STATIC void do_load(mp_obj_t module_obj, vstr_t *file) { // create the lexer mp_lexer_t *lex = mp_lexer_new_from_file(vstr_str(file)); if (lex == NULL) { // we verified the file exists using stat, but lexer could still fail nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ImportError, "No module named '%s'", vstr_str(file))); } qstr source_name = mp_lexer_source_name(lex); // save the old context mp_obj_dict_t *old_locals = mp_locals_get(); mp_obj_dict_t *old_globals = mp_globals_get(); // set the new context mp_locals_set(mp_obj_module_get_globals(module_obj)); mp_globals_set(mp_obj_module_get_globals(module_obj)); // parse the imported script mp_parse_error_kind_t parse_error_kind; mp_parse_node_t pn = mp_parse(lex, MP_PARSE_FILE_INPUT, &parse_error_kind); if (pn == MP_PARSE_NODE_NULL) { // parse error; clean up and raise exception mp_obj_t exc = mp_parse_make_exception(lex, parse_error_kind); mp_lexer_free(lex); mp_locals_set(old_locals); mp_globals_set(old_globals); nlr_raise(exc); } mp_lexer_free(lex); // compile the imported script mp_obj_t module_fun = mp_compile(pn, source_name, MP_EMIT_OPT_NONE, false); mp_parse_node_free(pn); if (module_fun == mp_const_none) { // TODO handle compile error correctly mp_locals_set(old_locals); mp_globals_set(old_globals); nlr_raise(mp_obj_new_exception_msg(&mp_type_SyntaxError, "Syntax error in imported module")); } // complied successfully, execute it nlr_buf_t nlr; if (nlr_push(&nlr) == 0) { mp_call_function_0(module_fun); nlr_pop(); } else { // exception; restore context and re-raise same exception mp_locals_set(old_locals); mp_globals_set(old_globals); nlr_raise(nlr.ret_val); } mp_locals_set(old_locals); mp_globals_set(old_globals); }
STATIC void execute_from_lexer(mp_lexer_t *lex, mp_parse_input_kind_t input_kind, bool is_repl) { if (lex == NULL) { return; } if (0) { // just tokenise while (!mp_lexer_is_kind(lex, MP_TOKEN_END)) { mp_token_show(mp_lexer_cur(lex)); mp_lexer_to_next(lex); } mp_lexer_free(lex); return; } mp_parse_error_kind_t parse_error_kind; mp_parse_node_t pn = mp_parse(lex, input_kind, &parse_error_kind); if (pn == MP_PARSE_NODE_NULL) { // parse error mp_parse_show_exception(lex, parse_error_kind); mp_lexer_free(lex); return; } qstr source_name = mp_lexer_source_name(lex); mp_lexer_free(lex); /* printf("----------------\n"); mp_parse_node_print(pn, 0); printf("----------------\n"); */ mp_obj_t module_fun = mp_compile(pn, source_name, emit_opt, is_repl); if (module_fun == mp_const_none) { // compile error return; } if (compile_only) { return; } // execute it nlr_buf_t nlr; if (nlr_push(&nlr) == 0) { mp_call_function_0(module_fun); nlr_pop(); } else { // uncaught exception mp_obj_print_exception((mp_obj_t)nlr.ret_val); } }
mp_lexer_t *mp_lexer_new(qstr src_name, void *stream_data, mp_lexer_stream_next_byte_t stream_next_byte, mp_lexer_stream_close_t stream_close) { mp_lexer_t *lex = m_new_obj_maybe(mp_lexer_t); // check for memory allocation error if (lex == NULL) { if (stream_close) { stream_close(stream_data); } return NULL; } lex->source_name = src_name; lex->stream_data = stream_data; lex->stream_next_byte = stream_next_byte; lex->stream_close = stream_close; lex->line = 1; lex->column = 1; lex->emit_dent = 0; lex->nested_bracket_level = 0; lex->alloc_indent_level = MICROPY_ALLOC_LEXER_INDENT_INIT; lex->num_indent_level = 1; lex->indent_level = m_new_maybe(uint16_t, lex->alloc_indent_level); vstr_init(&lex->vstr, 32); // check for memory allocation error if (lex->indent_level == NULL || vstr_had_error(&lex->vstr)) { mp_lexer_free(lex); return NULL; } // store sentinel for first indentation level lex->indent_level[0] = 0; // preload characters lex->chr0 = stream_next_byte(stream_data); lex->chr1 = stream_next_byte(stream_data); lex->chr2 = stream_next_byte(stream_data); // if input stream is 0, 1 or 2 characters long and doesn't end in a newline, then insert a newline at the end if (lex->chr0 == MP_LEXER_EOF) { lex->chr0 = '\n'; } else if (lex->chr1 == MP_LEXER_EOF) { if (lex->chr0 == '\r') { lex->chr0 = '\n'; } else if (lex->chr0 != '\n') { lex->chr1 = '\n'; } } else if (lex->chr2 == MP_LEXER_EOF) { if (lex->chr1 == '\r') { lex->chr1 = '\n'; } else if (lex->chr1 != '\n') { lex->chr2 = '\n'; } } // preload first token mp_lexer_next_token_into(lex, true); return lex; }
static mp_obj_t mp_builtin_eval(mp_obj_t o_in) { uint str_len; const byte *str = mp_obj_str_get_data(o_in, &str_len); // create the lexer mp_lexer_t *lex = mp_lexer_new_from_str_len(MP_QSTR__lt_string_gt_, (const char*)str, str_len, 0); qstr source_name = mp_lexer_source_name(lex); // parse the string qstr parse_exc_id; const char *parse_exc_msg; mp_parse_node_t pn = mp_parse(lex, MP_PARSE_EVAL_INPUT, &parse_exc_id, &parse_exc_msg); mp_lexer_free(lex); if (pn == MP_PARSE_NODE_NULL) { // parse error; raise exception nlr_jump(mp_obj_new_exception_msg(parse_exc_id, parse_exc_msg)); } // compile the string mp_obj_t module_fun = mp_compile(pn, source_name, false); mp_parse_node_free(pn); if (module_fun == mp_const_none) { // TODO handle compile error correctly return mp_const_none; } // complied successfully, execute it return rt_call_function_0(module_fun); }
STATIC mp_obj_t parse_compile_execute(mp_obj_t o_in, mp_parse_input_kind_t parse_input_kind) { uint str_len; const char *str = mp_obj_str_get_data(o_in, &str_len); // create the lexer mp_lexer_t *lex = mp_lexer_new_from_str_len(MP_QSTR__lt_string_gt_, str, str_len, 0); qstr source_name = mp_lexer_source_name(lex); // parse the string mp_parse_error_kind_t parse_error_kind; mp_parse_node_t pn = mp_parse(lex, parse_input_kind, &parse_error_kind); mp_lexer_free(lex); if (pn == MP_PARSE_NODE_NULL) { // parse error; raise exception nlr_jump(mp_parse_make_exception(parse_error_kind)); } // compile the string mp_obj_t module_fun = mp_compile(pn, source_name, false); mp_parse_node_free(pn); if (module_fun == mp_const_none) { // TODO handle compile error correctly return mp_const_none; } // complied successfully, execute it return rt_call_function_0(module_fun); }
