Esempio n. 1
0
/**
 * This is a general function to count divisors. It will work
 * for any integer.
 *
 * We can optimise. If sqrt(num) is also a divisor, there are
 * an odd number of divisors.
 * All divisors have pairs so we only need to check half of them.
 * ie. up to sqrt(num)
 */
int mpz_count_divisors(const mpz_t num) {
	int count=0;
	mpz_t div;
	mpz_t sqt;
	mpz_init(sqt);
	mpz_init(div);

	mpz_sqrtrem(sqt,div,num);
	if(!mpz_cmp_ui(div,0)){
		count--;
		if(/*div not num*/1) {}
	}

	mpz_set(div,sqt);
	do {
		if(mpz_divisible_p(num,div)){
			count++;count++;
		}
		mpz_sub_ui(div,div,1);
	} while(mpz_cmp_ui(div,0));

	mpz_clear(div);
	mpz_clear(sqt);

	return count;
}
Esempio n. 2
0
static Variant HHVM_FUNCTION(gmp_sqrtrem,
                             const Variant& data) {
  mpz_t gmpData, gmpSquareRoot, gmpRemainder;

  if (!variantToGMPData(cs_GMP_FUNC_NAME_GMP_SQRTREM, gmpData, data)) {
    return false;
  }

  if (mpz_sgn(gmpData) < 0) {
    raise_warning(cs_GMP_INVALID_NUMBER_IS_NEGATIVE,
                  cs_GMP_FUNC_NAME_GMP_SQRTREM);
    return false;
  }

  mpz_init(gmpSquareRoot);
  mpz_init(gmpRemainder);

  mpz_sqrtrem(gmpSquareRoot, gmpRemainder, gmpData);

  ArrayInit returnArray(2, ArrayInit::Map{});
  returnArray.set(0, NEWOBJ(GMPResource)(gmpSquareRoot));
  returnArray.set(1, NEWOBJ(GMPResource)(gmpRemainder));

  mpz_clear(gmpData);
  mpz_clear(gmpSquareRoot);
  mpz_clear(gmpRemainder);

  return returnArray.toVariant();
}
Esempio n. 3
0
static PyObject *
GMPy_MPZ_Function_IsqrtRem(PyObject *self, PyObject *other)
{
    MPZ_Object *root = NULL, *rem = NULL, *temp = NULL;
    PyObject *result;

    if (!(temp = GMPy_MPZ_From_Integer(other, NULL))) {
        TYPE_ERROR("isqrt_rem() requires 'mpz' argument");
        return NULL;
    }

    if (mpz_sgn(temp->z) < 0) {
        VALUE_ERROR("isqrt_rem() of negative number");
        Py_DECREF((PyObject*)temp);
        return NULL;
    }




    if (!(result = PyTuple_New(2)) ||
        !(root = GMPy_MPZ_New(NULL)) ||
        !(rem = GMPy_MPZ_New(NULL))) {

        /* LCOV_EXCL_START */
        Py_DECREF((PyObject*)temp);
        Py_XDECREF(result);
        Py_XDECREF((PyObject*)root);
        Py_XDECREF((PyObject*)rem);
        return NULL;
        /* LCOV_EXCL_STOP */
    }

    mpz_sqrtrem(root->z, rem->z, temp->z);
    Py_DECREF((PyObject*)temp);
    PyTuple_SET_ITEM(result, 0, (PyObject*)root);
    PyTuple_SET_ITEM(result, 1, (PyObject*)rem);
    return result;
}
Esempio n. 4
0
File: pnum.c Progetto: cgutman/pnum
int executeSumCalculation(mpz_t num)
{
	mpz_t sum, squareRoot, sqrtRem, st;
	mpz_t range, rem;
	int i;
	pthread_mutex_t mutex;
	pthread_cond_t cond;
	unsigned long long termCount;
	int err;
	SUM_THREAD_CONTEXT contexts[SUM_THREADS_PER_CALC];

	mpz_init(squareRoot);
	mpz_init(sqrtRem);
	mpz_init(range);
	mpz_init(rem);

	pthread_mutex_init(&mutex, NULL);
	pthread_cond_init(&cond, NULL);
	termCount = 0;

	//The sum starts at 1 because 1 is a factor of any number
	mpz_init_set_ui(sum, 1);

	//We know that exactly 1 factor of every pair of factors will
	//appear before the square root.
	mpz_sqrtrem(squareRoot, sqrtRem, num);

	//Check if the the number is a square
	if (mpz_cmp_ui(sqrtRem, 0) != 0)
	{
		//Emulate ceil
		mpz_add_ui(squareRoot, squareRoot, 1);
	}

	//Factor starts at 2
	mpz_init_set_ui(st, 2);

	//Compute range
	mpz_mod_ui(rem, squareRoot, SUM_THREADS_PER_CALC);
	mpz_sub(squareRoot, squareRoot, rem);
	mpz_divexact_ui(range, squareRoot, SUM_THREADS_PER_CALC);

	for (i = 0; i < SUM_THREADS_PER_CALC; i++)
	{
		mpz_init_set(contexts[i].st, st);
		mpz_init_set(contexts[i].factor, st);
		mpz_init(contexts[i].otherfactor);
		mpz_add(st, st, range);
		if (i == 0)
		{
			mpz_sub_ui(st, st, 2);
		}
		mpz_init_set(contexts[i].end, st);
		if (i == 0)
		{
			mpz_add(contexts[i].end, contexts[i].end, rem);
			mpz_add(st, st, rem);
		}

		mpz_init_set(contexts[i].num, num);
		contexts[i].sum = &sum;
		contexts[i].termCount = &termCount;
		contexts[i].termMutex = &mutex;
		contexts[i].termVar = &cond;

		printf("Assigning work to sum thread %d\n", i);

		err = pthread_create(&contexts[i].id, NULL, SumThread, &contexts[i]);
		if (err != 0)
			return -1;
	}

	fflush(stdout);

	for (;;)
	{
		pthread_mutex_lock(&mutex);

		printf("%llu sum threads complete\n", termCount);
		fflush(stdout);

		if (termCount == SUM_THREADS_PER_CALC)
		{
			pthread_mutex_unlock(&mutex);
			break;
		}

		if (mpz_cmp(sum, num) > 0)
		{
			printf("sum is too large; terminating children\n");
			fflush(stdout);
			pthread_mutex_unlock(&mutex);
			break;
		}

		pthread_cond_wait(&cond, &mutex);

		pthread_mutex_unlock(&mutex);
	}

	for (i = 0; i < SUM_THREADS_PER_CALC; i++)
	{
		void *ret;

		pthread_cancel(contexts[i].id);

		pthread_join(contexts[i].id, &ret);

		mpz_clear(contexts[i].st);
		mpz_clear(contexts[i].num);
		mpz_clear(contexts[i].factor);
		mpz_clear(contexts[i].end);
		mpz_clear(contexts[i].otherfactor);
	}

	mpz_clear(squareRoot);
	mpz_clear(sqrtRem);
	mpz_clear(range);
	mpz_clear(rem);
	mpz_clear(st);

	if (mpz_cmp(sum, num) == 0)
	{
		mpz_clear(sum);
		return 1;
	}
	else
	{
		mpz_clear(sum);
		return 0;
	}
}
Esempio n. 5
0
int main(int argc, char **argv) {
	gettimeofday(&start_global, NULL);
	print_lib_version();

	mpz_init(N);
	mpz_t B;
	mpz_init(B);

	unsigned long int uBase;
	int64_t nb_primes;
	modular_root_t *modular_roots;

	uint64_t i, j;

	if (mpz_init_set_str(N, argv[1], 10) == -1) {
		printf("Cannot load N %s\n", argv[1]);
		exit(2);
	}

	mpz_t sqrtN, rem;
	mpz_init(sqrtN);
	mpz_init(rem);
	mpz_sqrtrem(sqrtN, rem, N);

	if (mpz_cmp_ui(rem, 0) != 0) /* if not perfect square, calculate the ceiling */
		mpz_add_ui(sqrtN, sqrtN, 1);
	else /* N is a perfect square, factored! */
	{
		printf("\n<<<[FACTOR]>>> %s\n", mpz_get_str(NULL, 10, sqrtN));
		return 0;
	}

	if (mpz_probab_prime_p(N, 10) > 0) /* don't bother factoring */
	{
		printf("N:%s is prime\n", mpz_get_str(NULL, 10, N));
		exit(0);
	}

	OPEN_LOG_FILE("freq");

//--------------------------------------------------------
//  calculate the smoothness base for the given N
//--------------------------------------------------------
	get_smoothness_base(B, N); /* if N is too small, the program will surely fail, please consider a pen and paper instead */
	uBase = mpz_get_ui(B);
	printf("n: %s\tBase: %s\n", mpz_get_str(NULL, 10, N),
			mpz_get_str(NULL, 10, B));

