/************************************************************************* * Read a motif database *************************************************************************/ static MOTIF_DB_T* read_motifs(int id, char* motif_source, char* bg_source, ARRAY_T** bg, double pseudocount, RBTREE_T *selected, ALPH_T alph) { // vars int read_motifs; MOTIF_DB_T* motifdb; MREAD_T *mread; MOTIF_T *motif; ARRAYLST_T *motifs; // open the motif file for reading mread = mread_create(motif_source, OPEN_MFILE); mread_set_pseudocount(mread, pseudocount); // determine background to use if (*bg != NULL) mread_set_background(mread, *bg); else mread_set_bg_source(mread, bg_source); // load motifs read_motifs = 0; if (rbtree_size(selected) > 0) { motifs = arraylst_create(); while(mread_has_motif(mread)) { motif = mread_next_motif(mread); read_motifs++; if (rbtree_find(selected, get_motif_id(motif))) { arraylst_add(motif, motifs); } else { DEBUG_FMT(NORMAL_VERBOSE, "Discarding motif %s in %s.\n", get_motif_id(motif), motif_source); destroy_motif(motif); } } } else { motifs = mread_load(mread, NULL); read_motifs = arraylst_size(motifs); } arraylst_fit(motifs); if (read_motifs > 0) { // check the alphabet if (mread_get_alphabet(mread) != alph) { die("Expected %s alphabet motifs\n", alph_name(alph)); } // get the background if (*bg == NULL) *bg = mread_get_background(mread); } else { fprintf(stderr, "Warning: Motif file %s contains no motifs.\n", motif_source); } // clean up motif reader mread_destroy(mread); // create motif db motifdb = mm_malloc(sizeof(MOTIF_DB_T)); memset(motifdb, 0, sizeof(MOTIF_DB_T)); motifdb->id = id; motifdb->source = strdup(motif_source); motifdb->motifs = motifs; return motifdb; }
void ramen_load_motifs() { BOOLEAN_T read_file = FALSE; MREAD_T *mread; ARRAYLST_T* read_motifs; int num_motifs_before_rc; int i; int j; memset(&motifs, 0, sizeof(ramen_motifs_t)); read_motifs = arraylst_create(); for (i = 0; i < args.number_motif_files; i++) { mread = mread_create(args.motif_filenames[i], OPEN_MFILE); if (args.bg_format == FILE_BG) { mread_set_bg_source(mread, args.bg_filename); } else { mread_set_background(mread, motifs.bg_freqs); } mread_set_pseudocount(mread, args.pseudocount); mread_load(mread, read_motifs); if (!(motifs.bg_freqs)) motifs.bg_freqs = mread_get_background(mread); mread_destroy(mread); } // reverse complement the originals adding to the original read in list num_motifs_before_rc = arraylst_size(read_motifs); add_reverse_complements(read_motifs); motifs.num = arraylst_size(read_motifs); //Allocate array for the motifs motif_list_to_array(read_motifs, &(motifs.motifs), &(motifs.num)); //free the list of motifs free_motifs(read_motifs); // check reverse complements. assert(motifs.num / 2 == num_motifs_before_rc); // reset motif count to before rev comp motifs.num = num_motifs_before_rc; //Now, we need to convert the motifs into odds matrices if we're doing that kind of scoring for (i=0;i<2*motifs.num;i++) { convert_to_odds_matrix(motif_at(motifs.motifs, i), motifs.bg_freqs); } }
/************************************************************************** * Generate logos for all motifs in a file **************************************************************************/ static void generate_file_logos(OPTIONS_T *options) { STR_T *path; MREAD_T *mread; MOTIF_T *motif; // file path buffer path = str_create(100); str_append(path, options->dir, strlen(options->dir)); if (str_char(path, -1) != '/') str_append(path, "/", 1); // create output directory if (create_output_directory(str_internal(path), TRUE, FALSE)) exit(EXIT_FAILURE); // open motif file mread = mread_create(options->motifs_file, OPEN_MFILE); while (mread_has_motif(mread)) { motif = mread_next_motif(mread); generate_motif_logos(options, path, motif); destroy_motif(motif); } mread_destroy(mread); str_destroy(path, FALSE); }
