int
rsa_verify (const uint8_t *pubkey, const uint8_t *hash, const uint8_t *sig)
{
  int r;

  rsa_init (&rsa_ctx, RSA_PKCS_V15, 0);
  rsa_ctx.len = KEY_CONTENT_LEN;
  mpi_lset (&rsa_ctx.E, 0x10001);
  mpi_read_binary (&rsa_ctx.N, pubkey, KEY_CONTENT_LEN);

  DEBUG_INFO ("RSA verify...");

  r = rsa_pkcs1_verify (&rsa_ctx, RSA_PUBLIC, SIG_RSA_SHA256, 32, hash, sig);

  rsa_free (&rsa_ctx);
  if (r < 0)
    {
      DEBUG_INFO ("fail:");
      DEBUG_SHORT (r);
      return r;
    }
  else
    {
      DEBUG_INFO ("verified.\r\n");
      return 0;
    }
}
Esempio n. 2
0
/*
 * Create own private value X and export G^X
 */
int dhm_make_public (dhm_context * ctx, int x_size, unsigned char* output, int olen, int (*f_rng) (void* ), void* p_rng)
{
    int ret, i, n;
    unsigned char* p;

    if (ctx == NULL || olen < 1 || olen > ctx->len)
        return (POLARSSL_ERR_DHM_BAD_INPUT_DATA);

    /*
     * generate X and calculate GX = G^X mod P
     */
    n = x_size / sizeof (t_int);
    MPI_CHK (mpi_grow (&ctx->X, n));
    MPI_CHK (mpi_lset (&ctx->X, 0));

    n = x_size - 1;
    p = (unsigned char *) ctx->X.p;
    for (i = 0; i < n; i++)
        *p++ = (unsigned char) f_rng (p_rng);

    while (mpi_cmp_mpi (&ctx->X, &ctx->P) >= 0)
        mpi_shift_r (&ctx->X, 1);

    MPI_CHK (mpi_exp_mod (&ctx->GX, &ctx->G, &ctx->X, &ctx->P, &ctx->RP));

    MPI_CHK (mpi_write_binary (&ctx->GX, output, olen));

  cleanup:

    if (ret != 0)
        return (POLARSSL_ERR_DHM_MAKE_PUBLIC_FAILED | ret);

    return (0);
}
Esempio n. 3
0
/*
 * Generate an RSA keypair
 */
int rsa_gen_key( rsa_context *ctx, int nbits, int exponent,
                 ulong (*rng_fn)(void *), void *rng_st )
{
    int ret;
    mpi P1, Q1, H, G;

    mpi_init( &P1, &Q1, &H, &G, NULL );

    memset( ctx, 0, sizeof( rsa_context ) );

    /*
     * find primes P and Q with Q < P so that:
     * GCD( E, (P-1)*(Q-1) ) == 1
     */
    CHK( mpi_lset( &ctx->E, exponent ) );

    nbits >>= 1;

    do
    {
        CHK( mpi_gen_prime( &ctx->P, nbits, 0, rng_fn, rng_st ) );
        CHK( mpi_gen_prime( &ctx->Q, nbits, 0, rng_fn, rng_st ) );

        if( mpi_cmp_mpi( &ctx->P, &ctx->Q ) < 0 )
            mpi_swap( &ctx->P, &ctx->Q );

        CHK( mpi_mul_mpi( &ctx->N, &ctx->P, &ctx->Q ) );
        CHK( mpi_sub_int( &P1, &ctx->P, 1 ) );
        CHK( mpi_sub_int( &Q1, &ctx->Q, 1 ) );
        CHK( mpi_mul_mpi( &H, &P1, &Q1 ) );
        CHK( mpi_gcd( &G, &ctx->E, &H  ) );
    }
    while( mpi_cmp_int( &G, 1 ) != 0 );