//--------------------------------------------------------
// sieve primes that are less than the smoothness base using Eratosthenes sieve
//--------------------------------------------------------
	START_TIMER();
	nb_primes = sieve_primes_up_to((int64_t) (uBase));

	printf("\nPrimes found %" PRId64 " [Smoothness Base %lu]\n", nb_primes,
			uBase);
	STOP_TIMER_PRINT_TIME("\tEratosthenes Sieving done");

//--------------------------------------------------------
// fill the primes array with primes to which n is a quadratic residue
//--------------------------------------------------------
	START_TIMER();
	primes = calloc(nb_primes, sizeof(int64_t));
	nb_qr_primes = fill_primes_with_quadratic_residue(primes, N);

	/*for(i=0; i<nb_qr_primes; i++)
	 printf("%" PRId64 "\n", primes[i]);*/

	printf("\nN-Quadratic primes found %" PRId64 "\n", nb_qr_primes);
	STOP_TIMER_PRINT_TIME("\tQuadratic prime filtering done");

//--------------------------------------------------------
// calculate modular roots
//--------------------------------------------------------
	START_TIMER();
	modular_roots = calloc(nb_qr_primes, sizeof(modular_root_t));
	mpz_t tmp, r1, r2;
	mpz_init(tmp);
	mpz_init(r1);
	mpz_init(r2);

	for (i = 0; i < nb_qr_primes; i++) {
		mpz_set_ui(tmp, (unsigned long) primes[i]);
		mpz_sqrtm(r1, N, tmp); /* calculate the modular root */
		mpz_neg(r2, r1); /* -q mod n */
		mpz_mod(r2, r2, tmp);

		modular_roots[i].root1 = mpz_get_ui(r1);
		modular_roots[i].root2 = mpz_get_ui(r2);
	}
	mpz_clear(tmp);
	mpz_clear(r1);
	mpz_clear(r2);
	STOP_TIMER_PRINT_TIME("\nModular roots calculation done");

	/*for(i=0; i<nb_qr_primes; i++)
	 {
	 printf("[%10" PRId64 "-> roots: %10u - %10u]\n", primes[i], modular_roots[i].root1, modular_roots[i].root2);
	 }*/

//--------------------------------------------------------
//         ***** initialize the matrix *****
//--------------------------------------------------------
	START_TIMER();
	init_matrix(&matrix, nb_qr_primes + NB_VECTORS_OFFSET, nb_qr_primes);
	mpz_init2(tmp_matrix_row, nb_qr_primes);
	STOP_TIMER_PRINT_TIME("\nMatrix initialized");

//--------------------------------------------------------
// [Sieving]
//--------------------------------------------------------
	START_TIMER();

	mpz_t x, sieving_index, next_sieving_index;
	unsigned long ui_index, SIEVING_STEP = 50000; /* we sieve for 50000 elements at each loop */
	uint64_t p_pow;
	smooth_number_t *x_squared;

	x_squared = calloc(SIEVING_STEP, sizeof(smooth_number_t));
	smooth_numbers = calloc(nb_qr_primes + NB_VECTORS_OFFSET,
			sizeof(smooth_number_t));

	mpz_init_set(x, sqrtN);
	mpz_init_set(sieving_index, x);
	mpz_init_set(next_sieving_index, x);

	mpz_t p;
	mpz_init(p);
	mpz_t str;
	mpz_init_set(str, sieving_index);
	printf("\nSieving ...\n");

//--------------------------------------------------------
// Init before sieving
//--------------------------------------------------------
	for (i = 0; i < SIEVING_STEP; i++) {
		mpz_init(x_squared[i].value_x);
		mpz_init(x_squared[i].value_x_squared);

		/* the factors_exp array is used to keep track of exponents */
		//x_squared[i].factors_exp = calloc(nb_qr_primes, sizeof(uint64_t));
		/* we use directly the exponents vector modulo 2 to preserve space */mpz_init2(
				x_squared[i].factors_vect, nb_qr_primes);
		mpz_add_ui(x, x, 1);
	}

	int nb_smooth_per_round = 0;
	char s[512];

//--------------------------------------------------------
// WHILE smooth numbers found less than the primes in the smooth base + NB_VECTORS_OFFSET
//--------------------------------------------------------
	while (nb_smooth_numbers_found < nb_qr_primes + NB_VECTORS_OFFSET) {
		nb_smooth_per_round = 0;
		mpz_set(x, next_sieving_index); /* sieve numbers from sieving_index to sieving_index + sieving_step */
		mpz_set(sieving_index, next_sieving_index);

		printf("\r");
		printf(
				"\t\tSieving at: %s30 <--> Smooth numbers found: %" PRId64 "/%" PRId64 "",
				mpz_get_str(NULL, 10, sieving_index), nb_smooth_numbers_found,
				nb_qr_primes);
		fflush(stdout);

		for (i = 0; i < SIEVING_STEP; i++) {
			mpz_set(x_squared[i].value_x, x);

			mpz_pow_ui(x_squared[i].value_x_squared, x, 2); /* calculate value_x_squared <- x²-n */
			mpz_sub(x_squared[i].value_x_squared, x_squared[i].value_x_squared,
					N);

			mpz_clear(x_squared[i].factors_vect);
			mpz_init2(x_squared[i].factors_vect, nb_qr_primes); /* reconstruct a new fresh 0ed vector of size nb_qr_primes bits */

			mpz_add_ui(x, x, 1);
		}
		mpz_set(next_sieving_index, x);

//--------------------------------------------------------
// eliminate factors in the x_squared array, those who are 'destructed' to 1 are smooth
//--------------------------------------------------------

		for (i = 0; i < nb_qr_primes; i++) {
			mpz_set_ui(p, (unsigned long) primes[i]);
			mpz_set(x, sieving_index);

			/* get the first multiple of p that is directly larger that sieving_index
			 * Quadratic SIEVING: all elements from this number and in positions multiples of root1 and root2
			 * are also multiples of p */
			get_sieving_start_index(x, x, p, modular_roots[i].root1);
			mpz_set(str, x);
			mpz_sub(x, x, sieving_index); /* x contains index of first number that is divisible by p */

			for (j = mpz_get_ui(x); j < SIEVING_STEP; j += primes[i]) {
				p_pow = mpz_remove(x_squared[j].value_x_squared,
						x_squared[j].value_x_squared, p); /* eliminate all factors of p */

				if (p_pow & 1) /* mark bit if odd power of p exists in this x_squared[j] */
				{
					mpz_setbit(x_squared[j].factors_vect, i);
				}

				if (mpz_cmp_ui(x_squared[j].value_x_squared, 1) == 0) {
					save_smooth_number(x_squared[j]);
					nb_smooth_per_round++;
				}
				/* sieve next element located p steps from here */
			}

			/* same goes for root2 */
			if (modular_roots[i].root2 == modular_roots[i].root1)
				continue;

			mpz_set(x, sieving_index);

			get_sieving_start_index(x, x, p, modular_roots[i].root2);
			mpz_set(str, x);
			mpz_sub(x, x, sieving_index);

			for (j = mpz_get_ui(x); j < SIEVING_STEP; j += primes[i]) {
				p_pow = mpz_remove(x_squared[j].value_x_squared,
						x_squared[j].value_x_squared, p);

				if (p_pow & 1) {
					mpz_setbit(x_squared[j].factors_vect, i);
				}

				if (mpz_cmp_ui(x_squared[j].value_x_squared, 1) == 0) {
					save_smooth_number(x_squared[j]);
					nb_smooth_per_round++;
				}
			}
		}
		//printf("\tSmooth numbers found %" PRId64 "\n", nb_smooth_numbers_found);
		/*sprintf(s, "[start: %s - end: %s - step: %" PRId64 "] nb_smooth_per_round: %d",
		 mpz_get_str(NULL, 10, sieving_index),
		 mpz_get_str(NULL, 10, next_sieving_index),
		 SIEVING_STEP,
		 nb_smooth_per_round);
		 APPEND_TO_LOG_FILE(s);*/
	}

	STOP_TIMER_PRINT_TIME("\nSieving DONE");

	uint64_t t = 0;