ARRAYLST_T* load_motifs(AMA_OPTIONS_T *opts) { ARRAYLST_T *motifs; ARRAY_T *pos_bg_freqs, *rev_bg_freqs; MREAD_T *mread; MOTIF_T *motif, *motif_rc; double range; PSSM_T *pos_pssm, *neg_pssm; int total_motifs; ALPH_T *alph; // // Read the motifs and background model. // //this reads any meme file, xml, txt and html mread = mread_create(opts->motif_filename, OPEN_MFILE); mread_set_bg_source(mread, opts->bg_filename); mread_set_pseudocount(mread, opts->pseudocount); // sanity check, since the rest of the code relies on the motifs being complementable alph = alph_hold(mread_get_alphabet(mread)); if (alph == NULL) die("Unable to determine alphabet from motifs"); if (opts->scan_both_strands && !alph_has_complement(alph)) { opts->scan_both_strands = false; } if (opts->num_gc_bins > 1 && alph_size_core(alph) != 4 && alph_size_pairs(alph) != 2) { fprintf(stderr, "Warning: The motif alphabet does not have exactly 2 complementary pairs so \"GC binning\" will be disabled.\n"); opts->num_gc_bins = 1; } pos_bg_freqs = mread_get_background(mread); rev_bg_freqs = NULL; if (opts->scan_both_strands) { rev_bg_freqs = allocate_array(get_array_length(pos_bg_freqs)); copy_array(pos_bg_freqs, rev_bg_freqs); complement_swap_freqs(alph, rev_bg_freqs, rev_bg_freqs); } // allocate memory for motifs motifs = arraylst_create(); // // Convert motif matrices into log-odds matrices. // Scale them. // Compute the lookup tables for the PDF of scaled log-odds scores. // range = 300; // 100 is not very good; 1000 is great but too slow neg_pssm = NULL; total_motifs = 0; while (mread_has_motif(mread)) { motif = mread_next_motif(mread); total_motifs++; if (rbtree_size(opts->selected_motifs) == 0 || rbtree_find(opts->selected_motifs, get_motif_id(motif)) != NULL) { if (verbosity >= HIGH_VERBOSE) { fprintf(stderr, "Using motif %s of width %d.\n", get_motif_id(motif), get_motif_length(motif)); } pos_pssm = build_motif_pssm( motif, pos_bg_freqs, pos_bg_freqs, NULL, // Priors not used 0.0L, // alpha not used range, opts->num_gc_bins, true ); // // Note: If scanning both strands, we complement the motif frequencies // but not the background frequencies so the motif looks the same. // However, the given frequencies are used in computing the p-values // since they represent the frequencies on the negative strands. // (If we instead were to complement the input sequence, keeping the // the motif fixed, we would need to use the complemented frequencies // in computing the p-values. Is that any clearer?) // if (opts->scan_both_strands) { motif_rc = dup_rc_motif(motif); neg_pssm = build_motif_pssm( motif_rc, rev_bg_freqs, pos_bg_freqs, NULL, // Priors not used 0.0L, // alpha not used range, opts->num_gc_bins, true ); destroy_motif(motif_rc); } arraylst_add(motif_and_pssm_create(motif, pos_pssm, neg_pssm), motifs); } else { if (verbosity >= HIGH_VERBOSE) fprintf(stderr, "Skipping motif %s.\n", get_motif_id(motif)); destroy_motif(motif); } } mread_destroy(mread); free_array(pos_bg_freqs); free_array(rev_bg_freqs); alph_release(alph); if (verbosity >= NORMAL_VERBOSE) { fprintf(stderr, "Loaded %d/%d motifs from %s.\n", arraylst_size(motifs), total_motifs, opts->motif_filename); } return motifs; }