    /*
     * D  = E^-1 mod ((P-1)*(Q-1))
     * DP = D mod (P - 1)
     * DQ = D mod (Q - 1)
     * QP = Q^-1 mod P
     */
    CHK( mpi_inv_mod( &ctx->D , &ctx->E, &H  ) );
    CHK( mpi_mod_mpi( &ctx->DP, &ctx->D, &P1 ) );
    CHK( mpi_mod_mpi( &ctx->DQ, &ctx->D, &Q1 ) );
    CHK( mpi_inv_mod( &ctx->QP, &ctx->Q, &ctx->P ) );

    ctx->len = ( mpi_size( &ctx->N ) + 7 ) >> 3;

cleanup:

    mpi_free( &P1, &Q1, &H, &G, NULL );

    if( ret != 0 )
    {
        rsa_free( ctx );
        return( ERR_RSA_KEYGEN_FAILED | ret );
    }

    return( 0 );   
}
Esempio n. 4
0
File: rsa.c Progetto: sunfirefox/est
/*
    Generate an RSA keypair
 */
int rsa_gen_key(rsa_context *ctx, int nbits, int exponent)
{
    mpi     P1, Q1, H, G;
    int     ret;

    if (ctx->f_rng == NULL || nbits < 128 || exponent < 3) {
        return EST_ERR_RSA_BAD_INPUT_DATA;
    }
    mpi_init(&P1, &Q1, &H, &G, NULL);

    /*
        find primes P and Q with Q < P so that: GCD( E, (P-1)*(Q-1) ) == 1
     */
    MPI_CHK(mpi_lset(&ctx->E, exponent));

    do {
        MPI_CHK(mpi_gen_prime(&ctx->P, (nbits + 1) >> 1, 0, ctx->f_rng, ctx->p_rng));

        MPI_CHK(mpi_gen_prime(&ctx->Q, (nbits + 1) >> 1, 0, ctx->f_rng, ctx->p_rng));

        if (mpi_cmp_mpi(&ctx->P, &ctx->Q) < 0) {
            mpi_swap(&ctx->P, &ctx->Q);
        }
        if (mpi_cmp_mpi(&ctx->P, &ctx->Q) == 0) {
            continue;
        }
        MPI_CHK(mpi_mul_mpi(&ctx->N, &ctx->P, &ctx->Q));
        if (mpi_msb(&ctx->N) != nbits) {
            continue;
        }
        MPI_CHK(mpi_sub_int(&P1, &ctx->P, 1));
        MPI_CHK(mpi_sub_int(&Q1, &ctx->Q, 1));
        MPI_CHK(mpi_mul_mpi(&H, &P1, &Q1));
        MPI_CHK(mpi_gcd(&G, &ctx->E, &H));

    } while (mpi_cmp_int(&G, 1) != 0);

    /*
       D  = E^-1 mod ((P-1)*(Q-1))
       DP = D mod (P - 1)
       DQ = D mod (Q - 1)
       QP = Q^-1 mod P
     */
    MPI_CHK(mpi_inv_mod(&ctx->D, &ctx->E, &H));
    MPI_CHK(mpi_mod_mpi(&ctx->DP, &ctx->D, &P1));
    MPI_CHK(mpi_mod_mpi(&ctx->DQ, &ctx->D, &Q1));
    MPI_CHK(mpi_inv_mod(&ctx->QP, &ctx->Q, &ctx->P));

    ctx->len = (mpi_msb(&ctx->N) + 7) >> 3;

cleanup:
    mpi_free(&G, &H, &Q1, &P1, NULL);
    if (ret != 0) {
        rsa_free(ctx);
        return EST_ERR_RSA_KEY_GEN_FAILED | ret;
    }
    return 0;
}
Esempio n. 5
0
/*
 * Setup and write the ServerKeyExchange parameters
 */
int dhm_make_params( dhm_context *ctx, int x_size,
                     unsigned char *output, int *olen,
                     int (*f_rng)(void *), void *p_rng )
{
    int i, ret, n, n1, n2, n3;
    unsigned char *p;

    /*
     * generate X and calculate GX = G^X mod P
     */
    n = x_size / sizeof( t_int );
    MPI_CHK( mpi_grow( &ctx->X, n ) );
    MPI_CHK( mpi_lset( &ctx->X, 0 ) );

    n = x_size >> 3;
    p = (unsigned char *) ctx->X.p;
    for( i = 0; i < n; i++ )
        *p++ = (unsigned char) f_rng( p_rng );

    while( mpi_cmp_mpi( &ctx->X, &ctx->P ) >= 0 )
           mpi_shift_r( &ctx->X, 1 );

    MPI_CHK( mpi_exp_mod( &ctx->GX, &ctx->G, &ctx->X,
                          &ctx->P , &ctx->RP ) );