//--------------------------------------------------------
//the matrix ready, start Gauss elimination. The Matrix is filled on the call of save_smooth_number()
//--------------------------------------------------------
	START_TIMER();
	gauss_elimination(&matrix);
	STOP_TIMER_PRINT_TIME("\nGauss elimination done");
	//print_matrix_matrix(&matrix);
	//print_matrix_identity(&matrix);

	uint64_t row_index = nb_qr_primes + NB_VECTORS_OFFSET - 1; /* last row in the matrix */
	int nb_linear_relations = 0;
	mpz_t linear_relation_z, solution_z;
	mpz_init(linear_relation_z);
	mpz_init(solution_z);

	get_matrix_row(linear_relation_z, &matrix, row_index--); /* get the last few rows in the Gauss eliminated matrix*/
	while (mpz_cmp_ui(linear_relation_z, 0) == 0) {
		nb_linear_relations++;
		get_matrix_row(linear_relation_z, &matrix, row_index--);
	}

	printf("\tLinear dependent relations found : %d\n", nb_linear_relations);

//--------------------------------------------------------
// Factor
//--------------------------------------------------------
	//We use the last linear relation to reconstruct our solution
	START_TIMER();
	printf("\nFactorizing..\n");
	mpz_t solution_X, solution_Y;
	mpz_init(solution_X);
	mpz_init(solution_Y);

	/* we start testing from the first linear relation encountered in the matrix */
	for (j = nb_linear_relations; j > 0; j--) {
		printf("Trying %d..\n", nb_linear_relations - j + 1);
		mpz_set_ui(solution_X, 1);
		mpz_set_ui(solution_Y, 1);

		get_identity_row(solution_z, &matrix,
				nb_qr_primes + NB_VECTORS_OFFSET - j + 1);

		for (i = 0; i < nb_qr_primes; i++) {
			if (mpz_tstbit(solution_z, i)) {
				mpz_mul(solution_X, solution_X, smooth_numbers[i].value_x);
				mpz_mod(solution_X, solution_X, N); /* reduce x to modulo N */

				mpz_mul(solution_Y, solution_Y,
						smooth_numbers[i].value_x_squared);
				/*TODO: handling huge stuff here, there is no modulo N like in the solution_X case!
				 * eliminate squares as long as you go*/
			}
		}

		mpz_sqrt(solution_Y, solution_Y);
		mpz_mod(solution_Y, solution_Y, N); /* y = sqrt(MUL(xi²-n)) mod N */

		mpz_sub(solution_X, solution_X, solution_Y);

		mpz_gcd(solution_X, solution_X, N);

		if (mpz_cmp(solution_X, N) != 0 && mpz_cmp_ui(solution_X, 1) != 0) /* factor can be 1 or N, try another relation */
			break;
	}
	mpz_cdiv_q(solution_Y, N, solution_X);

	printf("\n>>>>>>>>>>> FACTORED %s =\n", mpz_get_str(NULL, 10, N));
	printf("\tFactor 1: %s \n\tFactor 2: %s", mpz_get_str(NULL, 10, solution_X),
			mpz_get_str(NULL, 10, solution_Y));

	/*sprintf(s, "\n>>>>>>>>>>> FACTORED %s =\n", mpz_get_str(NULL, 10, N));
	 APPEND_TO_LOG_FILE(s);
	 sprintf(s, "\tFactor 1: %s \n\tFactor 2: %s", mpz_get_str(NULL, 10, solution_X), mpz_get_str(NULL, 10, solution_Y));
	 APPEND_TO_LOG_FILE(s);

	 gettimeofday(&end_global, NULL);
	 timersub(&end_global, &start_global, &elapsed);
	 sprintf(s, "****** TOTAL TIME: %.3f ms\n", elapsed.tv_sec * 1000 + elapsed.tv_usec / (double) 1000);
	 APPEND_TO_LOG_FILE(s);*/

	STOP_TIMER_PRINT_TIME("\nFactorizing done");

	printf("Cleaning memory..\n");

	/********************** clear the x_squared array **********************/
	for (i = 0; i < SIEVING_STEP; i++) {
		mpz_clear(x_squared[i].value_x);
		mpz_clear(x_squared[i].value_x_squared);
		//free(x_squared[i].factors_exp);
		mpz_clear(x_squared[i].factors_vect);
	}
	free(x_squared);
	/********************** clear the x_squared array **********************/

	free(modular_roots);
	/********************** clear the smooth_numbers array **********************/
	for (i = 0; i < nb_qr_primes + NB_VECTORS_OFFSET; i++) {
		mpz_clear(smooth_numbers[i].value_x);
		mpz_clear(smooth_numbers[i].value_x_squared);
		//free(smooth_numbers[i].factors_exp);
	}
	free(smooth_numbers);
	/********************** clear the smooth_numbers array **********************/

	free(primes);
	/********************** clear mpz _t **********************/mpz_clear(B);
	mpz_clear(N);
	sqrtN, rem;
	mpz_clear(x);
	mpz_clear(sieving_index);
	mpz_clear(next_sieving_index);
	mpz_clear(p);
	mpz_clear(str);
	/********************** clear mpz _t **********************/

	free_matrix(&matrix);

	gettimeofday(&end_global, NULL);
	timersub(&end_global, &start_global, &elapsed);
	printf("****** TOTAL TIME: %.3f ms\n",
			elapsed.tv_sec * 1000 + elapsed.tv_usec / (double) 1000);
	show_mem_usage();
	return 0;
}
Esempio n. 6
0
int
main (int argc, char **argv)
{
  mpz_t x2;
  mpz_t x, rem;
  mpz_t temp, temp2;
  mp_size_t x2_size;
  int i;
  int reps = 1000;
  gmp_randstate_ptr rands;
  mpz_t bs;
  unsigned long size_range;

  tests_start ();
  TESTS_REPS (reps, argv, argc);

  rands = RANDS;

  mpz_init (bs);

  mpz_init (x2);
  mpz_init (x);
  mpz_init (rem);
  mpz_init (temp);
  mpz_init (temp2);

  for (i = 0; i < reps; i++)
    {
      mpz_urandomb (bs, rands, 32);
      size_range = mpz_get_ui (bs) % 17 + 2; /* 0..262144 bit operands */

      mpz_urandomb (bs, rands, size_range);
      x2_size = mpz_get_ui (bs);
      mpz_rrandomb (x2, rands, x2_size);

      /* printf ("%ld\n", SIZ (x2)); */

      mpz_sqrtrem (x, rem, x2);
      MPZ_CHECK_FORMAT (x);
      MPZ_CHECK_FORMAT (rem);

      mpz_mul (temp, x, x);

      /* Is square of result > argument?  */
      if (mpz_cmp (temp, x2) > 0)
	dump_abort (x2, x, rem);

      mpz_add_ui (temp2, x, 1);
      mpz_mul (temp2, temp2, temp2);

      /* Is square of (result + 1) <= argument?  */
      if (mpz_cmp (temp2, x2) <= 0)
	dump_abort (x2, x, rem);

      mpz_add (temp2, temp, rem);

      /* Is the remainder wrong?  */
      if (mpz_cmp (x2, temp2) != 0)
	dump_abort (x2, x, rem);
    }

  mpz_clear (bs);
  mpz_clear (x2);
  mpz_clear (x);
  mpz_clear (rem);
  mpz_clear (temp);
  mpz_clear (temp2);

  tests_end ();
  exit (0);
}
Esempio n. 7
0
int
main (int argc, char **argv)
{
  mpz_t x2;
  mpz_t x, rem;
  mpz_t temp, temp2;
  mp_size_t x2_size;
  int i;
  int reps = 20000;
  gmp_randstate_t rands;
  mpz_t bs;
  unsigned long size_range;

  tests_start ();
  gmp_randinit_default(rands);

  mpz_init (bs);

  if (argc == 2)
    reps = atoi (argv[1]);

  mpz_init (x2);
  mpz_init (x);
  mpz_init (rem);
  mpz_init (temp);
  mpz_init (temp2);

  for (i = 0; i < reps; i++)
    {
      mpz_urandomb (bs, rands, 32);
      size_range = mpz_get_ui (bs) % 12 + 2; /* 0..8191 bit operands */

      mpz_urandomb (bs, rands, size_range);
      x2_size = mpz_get_ui (bs);
      mpz_rrandomb (x2, rands, x2_size);

      /* printf ("%ld\n", SIZ (x2)); */

      mpz_sqrtrem (x, rem, x2);
      mpz_mul (temp, x, x);

      /* Is square of result > argument?  */
      if (mpz_cmp (temp, x2) > 0)
	dump_abort (x2, x, rem);

      mpz_add_ui (temp2, x, 1);
      mpz_mul (temp2, temp2, temp2);

      /* Is square of (result + 1) <= argument?  */
      if (mpz_cmp (temp2, x2) <= 0)
	dump_abort (x2, x, rem);

      mpz_add (temp2, temp, rem);

