Esempio n. 1
0
int test_sub(testspec_t *t, FILE *ofp)
{
  mp_int in[3], out[1];
  int    v;
  mp_result res, expect;

  if(!parse_int_values(t, in, out, &expect))
    return imath_errno = MP_BADARG, 0;

  if(strcmp(t->code, "subv") == 0) {
    if((res = mp_int_to_int(in[1], &v)) != MP_OK)
      return imath_errno = res, 0;
    if((res = mp_int_sub_value(in[0], v, in[2])) != expect)
      return imath_errno = res, 0;
  } else {
    if((res = mp_int_sub(in[0], in[1], in[2])) != expect)
      return imath_errno = res, 0;
  }

  if(expect == MP_OK && mp_int_compare(in[2], out[0]) != 0) {
    mp_int_to_string(in[2], 10, g_output, OUTPUT_LIMIT);
    return imath_errno = OTHER_ERROR, 0;
  }

  return 1;
}
Esempio n. 2
0
/*
  Compute mul * atan(1/x) to prec digits of precision, and store the
  result in sum.

  Computes atan(1/x) using the formula:

               1     1      1      1
  atan(1/x) = --- - ---- + ---- - ---- + ...
               x    3x^3   5x^5   7x^7

 */
mp_result arctan(mp_small radix, mp_small mul, mp_small x, mp_small prec,
                 mp_int sum) {
  mpz_t t, v;
  mp_result res;
  mp_small rem, sign = 1, coeff = 1;

  mp_int_init(&t);
  mp_int_init(&v);
  ++prec;

  /* Compute mul * radix^prec * x
     The initial multiplication by x saves a special case in the loop for
     the first term of the series.
   */
  if ((res = mp_int_expt_value(radix, prec, &t)) != MP_OK ||
      (res = mp_int_mul_value(&t, mul, &t)) != MP_OK ||
      (res = mp_int_mul_value(&t, x, &t)) != MP_OK)
    goto CLEANUP;

  x *= x; /* assumes x <= sqrt(MP_SMALL_MAX) */
  mp_int_zero(sum);

  do {
    if ((res = mp_int_div_value(&t, x, &t, &rem)) != MP_OK) goto CLEANUP;

    if ((res = mp_int_div_value(&t, coeff, &v, &rem)) != MP_OK) goto CLEANUP;

    /* Add or subtract the result depending on the current sign (1 = add) */
    if (sign > 0)
      res = mp_int_add(sum, &v, sum);
    else
      res = mp_int_sub(sum, &v, sum);

    if (res != MP_OK) goto CLEANUP;
    sign = -sign;
    coeff += 2;

  } while (mp_int_compare_zero(&t) != 0);

  res = mp_int_div_value(sum, radix, sum, NULL);

CLEANUP:
  mp_int_clear(&v);
  mp_int_clear(&t);

  return res;
}
Esempio n. 3
0
int main(int argc, char *argv[]) {
  mp_result res;
  mpz_t sum1, sum2;
  int ndigits, out = 0;
  clock_t start, end;

  if (argc < 2) {
    fprintf(stderr, "Usage: %s <num-digits> [<radix>]\n", argv[0]);
    return 1;
  }

  if ((ndigits = abs(atoi(argv[1]))) == 0) {
    fprintf(stderr, "%s: you must request at least 1 digit\n", argv[0]);
    return 1;
  } else if ((mp_word)ndigits > MP_DIGIT_MAX) {
    fprintf(stderr, "%s: you may request at most %u digits\n", argv[0],
            (unsigned int)MP_DIGIT_MAX);
    return 1;
  }

  if (argc > 2) {
    int radix = atoi(argv[2]);

    if (radix < MP_MIN_RADIX || radix > MP_MAX_RADIX) {
      fprintf(stderr, "%s: you may only specify a radix between %d and %d\n",
              argv[0], MP_MIN_RADIX, MP_MAX_RADIX);
      return 1;
    }
    g_radix = radix;
  }

  mp_int_init(&sum1);
  mp_int_init(&sum2);
  start = clock();

  /* sum1 = 16 * arctan(1/5) */
  if ((res = arctan(g_radix, 16, 5, ndigits, &sum1)) != MP_OK) {
    fprintf(stderr, "%s: error computing arctan: %d\n", argv[0], res);
    out = 1;
    goto CLEANUP;
  }

  /* sum2 = 4 * arctan(1/239) */
  if ((res = arctan(g_radix, 4, 239, ndigits, &sum2)) != MP_OK) {
    fprintf(stderr, "%s: error computing arctan: %d\n", argv[0], res);
    out = 1;
    goto CLEANUP;
  }

