/* Return non-zero iff c+i*d is an exact square (a+i*b)^2, with a, b both of the form m*2^e with m, e integers. If so, returns in a+i*b the corresponding square root, with a >= 0. The variables a, b must not overlap with c, d. We have c = a^2 - b^2 and d = 2*a*b. If one of a, b is exact, then both are (see algorithms.tex). Case 1: a <> 0 and b <> 0. Let a = m*2^e and b = n*2^f with m, e, n, f integers, m and n odd (we will treat apart the case a = 0 or b = 0). Then 2*a*b = m*n*2^(e+f+1), thus necessarily e+f >= -1. Assume e < 0, then f >= 0, then a^2 - b^2 = m^2*2^(2e) - n^2*2^(2f) cannot be an integer, since n^2*2^(2f) is an integer, and m^2*2^(2e) is not. Similarly when f < 0 (and thus e >= 0). Thus we have e, f >= 0, and a, b are both integers. Let A = 2a^2, then eliminating b between c = a^2 - b^2 and d = 2*a*b gives A^2 - 2c*A - d^2 = 0, which has solutions c +/- sqrt(c^2+d^2). We thus need c^2+d^2 to be a square, and c + sqrt(c^2+d^2) --- the solution we are interested in --- to be two times a square. Then b = d/(2a) is necessarily an integer. Case 2: a = 0. Then d is necessarily zero, thus it suffices to check whether c = -b^2, i.e., if -c is a square. Case 3: b = 0. Then d is necessarily zero, thus it suffices to check whether c = a^2, i.e., if c is a square. */ static int mpc_perfect_square_p (mpz_t a, mpz_t b, mpz_t c, mpz_t d) { if (mpz_cmp_ui (d, 0) == 0) /* case a = 0 or b = 0 */ { /* necessarily c < 0 here, since we have already considered the case where x is real non-negative and y is real */ MPC_ASSERT (mpz_cmp_ui (c, 0) < 0); mpz_neg (b, c); if (mpz_perfect_square_p (b)) /* case 2 above */ { mpz_sqrt (b, b); mpz_set_ui (a, 0); return 1; /* c + i*d = (0 + i*b)^2 */ } } else /* both a and b are non-zero */ { if (mpz_divisible_2exp_p (d, 1) == 0) return 0; /* d must be even */ mpz_mul (a, c, c); mpz_addmul (a, d, d); /* c^2 + d^2 */ if (mpz_perfect_square_p (a)) { mpz_sqrt (a, a); mpz_add (a, c, a); /* c + sqrt(c^2+d^2) */ if (mpz_divisible_2exp_p (a, 1)) { mpz_tdiv_q_2exp (a, a, 1); if (mpz_perfect_square_p (a)) { mpz_sqrt (a, a); mpz_tdiv_q_2exp (b, d, 1); /* d/2 */ mpz_divexact (b, b, a); /* d/(2a) */ return 1; } } } } return 0; /* not a square */ }
void check_random (int argc, char **argv) { gmp_randstate_ptr rands = RANDS; double d; mpq_t q; mpz_t a, t; int exp; int test, reps = 100000; if (argc == 2) reps = 100 * atoi (argv[1]); mpq_init (q); mpz_init (a); mpz_init (t); for (test = 0; test < reps; test++) { mpz_rrandomb (a, rands, 53); mpz_urandomb (t, rands, 32); exp = mpz_get_ui (t) % (2*MAXEXP) - MAXEXP; d = my_ldexp (mpz_get_d (a), exp); mpq_set_d (q, d); /* Check that n/d = a * 2^exp, or d*a 2^{exp} = n */ mpz_mul (t, a, mpq_denref (q)); if (exp > 0) mpz_mul_2exp (t, t, exp); else { if (!mpz_divisible_2exp_p (t, -exp)) goto fail; mpz_div_2exp (t, t, -exp); } if (mpz_cmp (t, mpq_numref (q)) != 0) { fail: printf ("ERROR (check_random test %d): bad mpq_set_d results\n", test); printf ("%.16g\n", d); gmp_printf ("%Qd\n", q); abort (); } } mpq_clear (q); mpz_clear (t); mpz_clear (a); }
void check_one (mpz_srcptr a, unsigned long d, int want) { int got; got = (mpz_divisible_2exp_p (a, d) != 0); if (want != got) { printf ("mpz_divisible_2exp_p wrong\n"); printf (" expected %d got %d\n", want, got); mpz_trace (" a", a); printf (" d=%lu\n", d); mp_trace_base = -16; mpz_trace (" a", a); printf (" d=0x%lX\n", d); abort (); } }