      /* Is the remainder wrong?  */
      if (mpz_cmp (x2, temp2) != 0)
	dump_abort (x2, x, rem);
    }

  mpz_clear (bs);
  mpz_clear (x2);
  mpz_clear (x);
  mpz_clear (rem);
  mpz_clear (temp);
  mpz_clear (temp2);
  gmp_randclear(rands);
  tests_end ();
  exit (0);
}
/* assuming slaves (workers)) are all homogenous, let them all do the calculations
 regarding primes sieving, calculating the smoothness base and the modular roots */
int main(int argc, char **argv) {
	MPI_Init(&argc, &argv);
	MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
	MPI_Comm_size(MPI_COMM_WORLD, &mpi_group_size);
	int len;
	MPI_Get_processor_name(processor_name, &len);

	gettimeofday(&start_global, NULL);
	print_lib_version();

	mpz_init(N);
	mpz_t B;
	mpz_init(B);

	unsigned long int uBase;
	int64_t nb_primes;
	modular_root_t *modular_roots;

	uint64_t i, j;

	if (argc < 2) {
		PRINT(my_rank, "usage: %s Number_to_factorize\n", argv[0]);
		exit(2);
	}

	if (mpz_init_set_str(N, argv[1], 10) == -1) {
		PRINT(my_rank, "Cannot load N %s\n", argv[1]);
		exit(2);
	}

	mpz_t sqrtN, rem;
	mpz_init(sqrtN);
	mpz_init(rem);
	mpz_sqrtrem(sqrtN, rem, N);

	if (mpz_cmp_ui(rem, 0) != 0) /* if not perfect square, calculate the ceiling */
		mpz_add_ui(sqrtN, sqrtN, 1);
	else /* N is a perfect square, factored! */
	{
		PRINT(my_rank, "\n<<<[FACTOR]>>> %s\n", mpz_get_str(NULL, 10, sqrtN));
		return 0;
	}

	if (mpz_probab_prime_p(N, 10) > 0) /* don't bother factoring */
	{
		PRINT(my_rank, "N:%s is prime\n", mpz_get_str(NULL, 10, N));
		exit(0);
	}

	OPEN_LOG_FILE("freq");

//--------------------------------------------------------
//  calculate the smoothness base for the given N
//--------------------------------------------------------
	get_smoothness_base(B, N); /* if N is too small, the program will surely fail, please consider a pen and paper instead */
	uBase = mpz_get_ui(B);
	PRINT(my_rank, "n: %s\tBase: %s\n",
			mpz_get_str(NULL, 10, N), mpz_get_str(NULL, 10, B));

//--------------------------------------------------------
// sieve primes that are less than the smoothness base using Eratosthenes sieve
//--------------------------------------------------------
	START_TIMER();
	nb_primes = sieve_primes_up_to((int64_t) (uBase));

	PRINT(my_rank, "\tPrimes found %" PRId64 " [Smoothness Base %lu]\n",
			nb_primes, uBase);
	STOP_TIMER_PRINT_TIME("\tEratosthenes Sieving done");

//--------------------------------------------------------
// fill the primes array with primes to which n is a quadratic residue
//--------------------------------------------------------
	START_TIMER();
	primes = calloc(nb_primes, sizeof(int64_t));
	nb_qr_primes = fill_primes_with_quadratic_residue(primes, N);

	/*for(i=0; i<nb_qr_primes; i++)
	 PRINT(my_rank, "%" PRId64 "\n", primes[i]);*/

	PRINT(my_rank, "\tN-Quadratic primes found %" PRId64 "\n", nb_qr_primes);
	STOP_TIMER_PRINT_TIME("\tQuadratic prime filtering done");

//--------------------------------------------------------
// calculate modular roots
//--------------------------------------------------------
	START_TIMER();
	modular_roots = calloc(nb_qr_primes, sizeof(modular_root_t));
	mpz_t tmp, r1, r2;
	mpz_init(tmp);
	mpz_init(r1);
	mpz_init(r2);

	for (i = 0; i < nb_qr_primes; i++) {
		mpz_set_ui(tmp, (unsigned long) primes[i]);
		mpz_sqrtm(r1, N, tmp); /* calculate the modular root */
		mpz_neg(r2, r1); /* -q mod n */
		mpz_mod(r2, r2, tmp);

		modular_roots[i].root1 = mpz_get_ui(r1);
		modular_roots[i].root2 = mpz_get_ui(r2);
	}
	mpz_clear(tmp);
	mpz_clear(r1);
	mpz_clear(r2);
	STOP_TIMER_PRINT_TIME("Modular roots calculation done");

//--------------------------------------------------------
//         ***** initialize the matrix *****
//--------------------------------------------------------
	if (my_rank == 0) /* only the master have the matrix */
	{
		START_TIMER();
		init_matrix(&matrix, nb_qr_primes + NB_VECTORS_OFFSET, nb_qr_primes);
		mpz_init2(tmp_matrix_row, nb_qr_primes);
		STOP_TIMER_PRINT_TIME("Matrix initialized");
	}

//--------------------------------------------------------
// [Sieving] - everyones sieves including the master
//--------------------------------------------------------
	START_TIMER();

	mpz_t x, sieving_index, next_sieving_index, relative_start, global_step;
	unsigned long ui_index, SIEVING_STEP = 50000; /* we sieve for 50000 elements at each loop */
	int LOCAL_SIEVING_ROUNDS = 10; /* number of iterations a worker sieves before communicating results to the master */
	unsigned long sieving_round = 0;
	unsigned long nb_big_rounds = 0;

	uint64_t p_pow;
	smooth_number_t *x_squared;

	x_squared = calloc(SIEVING_STEP, sizeof(smooth_number_t));

	if (my_rank == 0)
		smooth_numbers = calloc(nb_qr_primes + NB_VECTORS_OFFSET,
				sizeof(smooth_number_t));
	else
		temp_slaves_smooth_numbers = calloc(500, sizeof(smooth_number_t));
	/* TODO: this is not properly correct, using a linkedlist is better to keep track of temporary
	 * smooth numbers at the slaves nodes however it's pretty rare to find 500 smooth numbers in
	 * 50000 * 10 interval. */

	mpz_init_set(x, sqrtN);
	mpz_init(global_step);
	mpz_init(relative_start);
	mpz_init(sieving_index);
	mpz_init(next_sieving_index);

	mpz_t p;
	mpz_init(p);
	mpz_t str;
	mpz_init_set(str, sieving_index);
	PRINT(my_rank, "\n[%s] Sieving ...\n", processor_name);

//--------------------------------------------------------
// Init before sieving
//--------------------------------------------------------
	for (i = 0; i < SIEVING_STEP; i++) {
		mpz_init(x_squared[i].value_x);
		mpz_init(x_squared[i].value_x_squared);

		mpz_init2(x_squared[i].factors_vect, nb_qr_primes);
		mpz_add_ui(x, x, 1);
	}

	int nb_smooth_per_round = 0;
	char s[512];

//--------------------------------------------------------
// WHILE smooth numbers found less than the primes in the smooth base + NB_VECTORS_OFFSET for master
// Or master asked for more smooth numbers from slaves
//--------------------------------------------------------
	while (1) {
		mpz_set_ui(global_step, nb_big_rounds); /* calculates the coordinate where the workers start sieving from */
		mpz_mul_ui(global_step, global_step, (unsigned long) mpi_group_size);
		mpz_mul_ui(global_step, global_step, SIEVING_STEP);
		mpz_mul_ui(global_step, global_step, LOCAL_SIEVING_ROUNDS);
		mpz_add(global_step, global_step, sqrtN);

		mpz_set_ui(relative_start, SIEVING_STEP);
		mpz_mul_ui(relative_start, relative_start, LOCAL_SIEVING_ROUNDS);
		mpz_mul_ui(relative_start, relative_start, (unsigned long) my_rank);
		mpz_add(relative_start, relative_start, global_step);

		mpz_set(sieving_index, relative_start);
		mpz_set(next_sieving_index, relative_start);

		for (sieving_round = 0; sieving_round < LOCAL_SIEVING_ROUNDS; /* each slave sieves for LOCAL_SIEVING_ROUNDS rounds */
		sieving_round++) {
			nb_smooth_per_round = 0;
			mpz_set(x, next_sieving_index); /* sieve numbers from sieving_index to sieving_index + sieving_step */
			mpz_set(sieving_index, next_sieving_index);

			if (my_rank == 0) {
				printf("\r");
				printf(
						"\t\tSieving at: %s30 <--> Smooth numbers found: %" PRId64 "/%" PRId64 "",
						mpz_get_str(NULL, 10, sieving_index),
						nb_global_smooth_numbers_found, nb_qr_primes);
				fflush(stdout);
			}

			for (i = 0; i < SIEVING_STEP; i++) {
				mpz_set(x_squared[i].value_x, x);

				mpz_pow_ui(x_squared[i].value_x_squared, x, 2); /* calculate value_x_squared <- x²-n */
				mpz_sub(x_squared[i].value_x_squared,
						x_squared[i].value_x_squared, N);

				mpz_clear(x_squared[i].factors_vect);
				mpz_init2(x_squared[i].factors_vect, nb_qr_primes); /* reconstruct a new fresh 0ed vector of size nb_qr_primes bits */

				mpz_add_ui(x, x, 1);
			}
			mpz_set(next_sieving_index, x);