    /*
     * export P, G, GX
     */
#define DHM_MPI_EXPORT(X,n)                     \
    MPI_CHK( mpi_write_binary( X, p + 2, n ) ); \
    *p++ = (unsigned char)( n >> 8 );           \
    *p++ = (unsigned char)( n      ); p += n;

    n1 = mpi_size( &ctx->P  );
    n2 = mpi_size( &ctx->G  );
    n3 = mpi_size( &ctx->GX );

    p = output;
    DHM_MPI_EXPORT( &ctx->P , n1 );
    DHM_MPI_EXPORT( &ctx->G , n2 );
    DHM_MPI_EXPORT( &ctx->GX, n3 );

    *olen  = p - output;

    ctx->len = n1;

cleanup:

    if( ret != 0 )
        return( ret | XYSSL_ERR_DHM_MAKE_PARAMS_FAILED );

    return( 0 );
}
int
rsa_decrypt (const uint8_t *input, uint8_t *output, int msg_len,
	     struct key_data *kd)
{
  mpi P1, Q1, H;
  int r;
  int output_len;

  DEBUG_INFO ("RSA decrypt:");
  DEBUG_WORD ((uint32_t)&output_len);

  mpi_init (&P1, &Q1, &H, NULL);
  rsa_init (&rsa_ctx, RSA_PKCS_V15, 0);

  rsa_ctx.len = msg_len;
  DEBUG_WORD (msg_len);

  mpi_lset (&rsa_ctx.E, 0x10001);
  mpi_read_binary (&rsa_ctx.P, &kd->data[0], KEY_CONTENT_LEN / 2);
  mpi_read_binary (&rsa_ctx.Q, &kd->data[KEY_CONTENT_LEN/2],
		   KEY_CONTENT_LEN / 2);
#if 0 /* Using CRT, we don't use N */
  mpi_mul_mpi (&rsa_ctx.N, &rsa_ctx.P, &rsa_ctx.Q);
#endif
  mpi_sub_int (&P1, &rsa_ctx.P, 1);
  mpi_sub_int (&Q1, &rsa_ctx.Q, 1);
  mpi_mul_mpi (&H, &P1, &Q1);
  mpi_inv_mod (&rsa_ctx.D , &rsa_ctx.E, &H);
  mpi_mod_mpi (&rsa_ctx.DP, &rsa_ctx.D, &P1);
  mpi_mod_mpi (&rsa_ctx.DQ, &rsa_ctx.D, &Q1);
  mpi_inv_mod (&rsa_ctx.QP, &rsa_ctx.Q, &rsa_ctx.P);
  mpi_free (&P1, &Q1, &H, NULL);

  DEBUG_INFO ("RSA decrypt ...");

  r = rsa_pkcs1_decrypt (&rsa_ctx, RSA_PRIVATE, &output_len,
			 input, output, MAX_RES_APDU_DATA_SIZE);
  rsa_free (&rsa_ctx);
  if (r < 0)
    {
      DEBUG_INFO ("fail:");
      DEBUG_SHORT (r);
      return r;
    }
  else
    {
      res_APDU_size = output_len;
      DEBUG_INFO ("done.\r\n");
      GPG_SUCCESS ();
      return 0;
    }
}
int
rsa_sign (const uint8_t *raw_message, uint8_t *output, int msg_len,
	  struct key_data *kd)
{
  mpi P1, Q1, H;
  int r;
  unsigned char temp[RSA_SIGNATURE_LENGTH];

  mpi_init (&P1, &Q1, &H, NULL);
  rsa_init (&rsa_ctx, RSA_PKCS_V15, 0);

  rsa_ctx.len = KEY_CONTENT_LEN;
  mpi_lset (&rsa_ctx.E, 0x10001);
  mpi_read_binary (&rsa_ctx.P, &kd->data[0], rsa_ctx.len / 2);
  mpi_read_binary (&rsa_ctx.Q, &kd->data[KEY_CONTENT_LEN/2], rsa_ctx.len / 2);
#if 0 /* Using CRT, we don't use N */
  mpi_mul_mpi (&rsa_ctx.N, &rsa_ctx.P, &rsa_ctx.Q);
#endif
  mpi_sub_int (&P1, &rsa_ctx.P, 1);
  mpi_sub_int (&Q1, &rsa_ctx.Q, 1);
  mpi_mul_mpi (&H, &P1, &Q1);
  mpi_inv_mod (&rsa_ctx.D , &rsa_ctx.E, &H);
  mpi_mod_mpi (&rsa_ctx.DP, &rsa_ctx.D, &P1);
  mpi_mod_mpi (&rsa_ctx.DQ, &rsa_ctx.D, &Q1);
  mpi_inv_mod (&rsa_ctx.QP, &rsa_ctx.Q, &rsa_ctx.P);
  mpi_free (&P1, &Q1, &H, NULL);