/************************************************************************* * Entry point for ama *************************************************************************/ int main(int argc, char *argv[]) { int max_seq_length = MAX_SEQ; STRING_LIST_T* selected_motifs = NULL; double pseudocount = 0.01; int output_format = CISML_FORMAT; program_name = "ama"; int scoring = AVG_ODDS; BOOLEAN_T pvalues = FALSE; BOOLEAN_T normalize_scores = FALSE; BOOLEAN_T combine_duplicates = FALSE; int num_gc_bins = 1; int sdbg_order = -1; // don't use sequence background BOOLEAN_T scan_both_strands = TRUE; ARRAY_T* pos_bg_freqs = NULL; ARRAY_T* rev_bg_freqs = NULL; clock_t c0, c1; /* measuring cpu_time */ CISML_T *cisml; char * out_dir = NULL; BOOLEAN_T clobber = FALSE; int i; int last = 0; ALPH_T alph = INVALID_ALPH; /********************************************** * COMMAND LINE PROCESSING **********************************************/ const int num_options = 16; cmdoption const motif_scan_options[] = { { "max-seq-length", REQUIRED_VALUE }, { "motif", REQUIRED_VALUE }, { "motif-pseudo", REQUIRED_VALUE }, { "rma", NO_VALUE }, { "pvalues", NO_VALUE }, { "sdbg", REQUIRED_VALUE }, { "norc", NO_VALUE }, { "cs", NO_VALUE }, { "o-format", REQUIRED_VALUE }, { "o", REQUIRED_VALUE }, { "oc", REQUIRED_VALUE }, { "scoring", REQUIRED_VALUE }, { "verbosity", REQUIRED_VALUE }, { "gcbins", REQUIRED_VALUE }, { "last", REQUIRED_VALUE }, { "version", NO_VALUE } }; int option_index = 0; // Define the usage message. char usage[] = "USAGE: ama [options] <motif file> <sequence file> [<background file>]\n" "\n" " Options:\n" " --sdbg <order>\t\t\tUse Markov background model of\n" " \t\t\t\t\torder <order> derived from the sequence\n" " \t\t\t\t\tto compute its likelihood ratios.\n" " \t\t\t\t\tOverrides --pvalues, --gcbins and --rma;\n" " \t\t\t\t\t<background file> is required unless\n" " \t\t\t\t\t--sdbg is given.\n" " --motif <id>\t\t\tUse only the motif identified by <id>.\n" " \t\t\t\t\tThis option may be repeated.\n" " --motif-pseudo <float>\t\tThe value <float> times the background\n" " \t\t\t\t\tfrequency is added to the count of each\n" " \t\t\t\t\tletter when creating the likelihood \n" " \t\t\t\t\tratio matrix (default: %g).\n" " --norc\t\t\t\tDisables the scanning of the reverse\n" " \t\t\t\t\tcomplement strand.\n" " --scoring [avg-odds|max-odds]\tIndicates whether the average or \n" " \t\t\t\t\tthe maximum odds should be calculated\n" " \t\t\t\t\t(default: avg-odds)\n" " --rma\t\t\t\tScale motif scores to the range 0-1.\n" " \t\t\t\t\t(Relative Motif Affinity).\n" " \t\t\t\t\tMotif scores are scaled by the maximum\n" " \t\t\t\t\tscore achievable by that PWM. (default:\n" " \t\t\t\t\tmotif scores are not normalized)\n" " --pvalues\t\t\t\tPrint p-value of avg-odds score in cisml\n" " \t\t\t\t\toutput. Ignored for max-odds scoring.\n" " \t\t\t\t\t(default: p-values are not printed)\n" " --gcbins <bins>\t\t\tCompensate p-values for GC content of\n" " \t\t\t\t\teach sequence using given number of \n" " \t\t\t\t\tGC range bins. Recommended bins: 41.\n" " \t\t\t\t\t(default: p-values are based on\n" " \t\t\t\t\tfrequencies in background file)\n" " --cs\t\t\t\tEnable combining sequences with same\n" " \t\t\t\t\tidentifier by taking the average score\n" " \t\t\t\t\tand the Sidac corrected p-value.\n" " --o-format [gff|cisml]\t\tOutput file format (default: cisml)\n" " \t\t\t\t\tignored if --o or --oc option used\n" " --o <directory>\t\t\tOutput all available formats to\n" " \t\t\t\t\t<directory>; give up if <directory>\n" " \t\t\t\t\texists\n" " --oc <directory>\t\t\tOutput all available formats to\n" " \t\t\t\t\t<directory>; if <directory> exists\n" " \t\t\t\t\toverwrite contents\n" " --verbosity [1|2|3|4]\t\tControls amount of screen output\n" " \t\t\t\t\t(default: %d)\n" " --max-seq-length <int>\t\tSet the maximum length allowed for \n" " \t\t\t\t\tinput sequences. (default: %d)\n" " --last <int>\t\t\tUse only scores of (up to) last <n>\n" " \t\t\t\t\tsequence positions to compute AMA.\n" " --version \t\t\tPrint version and exit.