//--------------------------------------------------------
// eliminate factors in the x_squared array, those who are 'destructed' to 1 are smooth
//--------------------------------------------------------
			for (i = 0; i < nb_qr_primes; i++) {
				mpz_set_ui(p, (unsigned long) primes[i]);
				mpz_set(x, sieving_index);

				/* get the first multiple of p that is directly larger that sieving_index
				 * Quadratic SIEVING: all elements from this number and in positions multiples of root1 and root2
				 * are also multiples of p */
				get_sieving_start_index(x, x, p, modular_roots[i].root1);
				mpz_set(str, x);
				mpz_sub(x, x, sieving_index); /* x contains index of first number that is divisible by p */

				for (j = mpz_get_ui(x); j < SIEVING_STEP; j += primes[i]) {
					p_pow = mpz_remove(x_squared[j].value_x_squared,
							x_squared[j].value_x_squared, p); /* eliminate all factors of p */

					if (p_pow & 1) /* mark bit if odd power of p exists in this x_squared[j] */
					{
						mpz_setbit(x_squared[j].factors_vect, i);
					}

					if (mpz_cmp_ui(x_squared[j].value_x_squared, 1) == 0) {
						save_smooth_number(x_squared[j]);
						nb_smooth_per_round++;
					}
					/* sieve next element located p steps from here */
				}

				/* same goes for root2 */
				if (modular_roots[i].root2 == modular_roots[i].root1)
					continue;

				mpz_set(x, sieving_index);

				get_sieving_start_index(x, x, p, modular_roots[i].root2);
				mpz_set(str, x);
				mpz_sub(x, x, sieving_index);

				for (j = mpz_get_ui(x); j < SIEVING_STEP; j += primes[i]) {
					p_pow = mpz_remove(x_squared[j].value_x_squared,
							x_squared[j].value_x_squared, p);

					if (p_pow & 1) {
						mpz_setbit(x_squared[j].factors_vect, i);
					}

					if (mpz_cmp_ui(x_squared[j].value_x_squared, 1) == 0) {
						save_smooth_number(x_squared[j]);
						nb_smooth_per_round++;
					}
				}
			}
		}

		if (my_rank == 0) /* master gathers smooth numbers from slaves */
		{
			gather_smooth_numbers();
			notify_slaves();
		} else /* slaves send their smooth numbers to master */
		{
			send_smooth_numbers_to_master();
			nb_global_smooth_numbers_found = get_server_notification();
		}

		if (nb_global_smooth_numbers_found >= nb_qr_primes + NB_VECTORS_OFFSET)
			break;

		nb_big_rounds++;
	}

	STOP_TIMER_PRINT_TIME("\nSieving DONE");

	if (my_rank == 0) {
		uint64_t t = 0;

//--------------------------------------------------------
//the matrix ready, start Gauss elimination. The Matrix is filled on the call of save_smooth_number()
//--------------------------------------------------------
		START_TIMER();
		gauss_elimination(&matrix);
		STOP_TIMER_PRINT_TIME("\nGauss elimination done");

		uint64_t row_index = nb_qr_primes + NB_VECTORS_OFFSET - 1; /* last row in the matrix */
		int nb_linear_relations = 0;
		mpz_t linear_relation_z, solution_z;
		mpz_init(linear_relation_z);
		mpz_init(solution_z);

		get_matrix_row(linear_relation_z, &matrix, row_index--); /* get the last few rows in the Gauss eliminated matrix*/
		while (mpz_cmp_ui(linear_relation_z, 0) == 0) {
			nb_linear_relations++;
			get_matrix_row(linear_relation_z, &matrix, row_index--);
		}

		PRINT(my_rank, "\tLinear dependent relations found : %d\n",
				nb_linear_relations);

//--------------------------------------------------------
// Factor
//--------------------------------------------------------
		//We use the last linear relation to reconstruct our solution
		START_TIMER();
		PRINT(my_rank, "%s", "\nFactorizing..\n");
		mpz_t solution_X, solution_Y;
		mpz_init(solution_X);
		mpz_init(solution_Y);

		/* we start testing from the first linear relation encountered in the matrix */
		for (j = nb_linear_relations; j > 0; j--) {
			PRINT(my_rank, "Trying %d..\n", nb_linear_relations - j + 1);
			mpz_set_ui(solution_X, 1);
			mpz_set_ui(solution_Y, 1);

			get_identity_row(solution_z, &matrix,
					nb_qr_primes + NB_VECTORS_OFFSET - j + 1);

			for (i = 0; i < nb_qr_primes; i++) {
				if (mpz_tstbit(solution_z, i)) {
					mpz_mul(solution_X, solution_X, smooth_numbers[i].value_x);
					mpz_mod(solution_X, solution_X, N); /* reduce x to modulo N */

					mpz_mul(solution_Y, solution_Y,
							smooth_numbers[i].value_x_squared);
					/*TODO: handling huge stuff here, there is no modulo N like in the solution_X case!
					 * eliminate squares as long as you go*/
				}
			}

			mpz_sqrt(solution_Y, solution_Y);
			mpz_mod(solution_Y, solution_Y, N); /* y = sqrt(MUL(xi²-n)) mod N */

			mpz_sub(solution_X, solution_X, solution_Y);

			mpz_gcd(solution_X, solution_X, N);

			if (mpz_cmp(solution_X, N) != 0 && mpz_cmp_ui(solution_X, 1) != 0) /* factor can be 1 or N, try another relation */
				break;
		}
		mpz_cdiv_q(solution_Y, N, solution_X);

		PRINT(my_rank, "\n>>>>>>>>>>> FACTORED %s =\n",
				mpz_get_str(NULL, 10, N));
		PRINT(
				my_rank,
				"\tFactor 1: %s \n\tFactor 2: %s",
				mpz_get_str(NULL, 10, solution_X), mpz_get_str(NULL, 10, solution_Y));

		sprintf(s, "\n>>>>>>>>>>> FACTORED %s =\n", mpz_get_str(NULL, 10, N));
		APPEND_TO_LOG_FILE(s);
		sprintf(s, "\tFactor 1: %s \n\tFactor 2: %s",
				mpz_get_str(NULL, 10, solution_X),
				mpz_get_str(NULL, 10, solution_Y));
		APPEND_TO_LOG_FILE(s);

		gettimeofday(&end_global, NULL);
		timersub(&end_global, &start_global, &elapsed);
		sprintf(s, "****** TOTAL TIME: %.3f ms\n",
				elapsed.tv_sec * 1000 + elapsed.tv_usec / (double) 1000);
		APPEND_TO_LOG_FILE(s);

		STOP_TIMER_PRINT_TIME("\nFactorizing done");
	}

	PRINT(my_rank, "%s", "\nCleaning memory..\n");

	/********************** clear the x_squared array **********************/
	for (i = 0; i < SIEVING_STEP; i++) {
		mpz_clear(x_squared[i].value_x);
		mpz_clear(x_squared[i].value_x_squared);
		//free(x_squared[i].factors_exp);
		mpz_clear(x_squared[i].factors_vect);
	}
	free(x_squared);
	/********************** clear the x_squared array **********************/

	free(modular_roots);
	/********************** clear the smooth_numbers array **********************/
	if (my_rank == 0) {
		for (i = 0; i < nb_qr_primes + NB_VECTORS_OFFSET; i++) {
			mpz_clear(smooth_numbers[i].value_x);
			mpz_clear(smooth_numbers[i].value_x_squared);
			mpz_clear(smooth_numbers[i].factors_vect);
			//free(smooth_numbers[i].factors_exp);
		}
		free(smooth_numbers);
	} else {
		for (i = 0; i < 500; i++) {
			mpz_clear(temp_slaves_smooth_numbers[i].value_x);
			mpz_clear(temp_slaves_smooth_numbers[i].value_x_squared);
			mpz_clear(temp_slaves_smooth_numbers[i].factors_vect);
		}
		free(temp_slaves_smooth_numbers);
	}
	/********************** clear the smooth_numbers array **********************/

	free(primes);
	/********************** clear mpz _t **********************/mpz_clear(B);
	mpz_clear(N);
	sqrtN, rem;
	mpz_clear(x);
	mpz_clear(sieving_index);
	mpz_clear(next_sieving_index);
	mpz_clear(p);
	mpz_clear(str);
	/********************** clear mpz _t **********************/

	free_matrix(&matrix);

	gettimeofday(&end_global, NULL);
	timersub(&end_global, &start_global, &elapsed);
	PRINT(my_rank, "****** TOTAL TIME: %.3f ms\n",
			elapsed.tv_sec * 1000 + elapsed.tv_usec / (double) 1000);
	show_mem_usage();

