static mp_obj_t float_binary_op(int op, mp_obj_t lhs_in, mp_obj_t rhs_in) { mp_obj_float_t *lhs = lhs_in; if (MP_OBJ_IS_TYPE(rhs_in, &complex_type)) { return mp_obj_complex_binary_op(op, lhs->value, 0, rhs_in); } else { return mp_obj_float_binary_op(op, lhs->value, rhs_in); } }
STATIC mp_obj_t float_binary_op(mp_uint_t op, mp_obj_t lhs_in, mp_obj_t rhs_in) { mp_float_t lhs_val = mp_obj_float_get(lhs_in); #if MICROPY_PY_BUILTINS_COMPLEX if (MP_OBJ_IS_TYPE(rhs_in, &mp_type_complex)) { return mp_obj_complex_binary_op(op, lhs_val, 0, rhs_in); } else #endif { return mp_obj_float_binary_op(op, lhs_val, rhs_in); } }
static mp_obj_t complex_binary_op(int op, mp_obj_t lhs_in, mp_obj_t rhs_in) { mp_obj_complex_t *lhs = lhs_in; return mp_obj_complex_binary_op(op, lhs->real, lhs->imag, rhs_in); }
STATIC mp_obj_t complex_binary_op(mp_uint_t op, mp_obj_t lhs_in, mp_obj_t rhs_in) { mp_obj_complex_t *lhs = MP_OBJ_TO_PTR(lhs_in); return mp_obj_complex_binary_op(op, lhs->real, lhs->imag, rhs_in); }
mp_obj_t rt_binary_op(int op, mp_obj_t lhs, mp_obj_t rhs) { DEBUG_OP_printf("binary %d %p %p\n", op, lhs, rhs); // TODO correctly distinguish inplace operators for mutable objects // lookup logic that CPython uses for +=: // check for implemented += // then check for implemented + // then check for implemented seq.inplace_concat // then check for implemented seq.concat // then fail // note that list does not implement + or +=, so that inplace_concat is reached first for += if (MP_OBJ_IS_SMALL_INT(lhs)) { mp_small_int_t lhs_val = MP_OBJ_SMALL_INT_VALUE(lhs); if (MP_OBJ_IS_SMALL_INT(rhs)) { mp_small_int_t rhs_val = MP_OBJ_SMALL_INT_VALUE(rhs); switch (op) { case RT_BINARY_OP_OR: case RT_BINARY_OP_INPLACE_OR: lhs_val |= rhs_val; break; case RT_BINARY_OP_XOR: case RT_BINARY_OP_INPLACE_XOR: lhs_val ^= rhs_val; break; case RT_BINARY_OP_AND: case RT_BINARY_OP_INPLACE_AND: lhs_val &= rhs_val; break; case RT_BINARY_OP_LSHIFT: case RT_BINARY_OP_INPLACE_LSHIFT: lhs_val <<= rhs_val; break; case RT_BINARY_OP_RSHIFT: case RT_BINARY_OP_INPLACE_RSHIFT: lhs_val >>= rhs_val; break; case RT_BINARY_OP_ADD: case RT_BINARY_OP_INPLACE_ADD: lhs_val += rhs_val; break; case RT_BINARY_OP_SUBTRACT: case RT_BINARY_OP_INPLACE_SUBTRACT: lhs_val -= rhs_val; break; case RT_BINARY_OP_MULTIPLY: case RT_BINARY_OP_INPLACE_MULTIPLY: lhs_val *= rhs_val; break; case RT_BINARY_OP_FLOOR_DIVIDE: case RT_BINARY_OP_INPLACE_FLOOR_DIVIDE: lhs_val /= rhs_val; break; #if MICROPY_ENABLE_FLOAT case RT_BINARY_OP_TRUE_DIVIDE: case RT_BINARY_OP_INPLACE_TRUE_DIVIDE: return mp_obj_new_float((mp_float_t)lhs_val / (mp_float_t)rhs_val); #endif // TODO implement modulo as specified by Python case RT_BINARY_OP_MODULO: case RT_BINARY_OP_INPLACE_MODULO: lhs_val %= rhs_val; break; // TODO check for negative power, and overflow case RT_BINARY_OP_POWER: case RT_BINARY_OP_INPLACE_POWER: { int ans = 1; while (rhs_val > 0) { if (rhs_val & 1) { ans *= lhs_val; } lhs_val *= lhs_val; rhs_val /= 2; } lhs_val = ans; break; } default: assert(0); } if (fit_small_int(lhs_val)) { return MP_OBJ_NEW_SMALL_INT(lhs_val); } } else if (MP_OBJ_IS_TYPE(rhs, &float_type)) { return mp_obj_float_binary_op(op, lhs_val, rhs); } else if (MP_OBJ_IS_TYPE(rhs, &complex_type)) { return mp_obj_complex_binary_op(op, lhs_val, 0, rhs); } } else if (MP_OBJ_IS_OBJ(lhs)) {