void do_file(const char *file) { mp_lexer_t *lex = mp_lexer_new_from_file(file); if (lex == NULL) { return; } if (0) { // just tokenise while (!mp_lexer_is_kind(lex, MP_TOKEN_END)) { mp_token_show(mp_lexer_cur(lex)); mp_lexer_to_next(lex); } mp_lexer_free(lex); } else { // parse qstr parse_exc_id; const char *parse_exc_msg; mp_parse_node_t pn = mp_parse(lex, MP_PARSE_FILE_INPUT, &parse_exc_id, &parse_exc_msg); if (pn == MP_PARSE_NODE_NULL) { // parse error mp_lexer_show_error_pythonic_prefix(lex); printf("%s: %s\n", qstr_str(parse_exc_id), parse_exc_msg); mp_lexer_free(lex); return; } mp_lexer_free(lex); if (pn != MP_PARSE_NODE_NULL) { //printf("----------------\n"); //mp_parse_node_print(pn, 0); //printf("----------------\n"); // compile mp_obj_t module_fun = mp_compile(pn, 0, false); //printf("----------------\n"); if (module_fun == mp_const_none) { printf("compile error\n"); } } } }
void do_file(const char *file) { mp_lexer_t *lex = mp_lexer_new_from_file(file); if (lex == NULL) { return; } if (0) { // just tokenise while (lex->tok_kind != MP_TOKEN_END) { mp_lexer_show_token(lex); mp_lexer_to_next(lex); } mp_lexer_free(lex); } else { // parse mp_parse_error_kind_t parse_error_kind; mp_parse_node_t pn = mp_parse(lex, MP_PARSE_FILE_INPUT, &parse_error_kind); if (pn == MP_PARSE_NODE_NULL) { // parse error mp_parse_show_exception(lex, parse_error_kind); mp_lexer_free(lex); return; } mp_lexer_free(lex); if (pn != MP_PARSE_NODE_NULL) { //printf("----------------\n"); //mp_parse_node_print(pn, 0); //printf("----------------\n"); // compile mp_obj_t module_fun = mp_compile(pn, 0, MP_EMIT_OPT_NONE, false); //printf("----------------\n"); if (mp_obj_is_exception_instance(module_fun)) { mp_obj_print_exception(module_fun); } } } }
void do_file(const char *file) { mp_lexer_t *lex = mp_lexer_new_from_file(file); if (lex == NULL) { return; } if (0) { // just tokenise while (!mp_lexer_is_kind(lex, MP_TOKEN_END)) { mp_token_show(mp_lexer_cur(lex)); mp_lexer_to_next(lex); } mp_lexer_free(lex); } else { // parse mp_parse_error_kind_t parse_error_kind; mp_parse_node_t pn = mp_parse(lex, MP_PARSE_FILE_INPUT, &parse_error_kind); if (pn == MP_PARSE_NODE_NULL) { // parse error mp_parse_show_exception(lex, parse_error_kind); mp_lexer_free(lex); return; } mp_lexer_free(lex); if (pn != MP_PARSE_NODE_NULL) { //printf("----------------\n"); //mp_parse_node_print(pn, 0); //printf("----------------\n"); // compile mp_obj_t module_fun = mp_compile(pn, 0, false); //printf("----------------\n"); if (module_fun == mp_const_none) { printf("compile error\n"); } } } }
inline void do_str(const char *src) { mp_lexer_t *lex = mp_lexer_new_from_str_len(MP_QSTR__lt_stdin_gt_, src, strlen(src), 0); if (lex == NULL) { tt_abort_msg("Lexer initialization error"); } mp_parse_error_kind_t parse_error_kind; mp_parse_node_t pn = mp_parse(lex, MP_PARSE_FILE_INPUT, &parse_error_kind); if (pn == MP_PARSE_NODE_NULL) { mp_parse_show_exception(lex, parse_error_kind); mp_lexer_free(lex); tt_abort_msg("Parser error"); } // parse okay qstr source_name = mp_lexer_source_name(lex); mp_lexer_free(lex); mp_obj_t module_fun = mp_compile(pn, source_name, MP_EMIT_OPT_NONE, true); mp_parse_node_free(pn); if (module_fun == mp_const_none) { tt_abort_msg("Computer error"); } nlr_buf_t nlr; if (nlr_push(&nlr) == 0) { mp_call_function_0(module_fun); nlr_pop(); } else { mp_obj_print_exception((mp_obj_t)nlr.ret_val); tt_abort_msg("Uncaught exception"); } end: ; }
