int dldp_pgonMake(dldp_p* dp, randomGeneratorContext* rgc, size_t pbits, size_t qbits) { /* * Generate parameters with a prime p such that p = qr+1, with q prime, and r = 2s, with s prime */ register size_t psize = MP_BITS_TO_WORDS(pbits + MP_WBITS - 1); register mpw* temp = (mpw*) malloc((8*psize+2) * sizeof(mpw)); if (temp) { /* generate q */ mpprnd_w(&dp->q, rgc, qbits, mpptrials(qbits), (const mpnumber*) 0, temp); /* generate p with the appropriate congruences */ mpprndconone_w(&dp->p, rgc, pbits, mpptrials(pbits), &dp->q, (const mpnumber*) 0, &dp->r, 2, temp); /* set n */ mpbsubone(&dp->p, temp); mpbset(&dp->n, psize, temp); dldp_pgonGenerator_w(dp, rgc, temp); free(temp); return 0; } return -1; }
int dldp_pgoqMake(dldp_p* dp, randomGeneratorContext* rgc, size_t pbits, size_t qbits, int cofactor) { /* * Generate parameters as described by IEEE P1363, A.16.1 */ register size_t psize = MP_BITS_TO_WORDS(pbits + MP_WBITS - 1); register mpw* temp = (mpw*) malloc((8*psize+2) * sizeof(mpw)); if (temp) { /* first generate q */ mpprnd_w(&dp->q, rgc, qbits, mpptrials(qbits), (const mpnumber*) 0, temp); /* generate p with the appropriate congruences */ mpprndconone_w(&dp->p, rgc, pbits, mpptrials(pbits), &dp->q, (const mpnumber*) 0, &dp->r, cofactor, temp); /* clear n */ mpbzero(&dp->n); /* clear g */ mpnzero(&dp->g); dldp_pgoqGenerator_w(dp, rgc, temp); free(temp); return 0; } return -1; }
int dldp_pgonMakeSafe(dldp_p* dp, randomGeneratorContext* rgc, size_t pbits) { /* * Generate parameters with a safe prime; i.e. p = 2q+1, where q is prime */ register size_t psize = MP_BITS_TO_WORDS(pbits + MP_WBITS - 1); register mpw* temp = (mpw*) malloc((8*psize+2) * sizeof(mpw)); if (temp) { /* generate safe p */ mpprndsafe_w(&dp->p, rgc, pbits, mpptrials(pbits), temp); /* set n */ mpbsubone(&dp->p, temp); mpbset(&dp->n, psize, temp); /* set q */ mpcopy(psize, temp, dp->p.modl); mpdivtwo(psize, temp); mpbset(&dp->q, psize, temp); /* set r = 2 */ mpnsetw(&dp->r, 2); dldp_pgonGenerator_w(dp, rgc, temp); free(temp); return 0; } return -1; }
int dldp_pgoqMakeSafe(dldp_p* dp, randomGeneratorContext* rgc, size_t bits) { /* * Generate parameters with a safe prime; p = 2q+1 i.e. r=2 * */ register size_t size = MP_BITS_TO_WORDS(bits + MP_WBITS - 1); register mpw* temp = (mpw*) malloc((8*size+2) * sizeof(mpw)); if (temp) { /* generate p */ mpprndsafe_w(&dp->p, rgc, bits, mpptrials(bits), temp); /* set q */ mpcopy(size, temp, dp->p.modl); mpdivtwo(size, temp); mpbset(&dp->q, size, temp); /* set r = 2 */ mpnsetw(&dp->r, 2); /* clear n */ mpbzero(&dp->n); dldp_pgoqGenerator_w(dp, rgc, temp); free(temp); return 0; } return -1; }
/* * needs workspace of (8*size+2) words */ void mpprndconone_w(mpbarrett* p, randomGeneratorContext* rc, size_t bits, int t, const mpbarrett* q, const mpnumber* f, mpnumber* r, int cofactor, mpw* wksp) { /* * Generate a prime p with n bits such that p mod q = 1, and p = qr+1 where r = 2s * * Conditions: q > 2 and size(q) < size(p) and size(f) <= size(p) * * Conditions: r must be chosen so that r is even, otherwise p will be even! * * if cofactor == 0, then s will be chosen randomly * if cofactor == 1, then make sure that q does not divide r, i.e.: * q cannot be equal to r, since r is even, and q > 2; hence if q <= r make sure that GCD(q,r) == 1 * if cofactor == 2, then make sure that s is prime * * Optional input f: if f is not null, then search p so that GCD(p-1,f) = 1 */ mpbinit(p, MP_BITS_TO_WORDS(bits + MP_WBITS - 1)); if (p->modl != (mpw*) 0) { size_t sbits = bits - mpbits(q->size, q->modl) - 1; mpbarrett s; mpbzero(&s); mpbinit(&s, MP_BITS_TO_WORDS(sbits + MP_WBITS - 1)); while (1) { mpprndbits(&s, sbits, 0, (mpnumber*) 0, (mpnumber*) 0, rc, wksp); if (cofactor == 1) { mpsetlsb(s.size, s.modl); /* if (q <= s) check if GCD(q,s) != 1 */ if (mplex(q->size, q->modl, s.size, s.modl)) { /* we can find adequate storage for computing the gcd in s->wksp */ mpsetx(s.size, wksp, q->size, q->modl); mpgcd_w(s.size, s.modl, wksp, wksp+s.size, wksp+2*s.size); if (!mpisone(s.size, wksp+s.size)) continue; } } else if (cofactor == 2) { mpsetlsb(s.size, s.modl); } if (cofactor == 2) { /* do a small prime product trial division test on r */ if (!mppsppdiv_w(&s, wksp)) continue; } /* multiply q*s */ mpmul(wksp, s.size, s.modl, q->size, q->modl); /* s.size + q.size may be greater than p.size by 1, but the product will fit exactly into p */ mpsetx(p->size, p->modl, s.size+q->size, wksp); /* multiply by two and add 1 */ mpmultwo(p->size, p->modl); mpaddw(p->size, p->modl, 1); /* test if the product actually contains enough bits */ if (mpbits(p->size, p->modl) < bits) continue; /* do a small prime product trial division test on p */ if (!mppsppdiv_w(p, wksp)) continue; /* if we have an f, do the congruence test */ if (f != (mpnumber*) 0) { mpcopy(p->size, wksp, p->modl); mpsubw(p->size, wksp, 1); mpsetx(p->size, wksp, f->size, f->data); mpgcd_w(p->size, wksp, wksp+p->size, wksp+2*p->size, wksp+3*p->size); if (!mpisone(p->size, wksp+2*p->size)) continue; } /* if cofactor is two, test if s is prime */ if (cofactor == 2) { mpbmu_w(&s, wksp); if (!mppmilrab_w(&s, rc, mpptrials(sbits), wksp)) continue; } /* candidate has passed so far, now we do the probabilistic test on p */ mpbmu_w(p, wksp); if (!mppmilrab_w(p, rc, t, wksp)) continue; mpnset(r, s.size, s.modl); mpmultwo(r->size, r->data); mpbfree(&s); return; } } }