/* Input: p is the initial generator (sigma), if 0, generate it at random. N is the number to factor B1 is the stage 1 bound B2 is the stage 2 bound B1done is the stage 1 limit to which supplied residue has already been computed k is the number of blocks for stage 2 verbose is the verbosity level Output: f is the factor found, p is the residue at end of stage 1 Return value: non-zero iff a factor is found (1 for stage 1, 2 for stage 2) */ int pm1 (mpz_t f, mpz_t p, mpz_t N, mpz_t go, double *B1done, double B1, mpz_t B2min_parm, mpz_t B2_parm, double B2scale, unsigned long k, const int S, int verbose, int repr, int use_ntt, FILE *os, FILE *es, char *chkfilename, char *TreeFilename, double maxmem, gmp_randstate_t rng, int (*stop_asap)(void)) { int youpi = ECM_NO_FACTOR_FOUND; int base2 = 0; int Nbits, smallbase; int po2 = 0; /* Whether we should use power-of-2 poly degree */ long st; mpmod_t modulus; mpres_t x; mpz_t B2min, B2; /* Local B2, B2min to avoid changing caller's values */ unsigned long dF; root_params_t root_params; faststage2_param_t faststage2_params; /* If stage2_variant != 0, we use the new fast stage 2 */ const int stage2_variant = (S == 1 || S == ECM_DEFAULT_S); set_verbose (verbose); ECM_STDOUT = (os == NULL) ? stdout : os; ECM_STDERR = (es == NULL) ? stdout : es; /* if n is even, return 2 */ if (mpz_divisible_2exp_p (N, 1)) { mpz_set_ui (f, 2); return ECM_FACTOR_FOUND_STEP1; } st = cputime (); if (mpz_cmp_ui (p, 0) == 0) pm1_random_seed (p, N, rng); mpz_init_set (B2min, B2min_parm); mpz_init_set (B2, B2_parm); /* Set default B2. See ecm.c for comments */ if (ECM_IS_DEFAULT_B2(B2)) { if (stage2_variant == 0) mpz_set_d (B2, B2scale * pow (B1 * PM1_COST, DEFAULT_B2_EXPONENT)); else mpz_set_d (B2, B2scale * pow (B1 * PM1FS2_COST, PM1FS2_DEFAULT_B2_EXPONENT)); } /* set B2min */ if (mpz_sgn (B2min) < 0) mpz_set_d (B2min, B1); if (repr != ECM_MOD_DEFAULT && repr != ECM_MOD_NOBASE2) { if (repr == ECM_MOD_MODMULN) mpmod_init_MODMULN (modulus, N); else if (repr == ECM_MOD_REDC) mpmod_init_REDC (modulus, N); else if (abs (repr) > 16) { if (mpmod_init_BASE2 (modulus, repr, N) == ECM_ERROR) return ECM_ERROR; } else mpmod_init_MPZ (modulus, N); } else /* automatic choice */ { /* Find a good arithmetic for this number */ Nbits = mpz_sizeinbase (N, 2); base2 = (repr == 0) ? isbase2 (N, BASE2_THRESHOLD) : 0; smallbase = mpz_fits_uint_p (p); /* TODO: make dependent on Nbits and base2 */ if (base2) { mpmod_init_BASE2 (modulus, base2, N); } else if (mpz_size (N) <= 2 * POWM_THRESHOLD && smallbase && B1 <= 1e6) /* Below POWM_THRESHOLD, mpz_powm uses MODMULN reduction, too, but without special code for small bases which makes our MODMULN faster. Above POWM_THRESHOLD mpz_powm uses faster mod reduction, at about 2*POWM_THRESHOLD it catches up with our smallbase-MODMULN and then is faster until REDC takes over. */ { outputf (OUTPUT_VERBOSE, "Using MODMULN\n"); mpmod_init_MODMULN (modulus, N); } else if (Nbits > 50000 || (Nbits > 3500 && smallbase)) { outputf (OUTPUT_VERBOSE, "Using REDC\n"); mpmod_init_REDC (modulus, N); } else { outputf (OUTPUT_VERBOSE, "Using mpz_powm\n"); mpmod_init_MPZ (modulus, N); } } /* Determine parameters (polynomial degree etc.) */ if (stage2_variant != 0) { long P_ntt, P_nontt; const unsigned long lmax = 1UL<<28; /* An upper bound */ unsigned long lmax_NTT, lmax_noNTT; faststage2_param_t params_ntt, params_nontt, *better_params; mpz_init (faststage2_params.m_1); faststage2_params.l = 0; mpz_init (params_ntt.m_1); params_ntt.l = 0; mpz_init (params_nontt.m_1); params_nontt.l = 0; /* Find out what the longest transform length is we can do at all. If no maxmem is given, the non-NTT can theoretically do any length. */ lmax_NTT = 0; if (use_ntt) { unsigned long t; /* See what transform length the NTT can handle (due to limited primes and limited memory) */ t = mpzspm_max_len (N); lmax_NTT = MIN (lmax, t); if (maxmem != 0.) { t = pm1fs2_maxlen (double_to_size (maxmem), N, use_ntt); lmax_NTT = MIN (lmax_NTT, t); } outputf (OUTPUT_DEVVERBOSE, "NTT can handle lmax <= %lu\n", lmax_NTT); /* FIXME: if both ntt and no-ntt are tried, but finally ntt is preferred, the last B2 bound computed is that of no-ntt, which is thus wrong */ P_ntt = choose_P (B2min, B2, lmax_NTT, k, ¶ms_ntt, B2min, B2, 1, ECM_PM1); if (P_ntt != ECM_ERROR) outputf (OUTPUT_DEVVERBOSE, "Parameters for NTT: P=%lu, l=%lu\n", params_ntt.P, params_ntt.l); } else P_ntt = 0; /* or GCC complains about uninitialized var */ /* See what transform length the non-NTT code can handle */ lmax_noNTT = lmax; if (maxmem != 0.) { unsigned long t; t = pm1fs2_maxlen (double_to_size (maxmem), N, 0); lmax_noNTT = MIN (lmax_noNTT, t); outputf (OUTPUT_DEVVERBOSE, "non-NTT can handle lmax <= %lu\n", lmax_noNTT); } if (use_ntt != 2) P_nontt = choose_P (B2min, B2, lmax_noNTT, k, ¶ms_nontt, B2min, B2, 0, ECM_PM1); else P_nontt = ECM_ERROR; if (P_nontt != ECM_ERROR) outputf (OUTPUT_DEVVERBOSE, "Parameters for non-NTT: P=%lu, l=%lu\n", params_nontt.P, params_nontt.l); if (((!use_ntt || P_ntt == ECM_ERROR) && P_nontt == ECM_ERROR) || (use_ntt == 2 && P_ntt == ECM_ERROR)) { outputf (OUTPUT_ERROR, "Error: cannot choose suitable P value for your stage 2 " "parameters.\nTry a shorter B2min,B2 interval.\n"); mpz_clear (faststage2_params.m_1); mpz_clear (params_ntt.m_1); mpz_clear (params_nontt.m_1); return ECM_ERROR; } /* Now decide wether to take NTT or non-NTT. How to choose the better one is not an easy question. It will depend on the speed ratio between NTT/non-NTT code, their difference in memory use and available memory. For now, we choose the one that uses a longer transform length. FIXME: Write something not brain-dead here */ if (use_ntt == 0 || P_ntt == ECM_ERROR || (use_ntt == 1 && params_nontt.l > params_ntt.l)) { better_params = ¶ms_nontt; use_ntt = 0; } else { better_params = ¶ms_ntt; use_ntt = 1; } faststage2_params.P = better_params->P; faststage2_params.s_1 = better_params->s_1; faststage2_params.s_2 = better_params->s_2; faststage2_params.l = better_params->l; mpz_set (faststage2_params.m_1, better_params->m_1); mpz_clear (params_ntt.m_1); mpz_clear (params_nontt.m_1); if (maxmem != 0.) outputf (OUTPUT_VERBOSE, "Using lmax = %lu with%s NTT which takes " "about %luMB of memory\n", faststage2_params.l, (use_ntt) ? "" : "out", pm1fs2_memory_use (faststage2_params.l, N, use_ntt)/1048576); } else { mpz_init (root_params.i0); root_params.d2 = 0; /* Enable automatic choice of d2 */ if (use_ntt || (modulus->repr == ECM_MOD_BASE2 && modulus->Fermat > 0)) po2 = 1; if (bestD (&root_params, &k, &dF, B2min, B2, po2, use_ntt, maxmem, (TreeFilename != NULL), modulus) == ECM_ERROR) { youpi = ECM_ERROR; goto clear_and_exit; } root_params.S = S; /* Set default degree for Brent-Suyama extension */ if (root_params.S == ECM_DEFAULT_S) { if (modulus->repr == ECM_MOD_BASE2 && modulus->Fermat > 0) { /* For Fermat numbers, default is 2 (no Brent-Suyama) */ root_params.S = 2; } else { mpz_t t; mpz_init (t); mpz_sub (t, B2, B2min); if (mpz_cmp_d (t, 3.5e5) < 0) /* B1 < 50000 */ root_params.S = -4; /* Dickson polys give a slightly better chance of success */ else if (mpz_cmp_d (t, 1.1e7) < 0) /* B1 < 500000 */ root_params.S = -6; else if (mpz_cmp_d (t, 1.25e8) < 0) /* B1 < 3000000 */ root_params.S = 12; /* but for S>6, S-th powers are faster thanks to invtrick */ else if (mpz_cmp_d (t, 7.e9) < 0) /* B1 < 50000000 */ root_params.S = 24; else if (mpz_cmp_d (t, 1.9e10) < 0) /* B1 < 100000000 */ root_params.S = 48; else if (mpz_cmp_d (t, 5.e11) < 0) /* B1 < 1000000000 */ root_params.S = 60; else root_params.S = 120; mpz_clear (t); } } /* We need Suyama's power even and at least 2 for P-1 stage 2 to work correctly */ if (root_params.S & 1) root_params.S *= 2; /* FIXME: Is this what the user would expect? */ } /* Print B1, B2, polynomial and x0 */ print_B1_B2_poly (OUTPUT_NORMAL, ECM_PM1, B1, *B1done, B2min_parm, B2min, B2, (stage2_variant == 0) ? root_params.S : 1, p, 0, NULL); /* If we do a stage 2, print its parameters */ if (mpz_cmp (B2, B2min) >= 0) { if (stage2_variant != 0) outputf (OUTPUT_VERBOSE, "P = %lu, l = %lu, s_1 = %lu, k = s_2 = %lu, " "m_1 = %Zd\n", faststage2_params.P, faststage2_params.l, faststage2_params.s_1,faststage2_params.s_2, faststage2_params.m_1); else outputf (OUTPUT_VERBOSE, "dF=%lu, k=%lu, d=%lu, d2=%lu, i0=%Zd\n", dF, k, root_params.d1, root_params.d2, root_params.i0); } if (test_verbose (OUTPUT_VERBOSE)) { if (mpz_sgn (B2min_parm) >= 0) { outputf (OUTPUT_VERBOSE, "Can't compute success probabilities for B1 <> B2min\n"); } else { rhoinit (256, 10); print_prob (B1, B2, dF, k, (stage2_variant == 0) ? root_params.S : 1, go); } } mpres_init (x, modulus); mpres_set_z (x, p, modulus); st = cputime (); if (B1 > *B1done) youpi = pm1_stage1 (f, x, modulus, B1, B1done, go, stop_asap, chkfilename); st = elltime (st, cputime ()); outputf (OUTPUT_NORMAL, "Step 1 took %ldms\n", st); if (test_verbose (OUTPUT_RESVERBOSE)) { mpz_t tx; mpz_init (tx); mpres_get_z (tx, x, modulus); outputf (OUTPUT_RESVERBOSE, "x=%Zd\n", tx); mpz_clear (tx); } if (stop_asap != NULL && (*stop_asap) ()) goto clear_and_exit; if (youpi == ECM_NO_FACTOR_FOUND && mpz_cmp (B2, B2min) >= 0) { if (stage2_variant != 0) { if (use_ntt) youpi = pm1fs2_ntt (f, x, modulus, &faststage2_params); else youpi = pm1fs2 (f, x, modulus, &faststage2_params); } else youpi = stage2 (f, &x, modulus, dF, k, &root_params, ECM_PM1, use_ntt, TreeFilename, stop_asap); } if (test_verbose (OUTPUT_VERBOSE)) { if (mpz_sgn (B2min_parm) < 0) rhoinit (1, 0); /* Free memory of rhotable */ } clear_and_exit: mpres_get_z (p, x, modulus); mpres_clear (x, modulus); mpmod_clear (modulus); if (stage2_variant != 0) mpz_clear (faststage2_params.m_1); else mpz_clear (root_params.i0); mpz_clear (B2); mpz_clear (B2min); return youpi; }