	MPI_Finalize();

	return 0;
}
Esempio n. 9
0
File: rw.c Progetto: agl/rwb0fuz1024
int
main() {
  const int urfd = open("/dev/urandom", O_RDONLY);

  mpz_t p, q, n;

  fprintf(stderr, "Generating group...\n");
  init_random_prime(p, urfd, 512, 3);
  init_random_prime(q, urfd, 512, 7);

  print("  p:", p);
  print("  q:", q);

  mpz_init(n);
  mpz_mul(n, p, q);

  print("  n:", n);

  fprintf(stderr, "Performing extended Euclid...\n");
  mpz_t u, v;
  xgcd(u, v, p, q);
  mpz_mul(u, u, p);
  mpz_mul(v, v, q);

  print ("  u:", u);
  print ("  v:", v);

  fprintf(stderr, "Picking random element...\n");
  mpz_t e;
  random_element(e, urfd, 1024, n);
  print("  e:", e);

  fprintf(stderr, "Tweaking...\n");

  int a = is_quadratic_residue(e, p);
  int b = is_quadratic_residue(e, q);

  fprintf(stderr, "  residue state: [%d, %d]\n", a, b);

  int mul_2 = 0, negate = 0;

  if (a ^ b) {
    mul_2 = 1;
    a ^= 1;
  }

  if (!a) {
    negate = 1;
    a ^= 1;
    b ^= 1;
  }

  fprintf(stderr, "  tweaks: 2:%d -:%d\n", mul_2, negate);
  if (negate) {
    mpz_neg(e, e);
  }
  if (mul_2) {
    mpz_mul_ui(e, e, 2);
  }
  if (negate || mul_2)
    mpz_mod(e, e, n);

  print("  tweaked e:", e);

  uint8_t root;
  read(urfd, &root, 1);
  root &= 3;

  fprintf(stderr, "Calculating root %d...\n", root);

  mpz_t pp1over4, qp1over4;

  mpz_init_set(pp1over4, p);
  mpz_add_ui(pp1over4, pp1over4, 1);
  mpz_cdiv_q_2exp(pp1over4, pp1over4, 2);

  mpz_init_set(qp1over4, q);
  mpz_add_ui(qp1over4, qp1over4, 1);
  mpz_cdiv_q_2exp(qp1over4, qp1over4, 2);

  mpz_t proot, qroot;

  mpz_init_set(proot, e);
  mpz_powm(proot, e, pp1over4, p);

  mpz_init_set(qroot, e);
  mpz_powm(qroot, e, qp1over4, q);

  if (root & 1)
    mpz_neg(proot, proot);
  if (root & 2)
    mpz_neg(qroot, qroot);

  mpz_mul(proot, proot, v);
  mpz_mul(qroot, qroot, u);
  mpz_add(proot, proot, qroot);
  mpz_mod(proot, proot, n);

  print("  sig:", proot);

  fprintf(stderr, "Compressing signature...\n");

  mpz_t zsig;
  mpz_t ncopy;
  mpz_init_set(ncopy, n);
  signature_compress(zsig, proot, ncopy);

  print("  zsig:", zsig);

  mpz_t zsigcopy, t, t2;

  mpz_init(t);
  mpz_init(t2);
  mpz_init(zsigcopy);

  fprintf(stderr, "Performing 1000000 verifications\n");
  const uint64_t start_time = time_now();
  unsigned i;
  for (i = 0; i < 1000000; ++i) {
    mpz_set(zsigcopy, zsig);
    mpz_mul(zsigcopy, zsigcopy, zsigcopy);
    mpz_mul(zsigcopy, zsigcopy, e);
    mpz_mod(zsigcopy, zsigcopy, n);
    if (0 == mpz_sgn(zsigcopy))
      abort();

    mpz_sqrtrem(t, t2, zsigcopy);

    if (mpz_sgn(t2))
      abort();
  }

  const uint64_t end_time = time_now();
  fprintf(stderr, "verify time: %f\n", ((double) (end_time - start_time)) / 1000000);

  return 0;
}
Esempio n. 10
0
int
main (int argc, char **argv)
{
  int i;
  int pass, reps = 400;
  mpz_t in1, in2, in3;
  unsigned long int in2i;
  mp_size_t size;
  mpz_t res1, res2, res3;
  mpz_t ref1, ref2, ref3;
  mpz_t t;
  unsigned long int r1, r2;
  gmp_randstate_ptr rands;
  mpz_t bs;
  unsigned long bsi, size_range;

  tests_start ();
  TESTS_REPS (reps, argv, argc);

  rands = RANDS;

  mpz_init (bs);

  mpz_init (in1);
  mpz_init (in2);
  mpz_init (in3);
  mpz_init (ref1);
  mpz_init (ref2);
  mpz_init (ref3);
  mpz_init (res1);
  mpz_init (res2);
  mpz_init (res3);
  mpz_init (t);

  for (pass = 1; pass <= reps; pass++)
    {
      if (isatty (fileno (stdout)))
	{
	  printf ("\r%d/%d passes", pass, reps);
	  fflush (stdout);
	}

      mpz_urandomb (bs, rands, 32);
      size_range = mpz_get_ui (bs) % 21 + 2;

      if ((pass & 1) == 0)
	{
	  /* Make all input operands have quite different sizes */
	  mpz_urandomb (bs, rands, 32);
	  size = mpz_get_ui (bs) % size_range;
	  mpz_rrandomb (in1, rands, size);

	  mpz_urandomb (bs, rands, 32);
	  size = mpz_get_ui (bs) % size_range;
	  mpz_rrandomb (in2, rands, size);

	  mpz_urandomb (bs, rands, 32);
	  size = mpz_get_ui (bs) % size_range;
	  mpz_rrandomb (in3, rands, size);
	}
      else
	{
	  /* Make all input operands have about the same size */
	  mpz_urandomb (bs, rands, size_range);
	  size = mpz_get_ui (bs);
	  mpz_rrandomb (in1, rands, size);

	  mpz_urandomb (bs, rands, size_range);
	  size = mpz_get_ui (bs);
	  mpz_rrandomb (in2, rands, size);

	  mpz_urandomb (bs, rands, size_range);
	  size = mpz_get_ui (bs);
	  mpz_rrandomb (in3, rands, size);
	}

      mpz_urandomb (bs, rands, 3);
      bsi = mpz_get_ui (bs);
      if ((bsi & 1) != 0)
	mpz_neg (in1, in1);
      if ((bsi & 2) != 0)
	mpz_neg (in2, in2);
      if ((bsi & 4) != 0)
	mpz_neg (in3, in3);

      for (i = 0; i < numberof (dss); i++)
	{
	  if (dss[i].isdivision && mpz_sgn (in2) == 0)
	    continue;
	  if (dss[i].isslow && size_range > 19)
	    continue;

	  (dss[i].fptr) (ref1, in1, in2);
	  MPZ_CHECK_FORMAT (ref1);

	  mpz_set (res1, in1);
	  INVOKE_RSS (dss[i], res1, res1, in2);
	  MPZ_CHECK_FORMAT (res1);
	  if (mpz_cmp (ref1, res1) != 0)
	    FAIL (dss, i, in1, in2, NULL);

	  mpz_set (res1, in2);
	  INVOKE_RSS (dss[i], res1, in1, res1);
	  MPZ_CHECK_FORMAT (res1);
	  if (mpz_cmp (ref1, res1) != 0)
	    FAIL (dss, i, in1, in2, NULL);
	}

      for (i = 0; i < numberof (ddss_div); i++)
	{
	  if (mpz_sgn (in2) == 0)
	    continue;