void do_str(const char *src) { mp_lexer_t *lex = mp_lexer_new_from_str_len(MP_QSTR__lt_stdin_gt_, src, strlen(src), 0); if (lex == NULL) { return; } mp_parse_error_kind_t parse_error_kind; mp_parse_node_t pn = mp_parse(lex, MP_PARSE_SINGLE_INPUT, &parse_error_kind); if (pn == MP_PARSE_NODE_NULL) { // parse error mp_parse_show_exception(lex, parse_error_kind); mp_lexer_free(lex); return; } // parse okay qstr source_name = mp_lexer_source_name(lex); mp_lexer_free(lex); mp_obj_t module_fun = mp_compile(pn, source_name, MP_EMIT_OPT_NONE, true); if (mp_obj_is_exception_instance(module_fun)) { // compile error mp_obj_print_exception(module_fun); return; } nlr_buf_t nlr; if (nlr_push(&nlr) == 0) { mp_call_function_0(module_fun); nlr_pop(); } else { // uncaught exception mp_obj_print_exception((mp_obj_t)nlr.ret_val); } }
// parses, compiles and executes the code in the lexer // frees the lexer before returning // EXEC_FLAG_PRINT_EOF prints 2 EOF chars: 1 after normal output, 1 after exception output // EXEC_FLAG_ALLOW_DEBUGGING allows debugging info to be printed after executing the code // EXEC_FLAG_IS_REPL is used for REPL inputs (flag passed on to mp_compile) STATIC int parse_compile_execute(mp_lexer_t *lex, mp_parse_input_kind_t input_kind, int exec_flags) { int ret = 0; mp_parse_error_kind_t parse_error_kind; mp_parse_node_t pn = mp_parse(lex, input_kind, &parse_error_kind); qstr source_name = mp_lexer_source_name(lex); // check for parse error if (pn == MP_PARSE_NODE_NULL) { if (exec_flags & EXEC_FLAG_PRINT_EOF) { stdout_tx_strn("\x04", 1); } mp_parse_show_exception(lex, parse_error_kind); mp_lexer_free(lex); goto finish; } mp_lexer_free(lex); mp_obj_t module_fun = mp_compile(pn, source_name, MP_EMIT_OPT_NONE, exec_flags & EXEC_FLAG_IS_REPL); // check for compile error if (mp_obj_is_exception_instance(module_fun)) { if (exec_flags & EXEC_FLAG_PRINT_EOF) { stdout_tx_strn("\x04", 1); } mp_obj_print_exception(module_fun); goto finish; } // execute code nlr_buf_t nlr; uint32_t start = HAL_GetTick(); if (nlr_push(&nlr) == 0) { mp_hal_set_interrupt_char(CHAR_CTRL_C); // allow ctrl-C to interrupt us mp_call_function_0(module_fun); mp_hal_set_interrupt_char(-1); // disable interrupt nlr_pop(); ret = 1; if (exec_flags & EXEC_FLAG_PRINT_EOF) { stdout_tx_strn("\x04", 1); } } else { // uncaught exception // FIXME it could be that an interrupt happens just before we disable it here mp_hal_set_interrupt_char(-1); // disable interrupt // print EOF after normal output if (exec_flags & EXEC_FLAG_PRINT_EOF) { stdout_tx_strn("\x04", 1); } // check for SystemExit if (mp_obj_is_subclass_fast(mp_obj_get_type((mp_obj_t)nlr.ret_val), &mp_type_SystemExit)) { // at the moment, the value of SystemExit is unused ret = PYEXEC_FORCED_EXIT; } else { mp_obj_print_exception((mp_obj_t)nlr.ret_val); ret = 0; } } // display debugging info if wanted if ((exec_flags & EXEC_FLAG_ALLOW_DEBUGGING) && repl_display_debugging_info) { mp_uint_t ticks = HAL_GetTick() - start; // TODO implement a function that does this properly printf("took " UINT_FMT " ms\n", ticks); gc_collect(); // qstr info { mp_uint_t n_pool, n_qstr, n_str_data_bytes, n_total_bytes; qstr_pool_info(&n_pool, &n_qstr, &n_str_data_bytes, &n_total_bytes); printf("qstr:\n n_pool=" UINT_FMT "\n n_qstr=" UINT_FMT "\n n_str_data_bytes=" UINT_FMT "\n n_total_bytes=" UINT_FMT "\n", n_pool, n_qstr, n_str_data_bytes, n_total_bytes); } // GC info { gc_info_t info; gc_info(&info); printf("GC:\n"); printf(" " UINT_FMT " total\n", info.total); printf(" " UINT_FMT " : " UINT_FMT "\n", info.used, info.free); printf(" 1=" UINT_FMT " 2=" UINT_FMT " m=" UINT_FMT "\n", info.num_1block, info.num_2block, info.max_block); } } finish: if (exec_flags & EXEC_FLAG_PRINT_EOF) { stdout_tx_strn("\x04", 1); } return ret; }