  DEBUG_INFO ("RSA sign...");

  r = rsa_pkcs1_sign (&rsa_ctx, RSA_PRIVATE, SIG_RSA_RAW,
		      msg_len, raw_message, temp);
  memcpy (output, temp, RSA_SIGNATURE_LENGTH);
  rsa_free (&rsa_ctx);
  if (r < 0)
    {
      DEBUG_INFO ("fail:");
      DEBUG_SHORT (r);
      return r;
    }
  else
    {
      res_APDU_size = RSA_SIGNATURE_LENGTH;
      DEBUG_INFO ("done.\r\n");
      GPG_SUCCESS ();
      return 0;
    }
}
Esempio n. 8
0
/*
 * Verify sanity of parameter with regards to P
 *
 * Parameter should be: 2 <= public_param <= P - 2
 *
 * For more information on the attack, see:
 *  http://www.cl.cam.ac.uk/~rja14/Papers/psandqs.pdf
 *  http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2005-2643
 */
static int dhm_check_range( const mpi *param, const mpi *P )
{
    mpi L, U;
    int ret = POLARSSL_ERR_DHM_BAD_INPUT_DATA;

    mpi_init( &L ); mpi_init( &U );
    mpi_lset( &L, 2 );
    mpi_sub_int( &U, P, 2 );

    if( mpi_cmp_mpi( param, &L ) >= 0 &&
        mpi_cmp_mpi( param, &U ) <= 0 )
    {
        ret = 0;
    }

    mpi_free( &L ); mpi_free( &U );

    return( ret );
}
Esempio n. 9
0
/*
 * Generate an RSA keypair
 */
int rsa_gen_key( rsa_context *ctx,
        int (*f_rng)(void *),
        void *p_rng,
        int nbits, int exponent )
{
    int ret;
    mpi P1, Q1, H, G;

    if( f_rng == NULL || nbits < 128 || exponent < 3 )
        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );

    mpi_init( &P1, &Q1, &H, &G, NULL );

    /*
     * find primes P and Q with Q < P so that:
     * GCD( E, (P-1)*(Q-1) ) == 1
     */
    MPI_CHK( mpi_lset( &ctx->E, exponent ) );

    do
    {
        MPI_CHK( mpi_gen_prime( &ctx->P, ( nbits + 1 ) >> 1, 0, 
                                f_rng, p_rng ) );

        MPI_CHK( mpi_gen_prime( &ctx->Q, ( nbits + 1 ) >> 1, 0,
                                f_rng, p_rng ) );

        if( mpi_cmp_mpi( &ctx->P, &ctx->Q ) < 0 )
            mpi_swap( &ctx->P, &ctx->Q );

        if( mpi_cmp_mpi( &ctx->P, &ctx->Q ) == 0 )
            continue;

        MPI_CHK( mpi_mul_mpi( &ctx->N, &ctx->P, &ctx->Q ) );
        if( mpi_msb( &ctx->N ) != nbits )
            continue;

        MPI_CHK( mpi_sub_int( &P1, &ctx->P, 1 ) );
        MPI_CHK( mpi_sub_int( &Q1, &ctx->Q, 1 ) );
        MPI_CHK( mpi_mul_mpi( &H, &P1, &Q1 ) );
        MPI_CHK( mpi_gcd( &G, &ctx->E, &H  ) );
    }
    while( mpi_cmp_int( &G, 1 ) != 0 );

    /*
     * D  = E^-1 mod ((P-1)*(Q-1))
     * DP = D mod (P - 1)
     * DQ = D mod (Q - 1)
     * QP = Q^-1 mod P
     */
    MPI_CHK( mpi_inv_mod( &ctx->D , &ctx->E, &H  ) );
    MPI_CHK( mpi_mod_mpi( &ctx->DP, &ctx->D, &P1 ) );
    MPI_CHK( mpi_mod_mpi( &ctx->DQ, &ctx->D, &Q1 ) );
    MPI_CHK( mpi_inv_mod( &ctx->QP, &ctx->Q, &ctx->P ) );

    ctx->len = ( mpi_msb( &ctx->N ) + 7 ) >> 3;

cleanup:

    mpi_free( &G, &H, &Q1, &P1, NULL );