/* Input: p is the initial generator (sigma), if 0 generate it at random. n is the number to factor B1 is the stage 1 bound B2 is the stage 2 bound k is the number of blocks for stage 2 verbose is the verbosity level Output: p is the factor found Return value: non-zero iff a factor is found (1 for stage 1, 2 for stage 2) */ int pp1 (mpz_t f, mpz_t p, mpz_t n, mpz_t go, double *B1done, double B1, mpz_t B2min_parm, mpz_t B2_parm, double B2scale, unsigned long k, const int S, int verbose, int repr, int use_ntt, FILE *os, FILE *es, char *chkfilename, char *TreeFilename, double maxmem, gmp_randstate_t rng, int (*stop_asap)(void)) { int youpi = ECM_NO_FACTOR_FOUND; int po2 = 0; /* Whether we should use power-of-2 poly degree */ long st; mpres_t a; mpmod_t modulus; mpz_t B2min, B2; /* Local B2, B2min to avoid changing caller's values */ unsigned long dF; root_params_t root_params; faststage2_param_t faststage2_params; const int stage2_variant = (S == 1 || S == ECM_DEFAULT_S); int twopass = 0; set_verbose (verbose); ECM_STDOUT = (os == NULL) ? stdout : os; ECM_STDERR = (es == NULL) ? stdout : es; /* if n is even, return 2 */ if (mpz_divisible_2exp_p (n, 1)) { mpz_set_ui (f, 2); return ECM_FACTOR_FOUND_STEP1; } st = cputime (); if (mpz_cmp_ui (p, 0) == 0) pm1_random_seed (p, n, rng); mpz_init_set (B2min, B2min_parm); mpz_init_set (B2, B2_parm); /* Set default B2. See ecm.c for comments */ if (ECM_IS_DEFAULT_B2(B2)) { if (stage2_variant == 0) mpz_set_d (B2, B2scale * pow (B1 * PP1_COST, DEFAULT_B2_EXPONENT)); else mpz_set_d (B2, B2scale * pow (B1 * PP1FS2_COST, PM1FS2_DEFAULT_B2_EXPONENT)); } /* set B2min */ if (mpz_sgn (B2min) < 0) mpz_set_d (B2min, B1); mpmod_init (modulus, n, repr); if (use_ntt) po2 = 1; if (stage2_variant != 0) { long P; const unsigned long lmax = 1UL<<28; /* An upper bound */ unsigned long lmax_NTT, lmax_noNTT; mpz_init (faststage2_params.m_1); faststage2_params.l = 0; /* Find out what the longest transform length is we can do at all. If no maxmem is given, the non-NTT can theoretically do any length. */ lmax_NTT = 0; if (use_ntt) { unsigned long t, t2 = 0; /* See what transform length that the NTT can handle (due to limited primes and limited memory) */ t = mpzspm_max_len (n); lmax_NTT = MIN (lmax, t); if (maxmem != 0.) { t = pp1fs2_maxlen (double_to_size (maxmem), n, use_ntt, 0); t = MIN (t, lmax_NTT); /* Maybe the two pass variant lets us use a longer transform */ t2 = pp1fs2_maxlen (double_to_size (maxmem), n, use_ntt, 1); t2 = MIN (t2, lmax_NTT); if (t2 > t) { t = t2; twopass = 1; } lmax_NTT = t; } outputf (OUTPUT_DEVVERBOSE, "NTT can handle lmax <= %lu\n", lmax_NTT); } /* See what transform length that the non-NTT code can handle */ lmax_noNTT = lmax; if (maxmem != 0.) { unsigned long t; t = pp1fs2_maxlen (double_to_size (maxmem), n, 0, 0); lmax_noNTT = MIN (lmax_noNTT, t); outputf (OUTPUT_DEVVERBOSE, "non-NTT can handle lmax <= %lu\n", lmax_noNTT); } P = choose_P (B2min, B2, MAX(lmax_noNTT, lmax_NTT), k, &faststage2_params, B2min, B2, use_ntt, ECM_PP1); if (P == ECM_ERROR) { outputf (OUTPUT_ERROR, "Error: cannot choose suitable P value for your stage 2 " "parameters.