mp_parse_tree_t mp_parse(mp_lexer_t *lex, mp_parse_input_kind_t input_kind) { // initialise parser and allocate memory for its stacks parser_t parser; parser.rule_stack_alloc = MICROPY_ALLOC_PARSE_RULE_INIT; parser.rule_stack_top = 0; parser.rule_stack = m_new(rule_stack_t, parser.rule_stack_alloc); parser.result_stack_alloc = MICROPY_ALLOC_PARSE_RESULT_INIT; parser.result_stack_top = 0; parser.result_stack = m_new(mp_parse_node_t, parser.result_stack_alloc); parser.lexer = lex; parser.tree.chunk = NULL; parser.cur_chunk = NULL; #if MICROPY_COMP_CONST mp_map_init(&parser.consts, 0); #endif // work out the top-level rule to use, and push it on the stack size_t top_level_rule; switch (input_kind) { case MP_PARSE_SINGLE_INPUT: top_level_rule = RULE_single_input; break; case MP_PARSE_EVAL_INPUT: top_level_rule = RULE_eval_input; break; default: top_level_rule = RULE_file_input; } push_rule(&parser, lex->tok_line, rules[top_level_rule], 0); // parse! size_t n, i; // state for the current rule size_t rule_src_line; // source line for the first token matched by the current rule bool backtrack = false; const rule_t *rule = NULL; for (;;) { next_rule: if (parser.rule_stack_top == 0) { break; } pop_rule(&parser, &rule, &i, &rule_src_line); n = rule->act & RULE_ACT_ARG_MASK; /* // debugging printf("depth=%d ", parser.rule_stack_top); for (int j = 0; j < parser.rule_stack_top; ++j) { printf(" "); } printf("%s n=%d i=%d bt=%d\n", rule->rule_name, n, i, backtrack); */ switch (rule->act & RULE_ACT_KIND_MASK) { case RULE_ACT_OR: if (i > 0 && !backtrack) { goto next_rule; } else { backtrack = false; } for (; i < n; ++i) { uint16_t kind = rule->arg[i] & RULE_ARG_KIND_MASK; if (kind == RULE_ARG_TOK) { if (lex->tok_kind == (rule->arg[i] & RULE_ARG_ARG_MASK)) { push_result_token(&parser, rule); mp_lexer_to_next(lex); goto next_rule; } } else { assert(kind == RULE_ARG_RULE); if (i + 1 < n) { push_rule(&parser, rule_src_line, rule, i + 1); // save this or-rule } push_rule_from_arg(&parser, rule->arg[i]); // push child of or-rule goto next_rule; } } backtrack = true; break; case RULE_ACT_AND: { // failed, backtrack if we can, else syntax error if (backtrack) { assert(i > 0); if ((rule->arg[i - 1] & RULE_ARG_KIND_MASK) == RULE_ARG_OPT_RULE) { // an optional rule that failed, so continue with next arg push_result_node(&parser, MP_PARSE_NODE_NULL); backtrack = false; } else { // a mandatory rule that failed, so propagate backtrack if (i > 1) { // already eaten tokens so can't backtrack goto syntax_error; } else { goto next_rule; } } } // progress through the rule for (; i < n; ++i) { if ((rule->arg[i] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) { // need to match a token mp_token_kind_t tok_kind = rule->arg[i] & RULE_ARG_ARG_MASK; if (lex->tok_kind == tok_kind) { // matched token if (tok_kind == MP_TOKEN_NAME) { push_result_token(&parser, rule); } mp_lexer_to_next(lex); } else { // failed to match token if (i > 0) { // already eaten tokens so can't backtrack goto syntax_error; } else { // this rule failed, so backtrack backtrack = true; goto next_rule; } } } else { push_rule(&parser, rule_src_line, rule, i + 1); // save this and-rule push_rule_from_arg(&parser, rule->arg[i]); // push child of and-rule goto next_rule; } } assert(i == n); // matched the rule, so now build the corresponding parse_node #if !MICROPY_ENABLE_DOC_STRING // this code discards lonely statements, such as doc strings if (input_kind != MP_PARSE_SINGLE_INPUT && rule->rule_id == RULE_expr_stmt && peek_result(&parser, 0) == MP_PARSE_NODE_NULL) { mp_parse_node_t p = peek_result(&parser, 1); if ((MP_PARSE_NODE_IS_LEAF(p) && !MP_PARSE_NODE_IS_ID(p)) || MP_PARSE_NODE_IS_STRUCT_KIND(p, RULE_const_object)) { pop_result(&parser); // MP_PARSE_NODE_NULL pop_result(&parser); // const expression (leaf or RULE_const_object) // Pushing the "pass" rule here will overwrite any RULE_const_object // entry that was on the result stack, allowing the GC to reclaim // the memory from the const object when needed. push_result_rule(&parser, rule_src_line, rules[RULE_pass_stmt], 0); break; } } #endif // count number of arguments for the parse node i = 0; size_t num_not_nil = 0; for (size_t x = n; x > 0;) { --x; if ((rule->arg[x] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) { mp_token_kind_t tok_kind = rule->arg[x] & RULE_ARG_ARG_MASK; if (tok_kind == MP_TOKEN_NAME) { // only tokens which were names are pushed to stack i += 1; num_not_nil += 1; } } else { // rules are always pushed if (peek_result(&parser, i) != MP_PARSE_NODE_NULL) { num_not_nil += 1; } i += 1; } } if (num_not_nil == 1 && (rule->act & RULE_ACT_ALLOW_IDENT)) { // this rule has only 1 argument and should not be emitted mp_parse_node_t pn = MP_PARSE_NODE_NULL; for (size_t x = 0; x < i; ++x) { mp_parse_node_t pn2 = pop_result(&parser); if (pn2 != MP_PARSE_NODE_NULL) { pn = pn2; } } push_result_node(&parser, pn); } else { // this rule must be emitted if (rule->act & RULE_ACT_ADD_BLANK) { // and add an extra blank node at the end (used by the compiler to store data) push_result_node(&parser, MP_PARSE_NODE_NULL); i += 1; } push_result_rule(&parser, rule_src_line, rule, i); } break; } default: { assert((rule->act & RULE_ACT_KIND_MASK) == RULE_ACT_LIST); // n=2 is: item item* // n=1 is: item (sep item)* // n=3 is: item (sep item)* [sep] bool had_trailing_sep; if (backtrack) { list_backtrack: had_trailing_sep = false; if (n == 2) { if (i == 1) { // fail on item, first time round; propagate backtrack goto next_rule; } else { // fail on item, in later rounds; finish with this rule backtrack = false; } } else { if (i == 1) { // fail on item, first time round; propagate backtrack goto next_rule; } else if ((i & 1) == 1) { // fail on item, in later rounds; have eaten tokens so can't backtrack if (n == 3) { // list allows trailing separator; finish parsing list had_trailing_sep = true; backtrack = false; } else { // list doesn't allowing trailing separator; fail goto syntax_error; } } else { // fail on separator; finish parsing list backtrack = false; } } } else { for (;;) { size_t arg = rule->arg[i & 1 & n]; if ((arg & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) { if (lex->tok_kind == (arg & RULE_ARG_ARG_MASK)) { if (i & 1 & n) { // separators which are tokens are not pushed to result stack } else { push_result_token(&parser, rule); } mp_lexer_to_next(lex); // got element of list, so continue parsing list i += 1; } else { // couldn't get element of list i += 1; backtrack = true; goto list_backtrack; } } else { assert((arg & RULE_ARG_KIND_MASK) == RULE_ARG_RULE); push_rule(&parser, rule_src_line, rule, i + 1); // save this list-rule push_rule_from_arg(&parser, arg); // push child of list-rule goto next_rule; } } } assert(i >= 1); // compute number of elements in list, result in i i -= 1; if ((n & 1) && (rule->arg[1] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) { // don't count separators when they are tokens i = (i + 1) / 2; } if (i == 1) { // list matched single item if (had_trailing_sep) { // if there was a trailing separator, make a list of a single item push_result_rule(&parser, rule_src_line, rule, i); } else { // just leave single item on stack (ie don't wrap in a list) } } else { push_result_rule(&parser, rule_src_line, rule, i); } break; } } } #if MICROPY_COMP_CONST mp_map_deinit(&parser.consts); #endif // truncate final chunk and link into chain of chunks if (parser.cur_chunk != NULL) { (void)m_renew_maybe(byte, parser.cur_chunk, sizeof(mp_parse_chunk_t) + parser.cur_chunk->alloc, sizeof(mp_parse_chunk_t) + parser.cur_chunk->union_.used, false); parser.cur_chunk->alloc = parser.cur_chunk->union_.used; parser.cur_chunk->union_.next = parser.tree.chunk; parser.tree.chunk = parser.cur_chunk; } if ( lex->tok_kind != MP_TOKEN_END // check we are at the end of the token stream || parser.result_stack_top == 0 // check that we got a node (can fail on empty input) ) { syntax_error:; mp_obj_t exc; if (lex->tok_kind == MP_TOKEN_INDENT) { exc = mp_obj_new_exception_msg(&mp_type_IndentationError, "unexpected indent"); } else if (lex->tok_kind == MP_TOKEN_DEDENT_MISMATCH) { exc = mp_obj_new_exception_msg(&mp_type_IndentationError, "unindent does not match any outer indentation level"); } else { exc = mp_obj_new_exception_msg(&mp_type_SyntaxError, "invalid syntax"); } // add traceback to give info about file name and location // we don't have a 'block' name, so just pass the NULL qstr to indicate this mp_obj_exception_add_traceback(exc, lex->source_name, lex->tok_line, MP_QSTR_NULL); nlr_raise(exc); } // get the root parse node that we created assert(parser.result_stack_top == 1); parser.tree.root = parser.result_stack[0]; // free the memory that we don't need anymore m_del(rule_stack_t, parser.rule_stack, parser.rule_stack_alloc); m_del(mp_parse_node_t, parser.result_stack, parser.result_stack_alloc); // we also free the lexer on behalf of the caller mp_lexer_free(lex); return parser.tree; }