  /* pi = sum1 - sum2 */
  if ((res = mp_int_sub(&sum1, &sum2, &sum1)) != MP_OK) {
    fprintf(stderr, "%s: error computing pi: %d\n", argv[0], res);
    out = 1;
    goto CLEANUP;
  }
  end = clock();

  mp_int_to_string(&sum1, g_radix, g_buf, sizeof(g_buf));
  printf("%c.%s\n", g_buf[0], g_buf + 1);

  fprintf(stderr, "Computation took %.2f sec.\n",
          (double)(end - start) / CLOCKS_PER_SEC);

CLEANUP:
  mp_int_clear(&sum1);
  mp_int_clear(&sum2);

  return out;
}
Esempio n. 4
0
int main(int argc, char *argv[])
{
  int       opt, modbits;
  FILE     *ofp = stdout;
  char     *expt = NULL;
  rsa_key   the_key;
  mp_result res;

  /* Process command-line arguments */
  while((opt = getopt(argc, argv, "e:")) != EOF) {
    switch(opt) {
    case 'e':
      expt = optarg;
      break;
    default:
      fprintf(stderr, "Usage: rsakey [-e <expt>] <modbits> [<outfile>]\n");
      return 1;
    }
  }
  
  if(optind >= argc) {
    fprintf(stderr, "Error:  You must specify the number of modulus bits.\n");
    fprintf(stderr, "Usage: rsakey [-e <expt>] <modbits> [<outfile>]\n");
    return 1;
  }
  modbits = (int) strtol(argv[optind++], NULL, 0);
  if(modbits < CHAR_BIT) {
    fprintf(stderr, "Error:  Invalid value for number of modulus bits.\n");
    return 1;
  }
  if(modbits % 2 == 1)
    ++modbits;

  /* Check if output file is specified */
  if(optind < argc) {
    if((ofp = fopen(argv[optind], "wt")) == NULL) {
      fprintf(stderr, "Error:  Unable to open output file for writing.\n"
	      " - Filename: %s\n"
	      " - Error:    %s\n", argv[optind], strerror(errno));
      return 1;
    }
  }
  
  if((res = rsa_key_init(&the_key)) != MP_OK) {
    fprintf(stderr, "Error initializing RSA key structure:\n"
	    " - %s (%d)\n", mp_error_string(res), res);
    return 1;
  }

  /* If specified, try to load the key exponent */
  if(expt != NULL) {
    if((res = mp_int_read_string(&(the_key.e), 10, expt)) != MP_OK) {
      fprintf(stderr, "Error:  Invalid value for encryption exponent.\n"
	      " - %s (%d)\n", mp_error_string(res), res);
      goto EXIT;
    }
  }

  if((res = mp_int_randomize(&(the_key.p), (modbits / 2))) != MP_OK) {
    fprintf(stderr, "Error:  Unable to randomize first prime.\n"
	    " - %s (%d)\n", mp_error_string(res), res);
    goto EXIT;
  }
  fprintf(stderr, "p: ");
  find_prime(&(the_key.p), stderr);

  if((res = mp_int_randomize(&(the_key.q), (modbits / 2))) != MP_OK) {
    fprintf(stderr, "Error:  Unable to randomize second prime.\n"
	    " - %s (%d)\n", mp_error_string(res), res);
    goto EXIT;
  }
  fprintf(stderr, "\nq: ");
  find_prime(&(the_key.q), stderr);
  fputc('\n', stderr);

  /* Temporarily, the key's "n" field will be (p - 1) * (q - 1) for
     purposes of computing the decryption exponent.
   */
  mp_int_mul(&(the_key.p), &(the_key.q), &(the_key.n));
  mp_int_sub(&(the_key.n), &(the_key.p), &(the_key.n));
  mp_int_sub(&(the_key.n), &(the_key.q), &(the_key.n));
  mp_int_add_value(&(the_key.n), 1, &(the_key.n));

  if(expt == NULL &&
     (res = mp_int_randomize(&(the_key.e), (modbits / 2))) != MP_OK) {
    fprintf(stderr, "Error:  Unable to randomize encryption exponent.\n"
	    " - %s (%d)\n", mp_error_string(res), res);
    goto EXIT;
  }
  while((res = mp_int_invmod(&(the_key.e), &(the_key.n), 
			     &(the_key.d))) != MP_OK) {
    if(expt != NULL) {
      fprintf(stderr, "Error:  Unable to compute decryption exponent.\n"
	      " - %s (%d)\n", mp_error_string(res), res);
      goto EXIT;
    }
    if((res = mp_int_randomize(&(the_key.e), (modbits / 2))) != MP_OK) {
      fprintf(stderr, "Error:  Unable to re-randomize encryption exponent.\n"
	      " - %s (%d)\n", mp_error_string(res), res);
      goto EXIT;
    }
  }

  /* Recompute the real modulus, now that exponents are done. */
  mp_int_mul(&(the_key.p), &(the_key.q), &(the_key.n));

  /* Write completed key to the specified output file */
  rsa_key_write(&the_key, ofp);

 EXIT:
  fclose(ofp);
  rsa_key_clear(&the_key);
  return 0;
}