    if( ret != 0 )
    {
        rsa_free( ctx );
        return( POLARSSL_ERR_RSA_KEY_GEN_FAILED | ret );
    }

    return( 0 );   
}
Esempio n. 10
0
/*
 * Parse a SpecifiedECDomain (SEC 1 C.2) and (mostly) fill the group with it.
 * WARNING: the resulting group should only be used with
 * pk_group_id_from_specified(), since its base point may not be set correctly
 * if it was encoded compressed.
 *
 *  SpecifiedECDomain ::= SEQUENCE {
 *      version SpecifiedECDomainVersion(ecdpVer1 | ecdpVer2 | ecdpVer3, ...),
 *      fieldID FieldID {{FieldTypes}},
 *      curve Curve,
 *      base ECPoint,
 *      order INTEGER,
 *      cofactor INTEGER OPTIONAL,
 *      hash HashAlgorithm OPTIONAL,
 *      ...
 *  }
 *
 * We only support prime-field as field type, and ignore hash and cofactor.
 */
static int pk_group_from_specified( const asn1_buf *params, ecp_group *grp )
{
    int ret;
    unsigned char *p = params->p;
    const unsigned char * const end = params->p + params->len;
    const unsigned char *end_field, *end_curve;
    size_t len;
    int ver;

    /* SpecifiedECDomainVersion ::= INTEGER { 1, 2, 3 } */
    if( ( ret = asn1_get_int( &p, end, &ver ) ) != 0 )
        return( POLARSSL_ERR_PK_KEY_INVALID_FORMAT + ret );

    if( ver < 1 || ver > 3 )
        return( POLARSSL_ERR_PK_KEY_INVALID_FORMAT );

    /*
     * FieldID { FIELD-ID:IOSet } ::= SEQUENCE { -- Finite field
     *       fieldType FIELD-ID.&id({IOSet}),
     *       parameters FIELD-ID.&Type({IOSet}{@fieldType})
     * }
     */
    if( ( ret = asn1_get_tag( &p, end, &len,
            ASN1_CONSTRUCTED | ASN1_SEQUENCE ) ) != 0 )
        return( ret );

    end_field = p + len;

    /*
     * FIELD-ID ::= TYPE-IDENTIFIER
     * FieldTypes FIELD-ID ::= {
     *       { Prime-p IDENTIFIED BY prime-field } |
     *       { Characteristic-two IDENTIFIED BY characteristic-two-field }
     * }
     * prime-field OBJECT IDENTIFIER ::= { id-fieldType 1 }
     */
    if( ( ret = asn1_get_tag( &p, end_field, &len, ASN1_OID ) ) != 0 )
        return( ret );

    if( len != OID_SIZE( OID_ANSI_X9_62_PRIME_FIELD ) ||
        memcmp( p, OID_ANSI_X9_62_PRIME_FIELD, len ) != 0 )
    {
        return( POLARSSL_ERR_PK_FEATURE_UNAVAILABLE );
    }

    p += len;

    /* Prime-p ::= INTEGER -- Field of size p. */
    if( ( ret = asn1_get_mpi( &p, end_field, &grp->P ) ) != 0 )
        return( POLARSSL_ERR_PK_KEY_INVALID_FORMAT + ret );

    grp->pbits = mpi_msb( &grp->P );

    if( p != end_field )
        return( POLARSSL_ERR_PK_KEY_INVALID_FORMAT +
                POLARSSL_ERR_ASN1_LENGTH_MISMATCH );

    /*
     * Curve ::= SEQUENCE {
     *       a FieldElement,
     *       b FieldElement,
     *       seed BIT STRING OPTIONAL
     *       -- Shall be present if used in SpecifiedECDomain
     *       -- with version equal to ecdpVer2 or ecdpVer3
     * }
     */
    if( ( ret = asn1_get_tag( &p, end, &len,
            ASN1_CONSTRUCTED | ASN1_SEQUENCE ) ) != 0 )
        return( ret );

    end_curve = p + len;

    /*
     * FieldElement ::= OCTET STRING
     * containing an integer in the case of a prime field
     */
    if( ( ret = asn1_get_tag( &p, end_curve, &len, ASN1_OCTET_STRING ) ) != 0 ||
        ( ret = mpi_read_binary( &grp->A, p, len ) ) != 0 )
    {
        return( POLARSSL_ERR_PK_KEY_INVALID_FORMAT + ret );
    }

    p += len;

    if( ( ret = asn1_get_tag( &p, end_curve, &len, ASN1_OCTET_STRING ) ) != 0 ||
        ( ret = mpi_read_binary( &grp->B, p, len ) ) != 0 )
    {
        return( POLARSSL_ERR_PK_KEY_INVALID_FORMAT + ret );
    }

    p += len;