	  (ddss_div[i].fptr) (ref1, ref2, in1, in2);
	  MPZ_CHECK_FORMAT (ref1);
	  MPZ_CHECK_FORMAT (ref2);

	  mpz_set (res1, in1);
	  INVOKE_RRSS (ddss_div[i], res1, res2, res1, in2);
	  MPZ_CHECK_FORMAT (res1);
	  MPZ_CHECK_FORMAT (res2);
	  if (mpz_cmp (ref1, res1) != 0 || mpz_cmp (ref2, res2) != 0)
	    FAIL (ddss_div, i, in1, in2, NULL);

	  mpz_set (res2, in1);
	  INVOKE_RRSS (ddss_div[i], res1, res2, res2, in2);
	  MPZ_CHECK_FORMAT (res1);
	  MPZ_CHECK_FORMAT (res2);
	  if (mpz_cmp (ref1, res1) != 0 || mpz_cmp (ref2, res2) != 0)
	    FAIL (ddss_div, i, in1, in2, NULL);

	  mpz_set (res1, in2);
	  INVOKE_RRSS (ddss_div[i], res1, res2, in1, res1);
	  MPZ_CHECK_FORMAT (res1);
	  MPZ_CHECK_FORMAT (res2);
	  if (mpz_cmp (ref1, res1) != 0 || mpz_cmp (ref2, res2) != 0)
	    FAIL (ddss_div, i, in1, in2, NULL);

	  mpz_set (res2, in2);
	  INVOKE_RRSS (ddss_div[i], res1, res2, in1, res2);
	  MPZ_CHECK_FORMAT (res1);
	  MPZ_CHECK_FORMAT (res2);
	  if (mpz_cmp (ref1, res1) != 0 || mpz_cmp (ref2, res2) != 0)
	    FAIL (ddss_div, i, in1, in2, NULL);
	}

      for (i = 0; i < numberof (ds); i++)
	{
	  if (ds[i].nonneg && mpz_sgn (in1) < 0)
	    continue;

	  (ds[i].fptr) (ref1, in1);
	  MPZ_CHECK_FORMAT (ref1);

	  mpz_set (res1, in1);
	  INVOKE_RS (ds[i], res1, res1);
	  MPZ_CHECK_FORMAT (res1);
	  if (mpz_cmp (ref1, res1) != 0)
	    FAIL (ds, i, in1, in2, NULL);
	}

      in2i = mpz_get_ui (in2);

      for (i = 0; i < numberof (dsi); i++)
	{
	  if (dsi[i].mod != 0)
	    in2i = mpz_get_ui (in2) % dsi[i].mod;

	  (dsi[i].fptr) (ref1, in1, in2i);
	  MPZ_CHECK_FORMAT (ref1);

	  mpz_set (res1, in1);
	  INVOKE_RRS (dsi[i], res1, res1, in2i);
	  MPZ_CHECK_FORMAT (res1);
	  if (mpz_cmp (ref1, res1) != 0)
	    FAIL (dsi, i, in1, in2, NULL);
	}

      if (in2i != 0)	  /* Don't divide by 0.  */
	{
	  for (i = 0; i < numberof (dsi_div); i++)
	    {
	      r1 = (dsi_div[i].fptr) (ref1, in1, in2i);
	      MPZ_CHECK_FORMAT (ref1);

	      mpz_set (res1, in1);
	      r2 = (dsi_div[i].fptr) (res1, res1, in2i);
	      MPZ_CHECK_FORMAT (res1);
	      if (mpz_cmp (ref1, res1) != 0 || r1 != r2)
		FAIL (dsi_div, i, in1, in2, NULL);
	    }

	  for (i = 0; i < numberof (ddsi_div); i++)
	    {
	      r1 = (ddsi_div[i].fptr) (ref1, ref2, in1, in2i);
	      MPZ_CHECK_FORMAT (ref1);

	      mpz_set (res1, in1);
	      r2 = (ddsi_div[i].fptr) (res1, res2, res1, in2i);
	      MPZ_CHECK_FORMAT (res1);
	      if (mpz_cmp (ref1, res1) != 0 || mpz_cmp (ref2, res2) != 0 || r1 != r2)
		FAIL (ddsi_div, i, in1, in2, NULL);

	      mpz_set (res2, in1);
	      (ddsi_div[i].fptr) (res1, res2, res2, in2i);
	      MPZ_CHECK_FORMAT (res1);
	      if (mpz_cmp (ref1, res1) != 0 || mpz_cmp (ref2, res2) != 0 || r1 != r2)
		FAIL (ddsi_div, i, in1, in2, NULL);
	    }
	}

      if (mpz_sgn (in1) >= 0)
	{
	  mpz_sqrtrem (ref1, ref2, in1);
	  MPZ_CHECK_FORMAT (ref1);
	  MPZ_CHECK_FORMAT (ref2);

	  mpz_set (res1, in1);
	  mpz_sqrtrem (res1, res2, res1);
	  MPZ_CHECK_FORMAT (res1);
	  MPZ_CHECK_FORMAT (res2);
	  if (mpz_cmp (ref1, res1) != 0 || mpz_cmp (ref2, res2) != 0)
	    FAIL2 (mpz_sqrtrem, in1, NULL, NULL);

	  mpz_set (res2, in1);
	  mpz_sqrtrem (res1, res2, res2);
	  MPZ_CHECK_FORMAT (res1);
	  MPZ_CHECK_FORMAT (res2);
	  if (mpz_cmp (ref1, res1) != 0 || mpz_cmp (ref2, res2) != 0)
	    FAIL2 (mpz_sqrtrem, in1, NULL, NULL);

	  mpz_set (res1, in1);
	  mpz_sqrtrem (res1, res1, res1);
	  MPZ_CHECK_FORMAT (res1);
	  if (mpz_cmp (ref2, res1) != 0)
	    FAIL2 (mpz_sqrtrem, in1, NULL, NULL);
	}

      if (mpz_sgn (in1) >= 0)
	{
	  mpz_root (ref1, in1, in2i % 0x100 + 1);
	  MPZ_CHECK_FORMAT (ref1);

	  mpz_set (res1, in1);
	  mpz_root (res1, res1, in2i % 0x100 + 1);
	  MPZ_CHECK_FORMAT (res1);
	  if (mpz_cmp (ref1, res1) != 0)
	    FAIL2 (mpz_root, in1, in2, NULL);
	}

      if (mpz_sgn (in1) >= 0)
	{
	  mpz_rootrem (ref1, ref2, in1, in2i % 0x100 + 1);
	  MPZ_CHECK_FORMAT (ref1);
	  MPZ_CHECK_FORMAT (ref2);

	  mpz_set (res1, in1);
	  mpz_rootrem (res1, res2, res1, in2i % 0x100 + 1);
	  MPZ_CHECK_FORMAT (res1);
	  MPZ_CHECK_FORMAT (res2);
	  if (mpz_cmp (ref1, res1) != 0 || mpz_cmp (ref2, res2) != 0)
	    FAIL2 (mpz_rootrem, in1, in2, NULL);

	  mpz_set (res2, in1);
	  mpz_rootrem (res1, res2, res2, in2i % 0x100 + 1);
	  MPZ_CHECK_FORMAT (res1);
	  MPZ_CHECK_FORMAT (res2);
	  if (mpz_cmp (ref1, res1) != 0 || mpz_cmp (ref2, res2) != 0)
	    FAIL2 (mpz_rootrem, in1, in2, NULL);
	}

      if (size_range < 18)	/* run fewer tests since gcdext lots of time */
	{
	  mpz_gcdext (ref1, ref2, ref3, in1, in2);
	  MPZ_CHECK_FORMAT (ref1);
	  MPZ_CHECK_FORMAT (ref2);
	  MPZ_CHECK_FORMAT (ref3);

	  mpz_set (res1, in1);
	  mpz_gcdext (res1, res2, res3, res1, in2);
	  MPZ_CHECK_FORMAT (res1);
	  MPZ_CHECK_FORMAT (res2);
	  MPZ_CHECK_FORMAT (res3);
	  if (mpz_cmp (ref1, res1) != 0 || mpz_cmp (ref2, res2) != 0
	      || mpz_cmp (ref3, res3) != 0)
	    FAIL2 (mpz_gcdext, in1, in2, NULL);

	  mpz_set (res2, in1);
	  mpz_gcdext (res1, res2, res3, res2, in2);
	  MPZ_CHECK_FORMAT (res1);
	  MPZ_CHECK_FORMAT (res2);
	  MPZ_CHECK_FORMAT (res3);
	  if (mpz_cmp (ref1, res1) != 0 || mpz_cmp (ref2, res2) != 0
	      || mpz_cmp (ref3, res3) != 0)
	    FAIL2 (mpz_gcdext, in1, in2, NULL);

	  mpz_set (res3, in1);
	  mpz_gcdext (res1, res2, res3, res3, in2);
	  MPZ_CHECK_FORMAT (res1);
	  MPZ_CHECK_FORMAT (res2);
	  MPZ_CHECK_FORMAT (res3);
	  if (mpz_cmp (ref1, res1) != 0 || mpz_cmp (ref2, res2) != 0
	      || mpz_cmp (ref3, res3) != 0)
	    FAIL2 (mpz_gcdext, in1, in2, NULL);