// returns standard error codes: 0 for success, 1 for all other errors STATIC int execute_from_lexer(mp_lexer_t *lex, mp_parse_input_kind_t input_kind, bool is_repl) { if (lex == NULL) { return 1; } if (0) { // just tokenise while (!mp_lexer_is_kind(lex, MP_TOKEN_END)) { mp_token_show(mp_lexer_cur(lex)); mp_lexer_to_next(lex); } mp_lexer_free(lex); return 0; } mp_parse_error_kind_t parse_error_kind; mp_parse_node_t pn = mp_parse(lex, input_kind, &parse_error_kind); if (pn == MP_PARSE_NODE_NULL) { // parse error mp_parse_show_exception(lex, parse_error_kind); mp_lexer_free(lex); return 1; } qstr source_name = mp_lexer_source_name(lex); #if MICROPY_PY___FILE__ if (input_kind == MP_PARSE_FILE_INPUT) { mp_store_global(MP_QSTR___file__, MP_OBJ_NEW_QSTR(source_name)); } #endif mp_lexer_free(lex); /* printf("----------------\n"); mp_parse_node_print(pn, 0); printf("----------------\n"); */ mp_obj_t module_fun = mp_compile(pn, source_name, emit_opt, is_repl); if (module_fun == mp_const_none) { // compile error return 1; } if (compile_only) { return 0; } // execute it nlr_buf_t nlr; if (nlr_push(&nlr) == 0) { mp_call_function_0(module_fun); nlr_pop(); return 0; } else { // uncaught exception // check for SystemExit mp_obj_t exc = (mp_obj_t)nlr.ret_val; if (mp_obj_is_subclass_fast(mp_obj_get_type(exc), &mp_type_SystemExit)) { mp_obj_t exit_val = mp_obj_exception_get_value(exc); mp_int_t val; if (!mp_obj_get_int_maybe(exit_val, &val)) { val = 0; } exit(val); } mp_obj_print_exception((mp_obj_t)nlr.ret_val); return 1; } }
// parses, compiles and executes the code in the lexer // frees the lexer before returning bool parse_compile_execute(mp_lexer_t *lex, mp_parse_input_kind_t input_kind, bool is_repl) { mp_parse_error_kind_t parse_error_kind; mp_parse_node_t pn = mp_parse(lex, input_kind, &parse_error_kind); qstr source_name = mp_lexer_source_name(lex); if (pn == MP_PARSE_NODE_NULL) { // parse error mp_parse_show_exception(lex, parse_error_kind); mp_lexer_free(lex); return false; } mp_lexer_free(lex); mp_obj_t module_fun = mp_compile(pn, source_name, MP_EMIT_OPT_NONE, is_repl); if (mp_obj_is_exception_instance(module_fun)) { mp_obj_print_exception(module_fun); return false; } nlr_buf_t nlr; bool ret; uint32_t start = HAL_GetTick(); if (nlr_push(&nlr) == 0) { usb_vcp_set_interrupt_char(VCP_CHAR_CTRL_C); // allow ctrl-C to interrupt us mp_call_function_0(module_fun); usb_vcp_set_interrupt_char(VCP_CHAR_NONE); // disable interrupt nlr_pop(); ret = true; } else { // uncaught exception // FIXME it could be that an interrupt happens just before we disable it here usb_vcp_set_interrupt_char(VCP_CHAR_NONE); // disable interrupt mp_obj_print_exception((mp_obj_t)nlr.ret_val); ret = false; } // display debugging info if wanted if (is_repl && repl_display_debugging_info) { uint32_t ticks = HAL_GetTick() - start; // TODO implement a function that does this properly printf("took %lu ms\n", ticks); gc_collect(); // qstr info { mp_uint_t n_pool, n_qstr, n_str_data_bytes, n_total_bytes; qstr_pool_info(&n_pool, &n_qstr, &n_str_data_bytes, &n_total_bytes); printf("qstr:\n n_pool=" UINT_FMT "\n n_qstr=" UINT_FMT "\n n_str_data_bytes=" UINT_FMT "\n n_total_bytes=" UINT_FMT "\n", n_pool, n_qstr, n_str_data_bytes, n_total_bytes); } // GC info { gc_info_t info; gc_info(&info); printf("GC:\n"); printf(" " UINT_FMT " total\n", info.total); printf(" " UINT_FMT " : " UINT_FMT "\n", info.used, info.free); printf(" 1=" UINT_FMT " 2=" UINT_FMT " m=" UINT_FMT "\n", info.num_1block, info.num_2block, info.max_block); } } return ret; }