    /* Ignore seed BIT STRING OPTIONAL */
    if( ( ret = asn1_get_tag( &p, end_curve, &len, ASN1_BIT_STRING ) ) == 0 )
        p += len;

    if( p != end_curve )
        return( POLARSSL_ERR_PK_KEY_INVALID_FORMAT +
                POLARSSL_ERR_ASN1_LENGTH_MISMATCH );

    /*
     * ECPoint ::= OCTET STRING
     */
    if( ( ret = asn1_get_tag( &p, end, &len, ASN1_OCTET_STRING ) ) != 0 )
        return( POLARSSL_ERR_PK_KEY_INVALID_FORMAT + ret );

    if( ( ret = ecp_point_read_binary( grp, &grp->G,
                                      ( const unsigned char *) p, len ) ) != 0 )
    {
        /*
         * If we can't read the point because it's compressed, cheat by
         * reading only the X coordinate and the parity bit of Y.
         */
        if( ret != POLARSSL_ERR_ECP_FEATURE_UNAVAILABLE ||
            ( p[0] != 0x02 && p[0] != 0x03 ) ||
            len != mpi_size( &grp->P ) + 1 ||
            mpi_read_binary( &grp->G.X, p + 1, len - 1 ) != 0 ||
            mpi_lset( &grp->G.Y, p[0] - 2 ) != 0 ||
            mpi_lset( &grp->G.Z, 1 ) != 0 )
        {
            return( POLARSSL_ERR_PK_KEY_INVALID_FORMAT );
        }
    }

    p += len;

    /*
     * order INTEGER
     */
    if( ( ret = asn1_get_mpi( &p, end, &grp->N ) ) != 0 )
        return( POLARSSL_ERR_PK_KEY_INVALID_FORMAT + ret );

    grp->nbits = mpi_msb( &grp->N );

    /*
     * Allow optional elements by purposefully not enforcing p == end here.
     */

    return( 0 );
}
Esempio n. 11
0
result_t X509Req::sign(const char *issuer, PKey_base *key,
                       v8::Local<v8::Object> opts, obj_ptr<X509Cert_base> &retVal,
                       exlib::AsyncEvent *ac)
{
    result_t hr;
    bool priv;

    hr = key->isPrivate(priv);
    if (hr < 0)
        return hr;

    if (!priv)
        return CHECK_ERROR(CALL_E_INVALIDARG);

    int ret;
    std::string subject;
    pk_context *pk;
    int32_t hash;
    std::string buf;
    obj_ptr<X509Cert> cert;

    if (!ac)
    {
        mpi serial;
        v8::Local<v8::Value> v;

        x509write_crt_init(&m_crt);

        hr = GetConfigValue(opts, "hash", hash);
        if (hr == CALL_E_PARAMNOTOPTIONAL)
            hash = m_csr.sig_md;
        else if (hr < 0)
            goto exit;

        if (hash < POLARSSL_MD_MD2 || hash > POLARSSL_MD_RIPEMD160)
        {
            hr = CALL_E_INVALIDARG;
            goto exit;
        }

        x509write_crt_set_md_alg(&m_crt, POLARSSL_MD_SHA1);

        v = opts->Get(v8::String::NewFromUtf8(isolate, "serial",
                                              v8::String::kNormalString, 6));
        if (!IsEmpty(v))
        {
            v8::String::Utf8Value str(v);

            if (!*str)
            {
                hr = CHECK_ERROR(_ssl::setError(POLARSSL_ERR_MPI_BAD_INPUT_DATA));
                goto exit;
            }

            mpi_init(&serial);
            ret = mpi_read_string(&serial, 10, *str);
            if (ret != 0)
            {
                mpi_free(&serial);
                hr = CHECK_ERROR(_ssl::setError(ret));
                goto exit;
            }
        }
        else
        {
            mpi_init(&serial);
            mpi_lset(&serial, 1);
        }

        ret = x509write_crt_set_serial(&m_crt, &serial);
        if (ret != 0)
        {
            mpi_free(&serial);
            hr = CHECK_ERROR(_ssl::setError(ret));
            goto exit;
        }