	  mpz_set (res1, in2);
	  mpz_gcdext (res1, res2, res3, in1, res1);
	  MPZ_CHECK_FORMAT (res1);
	  MPZ_CHECK_FORMAT (res2);
	  MPZ_CHECK_FORMAT (res3);
	  if (mpz_cmp (ref1, res1) != 0 || mpz_cmp (ref2, res2) != 0
	      || mpz_cmp (ref3, res3) != 0)
	    FAIL2 (mpz_gcdext, in1, in2, NULL);

	  mpz_set (res2, in2);
	  mpz_gcdext (res1, res2, res3, in1, res2);
	  MPZ_CHECK_FORMAT (res1);
	  MPZ_CHECK_FORMAT (res2);
	  MPZ_CHECK_FORMAT (res3);
	  if (mpz_cmp (ref1, res1) != 0 || mpz_cmp (ref2, res2) != 0
	      || mpz_cmp (ref3, res3) != 0)
	    FAIL2 (mpz_gcdext, in1, in2, NULL);

	  mpz_set (res3, in2);
	  mpz_gcdext (res1, res2, res3, in1, res3);
	  MPZ_CHECK_FORMAT (res1);
	  MPZ_CHECK_FORMAT (res2);
	  MPZ_CHECK_FORMAT (res3);
	  if (mpz_cmp (ref1, res1) != 0 || mpz_cmp (ref2, res2) != 0
	      || mpz_cmp (ref3, res3) != 0)
	    FAIL2 (mpz_gcdext, in1, in2, NULL);

	  mpz_set (res1, in1);
	  mpz_gcdext (res1, res2, NULL, res1, in2);
	  MPZ_CHECK_FORMAT (res1);
	  MPZ_CHECK_FORMAT (res2);
	  if (mpz_cmp (ref1, res1) != 0 || mpz_cmp (ref2, res2) != 0
	      || mpz_cmp (ref3, res3) != 0)
	    FAIL2 (mpz_gcdext, in1, in2, NULL);

	  mpz_set (res2, in1);
	  mpz_gcdext (res1, res2, NULL, res2, in2);
	  MPZ_CHECK_FORMAT (res1);
	  MPZ_CHECK_FORMAT (res2);
	  if (mpz_cmp (ref1, res1) != 0 || mpz_cmp (ref2, res2) != 0
	      || mpz_cmp (ref3, res3) != 0)
	    FAIL2 (mpz_gcdext, in1, in2, NULL);

	  mpz_set (res1, in2);
	  mpz_gcdext (res1, res2, NULL, in1, res1);
	  MPZ_CHECK_FORMAT (res1);
	  MPZ_CHECK_FORMAT (res2);
	  if (mpz_cmp (ref1, res1) != 0 || mpz_cmp (ref2, res2) != 0
	      || mpz_cmp (ref3, res3) != 0)
	    FAIL2 (mpz_gcdext, in1, in2, NULL);

	  mpz_set (res2, in2);
	  mpz_gcdext (res1, res2, NULL, in1, res2);
	  MPZ_CHECK_FORMAT (res1);
	  MPZ_CHECK_FORMAT (res2);
	  if (mpz_cmp (ref1, res1) != 0 || mpz_cmp (ref2, res2) != 0
	      || mpz_cmp (ref3, res3) != 0)
	    FAIL2 (mpz_gcdext, in1, in2, NULL);
	}

      /* Don't run mpz_powm for huge exponents or when undefined.  */
      if (size_range < 17 && mpz_sizeinbase (in2, 2) < 250 && mpz_sgn (in3) != 0
	  && (mpz_sgn (in2) >= 0 || mpz_invert (t, in1, in3)))
	{
	  mpz_powm (ref1, in1, in2, in3);
	  MPZ_CHECK_FORMAT (ref1);

	  mpz_set (res1, in1);
	  mpz_powm (res1, res1, in2, in3);
	  MPZ_CHECK_FORMAT (res1);
	  if (mpz_cmp (ref1, res1) != 0)
	    FAIL2 (mpz_powm, in1, in2, in3);

	  mpz_set (res1, in2);
	  mpz_powm (res1, in1, res1, in3);
	  MPZ_CHECK_FORMAT (res1);
	  if (mpz_cmp (ref1, res1) != 0)
	    FAIL2 (mpz_powm, in1, in2, in3);

	  mpz_set (res1, in3);
	  mpz_powm (res1, in1, in2, res1);
	  MPZ_CHECK_FORMAT (res1);
	  if (mpz_cmp (ref1, res1) != 0)
	    FAIL2 (mpz_powm, in1, in2, in3);
	}

      /* Don't run mpz_powm_ui when undefined.  */
      if (size_range < 17 && mpz_sgn (in3) != 0)
	{
	  mpz_powm_ui (ref1, in1, in2i, in3);
	  MPZ_CHECK_FORMAT (ref1);

	  mpz_set (res1, in1);
	  mpz_powm_ui (res1, res1, in2i, in3);
	  MPZ_CHECK_FORMAT (res1);
	  if (mpz_cmp (ref1, res1) != 0)
	    FAIL2 (mpz_powm_ui, in1, in2, in3);

	  mpz_set (res1, in3);
	  mpz_powm_ui (res1, in1, in2i, res1);
	  MPZ_CHECK_FORMAT (res1);
	  if (mpz_cmp (ref1, res1) != 0)
	    FAIL2 (mpz_powm_ui, in1, in2, in3);
	}

      {
	r1 = mpz_gcd_ui (ref1, in1, in2i);
	MPZ_CHECK_FORMAT (ref1);

	mpz_set (res1, in1);
	r2 = mpz_gcd_ui (res1, res1, in2i);
	MPZ_CHECK_FORMAT (res1);
	if (mpz_cmp (ref1, res1) != 0)
	  FAIL2 (mpz_gcd_ui, in1, in2, NULL);
      }

      if (mpz_sgn (in2) != 0)
	{
	  /* Test mpz_remove */
	  mp_bitcnt_t refretval, retval;
	  refretval = mpz_remove (ref1, in1, in2);
	  MPZ_CHECK_FORMAT (ref1);

	  mpz_set (res1, in1);
	  retval = mpz_remove (res1, res1, in2);
	  MPZ_CHECK_FORMAT (res1);
	  if (mpz_cmp (ref1, res1) != 0 || refretval != retval)
	    FAIL2 (mpz_remove, in1, in2, NULL);

	  mpz_set (res1, in2);
	  retval = mpz_remove (res1, in1, res1);
	  MPZ_CHECK_FORMAT (res1);
	  if (mpz_cmp (ref1, res1) != 0 || refretval != retval)
	    FAIL2 (mpz_remove, in1, in2, NULL);
	}

      if (mpz_sgn (in2) != 0)
	{
	  /* Test mpz_divexact */
	  mpz_mul (t, in1, in2);
	  mpz_divexact (ref1, t, in2);
	  MPZ_CHECK_FORMAT (ref1);

	  mpz_set (res1, t);
	  mpz_divexact (res1, res1, in2);
	  MPZ_CHECK_FORMAT (res1);
	  if (mpz_cmp (ref1, res1) != 0)
	    FAIL2 (mpz_divexact, t, in2, NULL);

	  mpz_set (res1, in2);
	  mpz_divexact (res1, t, res1);
	  MPZ_CHECK_FORMAT (res1);
	  if (mpz_cmp (ref1, res1) != 0)
	    FAIL2 (mpz_divexact, t, in2, NULL);
	}

      if (mpz_sgn (in2) > 0)
	{
	  /* Test mpz_divexact_gcd, same as mpz_divexact */
	  mpz_mul (t, in1, in2);
	  mpz_divexact_gcd (ref1, t, in2);
	  MPZ_CHECK_FORMAT (ref1);

	  mpz_set (res1, t);
	  mpz_divexact_gcd (res1, res1, in2);
	  MPZ_CHECK_FORMAT (res1);
	  if (mpz_cmp (ref1, res1) != 0)
	    FAIL2 (mpz_divexact_gcd, t, in2, NULL);

	  mpz_set (res1, in2);
	  mpz_divexact_gcd (res1, t, res1);
	  MPZ_CHECK_FORMAT (res1);
	  if (mpz_cmp (ref1, res1) != 0)
	    FAIL2 (mpz_divexact_gcd, t, in2, NULL);
	}
    }

  if (isatty (fileno (stdout)))
    printf ("\r%20s", "");

  mpz_clear (bs);
  mpz_clear (in1);
  mpz_clear (in2);
  mpz_clear (in3);
  mpz_clear (ref1);
  mpz_clear (ref2);
  mpz_clear (ref3);
  mpz_clear (res1);
  mpz_clear (res2);
  mpz_clear (res3);
  mpz_clear (t);

  if (isatty (fileno (stdout)))
    printf ("\r");

  tests_end ();
  exit (0);
}