num_args(a); i++) {
            if (macro_arg(a, i) != macro_arg(b, i))
                return is_lt(macro_arg(a, i), macro_arg(b, i));
        }
        return false;
    }
    lean_unreachable(); // LCOV_EXCL_LINE
}
Esempio n. 28
0
 void compute_index_types() {
     for (expr const & ind : m_mut_decl.get_inds()) {
         m_index_types.push_back(to_sigma_type(mlocal_type(ind)));
         lean_trace(name({"inductive_compiler", "mutual", "index_types"}), tout() << mlocal_name(ind) << " ==> " << m_index_types.back() << "\n";);
     }