        mpi_free(&serial);

        date_t d1, d2;
        std::string s1, s2;

        hr = GetConfigValue(opts, "notBefore", d1);
        if (hr == CALL_E_PARAMNOTOPTIONAL)
            d1.now();
        else if (hr < 0)
            goto exit;
        d1.toX509String(s1);


        hr = GetConfigValue(opts, "notAfter", d2);
        if (hr == CALL_E_PARAMNOTOPTIONAL)
        {
            d2 = d1;
            d2.add(1, date_t::_YEAR);
        }
        else if (hr < 0)
            goto exit;
        d2.toX509String(s2);

        ret = x509write_crt_set_validity(&m_crt, s1.c_str(), s2.c_str());
        if (ret != 0)
        {
            hr = CHECK_ERROR(_ssl::setError(ret));
            goto exit;
        }

        bool is_ca = false;
        hr = GetConfigValue(opts, "ca", is_ca);
        if (hr < 0 && hr != CALL_E_PARAMNOTOPTIONAL)
            goto exit;

        int32_t pathlen = -1;
        hr = GetConfigValue(opts, "pathlen", pathlen);
        if (hr < 0 && hr != CALL_E_PARAMNOTOPTIONAL)
            goto exit;

        if (pathlen < -1 || pathlen > 127)
        {
            hr = CALL_E_INVALIDARG;
            goto exit;
        }

        ret = x509write_crt_set_basic_constraints(&m_crt, is_ca ? 1 : 0, pathlen);
        if (ret != 0)
        {
            hr = CHECK_ERROR(_ssl::setError(ret));
            goto exit;
        }

        int key_usage = parseString(opts->Get(v8::String::NewFromUtf8(isolate, "usage",
                                              v8::String::kNormalString, 5)), X509Cert::g_usages);
        if (key_usage < 0)
        {
            hr = key_usage;
            goto exit;
        }
        else if (key_usage)
        {
            ret = x509write_crt_set_key_usage(&m_crt, key_usage);
            if (ret != 0)
            {
                hr = CHECK_ERROR(_ssl::setError(ret));
                goto exit;
            }
        }

        int cert_type = parseString(opts->Get(v8::String::NewFromUtf8(isolate, "type",
                                              v8::String::kNormalString, 4)), X509Cert::g_types);
        if (cert_type < 0)
        {
            hr = cert_type;
            goto exit;
        }
        else if (cert_type)
        {
            ret = x509write_crt_set_ns_cert_type(&m_crt, cert_type);
            if (ret != 0)
            {
                hr = CHECK_ERROR(_ssl::setError(ret));
                goto exit;
            }
        }

        return CHECK_ERROR(CALL_E_NOSYNC);
    }

    pk = &((PKey *)key)->m_key;

    x509write_crt_set_subject_key(&m_crt, &m_csr.pk);
    x509write_crt_set_issuer_key(&m_crt, pk);

    hr = X509Req::get_subject(subject);
    if (hr < 0)
        goto exit;

    ret = x509write_crt_set_subject_name(&m_crt, subject.c_str());
    if (ret != 0)
    {
        hr = CHECK_ERROR(_ssl::setError(ret));
        goto exit;
    }

    ret = x509write_crt_set_issuer_name(&m_crt, issuer);
    if (ret != 0)
    {
        hr = CHECK_ERROR(_ssl::setError(ret));
        goto exit;
    }

    ret = x509write_crt_set_subject_key_identifier(&m_crt);
    if (ret != 0)
    {
        hr = CHECK_ERROR(_ssl::setError(ret));
        goto exit;
    }

    ret = x509write_crt_set_authority_key_identifier(&m_crt);
    if (ret != 0)
    {
        hr = CHECK_ERROR(_ssl::setError(ret));
        goto exit;
    }

    buf.resize(pk_get_size(pk) * 8 + 128);

    ret = x509write_crt_pem(&m_crt, (unsigned char *)&buf[0], buf.length(),
                            ctr_drbg_random, &g_ssl.ctr_drbg);
    if (ret < 0)
    {
        hr = CHECK_ERROR(_ssl::setError(ret));
        goto exit;
    }

    cert = new X509Cert();
    hr = cert->load(buf.c_str());
    if (hr < 0)
        goto exit;

    retVal = cert;

exit:
    x509write_crt_free(&m_crt);

    return hr;
}