\nTry a shorter B2min,B2 interval.\n"); mpz_clear (faststage2_params.m_1); return ECM_ERROR; } /* See if the selected parameters let us use NTT or not */ if (faststage2_params.l > lmax_NTT) use_ntt = 0; if (maxmem != 0.) { unsigned long MB; char *s; if (!use_ntt) s = "out"; else if (twopass) s = " two pass"; else s = " one pass"; MB = pp1fs2_memory_use (faststage2_params.l, n, use_ntt, twopass) / 1048576; outputf (OUTPUT_VERBOSE, "Using lmax = %lu with%s NTT which takes " "about %luMB of memory\n", faststage2_params.l, s, MB); } } else { mpz_init (root_params.i0); root_params.d2 = 0; /* Enable automatic choice of d2 */ if (bestD (&root_params, &k, &dF, B2min, B2, po2, use_ntt, maxmem, (TreeFilename != NULL), modulus) == ECM_ERROR) { youpi = ECM_ERROR; goto clear_and_exit; } /* Set default degree for Brent-Suyama extension */ root_params.S = S; if (root_params.S == ECM_DEFAULT_S) { if (modulus->repr == ECM_MOD_BASE2 && modulus->Fermat > 0) { /* For Fermat numbers, default is 1 (no Brent-Suyama) */ root_params.S = 1; } else { mpz_t t; mpz_init (t); mpz_sub (t, B2, B2min); root_params.S = choose_S (t); mpz_clear (t); } } } /* Print B1, B2, polynomial and x0 */ print_B1_B2_poly (OUTPUT_NORMAL, ECM_PP1, B1, *B1done, B2min_parm, B2min, B2, (stage2_variant == 0) ? root_params.S : 1, p, 0, NULL); /* If we do a stage 2, print its parameters */ if (mpz_cmp (B2, B2min) >= 0) { if (stage2_variant != 0) outputf (OUTPUT_VERBOSE, "P = %lu, l = %lu, s_1 = %lu, k = s_2 = %lu, " "m_1 = %Zd\n", faststage2_params.P, faststage2_params.l, faststage2_params.s_1,faststage2_params.s_2, faststage2_params.m_1); else outputf (OUTPUT_VERBOSE, "dF=%lu, k=%lu, d=%lu, d2=%lu, i0=%Zd\n", dF, k, root_params.d1, root_params.d2, S == 1 ? faststage2_params.m_1 : root_params.i0); } mpres_init (a, modulus); mpres_set_z (a, p, modulus); /* since pp1_mul_prac takes an ecm_uint, we have to check that B1 <= ECM_UINT_MAX */ if (B1 > (double) ECM_UINT_MAX) { outputf (OUTPUT_ERROR, "Error, maximal step1 bound for P+1 is %lu\n", ECM_UINT_MAX); youpi = ECM_ERROR; goto clear_and_exit; } if (B1 > *B1done) youpi = pp1_stage1 (f, a, modulus, B1, B1done, go, stop_asap, chkfilename); outputf (OUTPUT_NORMAL, "Step 1 took %ldms\n", elltime (st, cputime ())); if (test_verbose (OUTPUT_RESVERBOSE)) { mpz_t t; mpz_init (t); mpres_get_z (t, a, modulus); outputf (OUTPUT_RESVERBOSE, "x=%Zd\n", t); mpz_clear (t); } mpres_get_z (p, a, modulus); if (stop_asap != NULL && (*stop_asap) ()) goto clear_and_exit; if (youpi == ECM_NO_FACTOR_FOUND && mpz_cmp (B2, B2min) >= 0) { if (stage2_variant != 0) { if (use_ntt) youpi = pp1fs2_ntt (f, a, modulus, &faststage2_params, twopass); else youpi = pp1fs2 (f, a, modulus, &faststage2_params); } else youpi = stage2 (f, &a, modulus, dF, k, &root_params, ECM_PP1, use_ntt, TreeFilename, stop_asap); } if (youpi > 0 && test_verbose (OUTPUT_NORMAL)) pp1_check_factor (p, f); /* tell user if factor was found by P-1 */ clear_and_exit: mpres_clear (a, modulus); mpmod_clear (modulus); if (stage2_variant != 0) mpz_clear (faststage2_params.m_1); else mpz_clear (root_params.i0); mpz_clear (B2); mpz_clear (B2min); return youpi; }