\n" "\n"; // Parse the command line. if (simple_setopt(argc, argv, num_options, motif_scan_options) != NO_ERROR) { die("Error processing command line options: option name too long.\n"); } BOOLEAN_T setoutputformat = FALSE; BOOLEAN_T setoutputdirectory = FALSE; while (TRUE) { int c = 0; char* option_name = NULL; char* option_value = NULL; const char * message = NULL; // Read the next option, and break if we're done. c = simple_getopt(&option_name, &option_value, &option_index); if (c == 0) { break; } else if (c < 0) { (void) simple_getopterror(&message); die("Error processing command line options (%s).\n", message); } else if (strcmp(option_name, "max-seq-length") == 0) { max_seq_length = atoi(option_value); } else if (strcmp(option_name, "norc") == 0) { scan_both_strands = FALSE; } else if (strcmp(option_name, "cs") == 0) { combine_duplicates = TRUE; } else if (strcmp(option_name, "motif") == 0) { if (selected_motifs == NULL) { selected_motifs = new_string_list(); } add_string(option_value, selected_motifs); } else if (strcmp(option_name, "motif-pseudo") == 0) { pseudocount = atof(option_value); } else if (strcmp(option_name, "o-format") == 0) { if (setoutputdirectory) { if (verbosity >= NORMAL_VERBOSE) fprintf(stderr, "output directory specified, ignoring --o-format\n"); } else { setoutputformat = TRUE; if (strcmp(option_value, "gff") == 0) output_format = GFF_FORMAT; else if (strcmp(option_value, "cisml") == 0) output_format = CISML_FORMAT; else { if (verbosity >= NORMAL_VERBOSE) fprintf(stderr, "Output format not known. Using standard instead (cisML).\n"); output_format = CISML_FORMAT; } } } else if (strcmp(option_name, "o") == 0 || strcmp(option_name, "oc") == 0) { setoutputdirectory = TRUE; if (setoutputformat) { if (verbosity >= NORMAL_VERBOSE) fprintf(stderr, "output directory specified, ignoring --o-format\n"); } clobber = strcmp(option_name, "oc") == 0; out_dir = (char*) malloc (sizeof(char)*(strlen(option_value)+1)); strcpy(out_dir, option_value); output_format = DIRECTORY_FORMAT; } else if (strcmp(option_name, "verbosity") == 0) { verbosity = atoi(option_value); } else if (strcmp(option_name, "scoring") == 0) { if (strcmp(option_value, "max-odds") == 0) scoring = MAX_ODDS; else if (strcmp(option_value, "avg-odds") == 0) scoring = AVG_ODDS; else if (strcmp(option_value, "sum-odds") == 0) scoring = SUM_ODDS; else die("Specified scoring scheme not known.\n", message); } else if (strcmp(option_name, "pvalues") == 0) { pvalues = TRUE; } else if (strcmp(option_name, "rma") == 0) { normalize_scores = TRUE; fprintf(stderr, "Normalizing motif scores using RMA method.\n"); } else if (strcmp(option_name, "gcbins") == 0) { num_gc_bins = atoi(option_value); pvalues = TRUE; if (num_gc_bins <= 1) die("Number of bins in --gcbins must be greater than 1.\n", message); } else if (strcmp(option_name, "sdbg") == 0) { sdbg_order = atoi(option_value); // >=0 means use sequence bkg } else if (strcmp(option_name, "last") == 0) { int i = 0; if (option_value[0] == '-') ++i; while (option_value[i] != '\0') { if (!isdigit(option_value[i])) { die("Specified parameter 'last' contains non-numeric characters.\n"); } ++i; } last = atoi(option_value); if (errno != 0) { die("Specified parameter 'last' could not be parsed as a number as:\n%s\n",strerror(errno)); } if (last < 0) { die("Specified parameter 'last' had negative value (%d) when only postive or zero values are allowed \n", last); } } else if (strcmp(option_name, "version") == 0) { fprintf(stdout, VERSION "\n"); exit(EXIT_SUCCESS); } } // --sdbg overrides --pvalues and --gcbins and --rma int req_args = 3; if (sdbg_order >= 0) { pvalues = FALSE; normalize_scores = FALSE; num_gc_bins = 1; req_args = 2; } // Check all required arguments given if (sdbg_order >= 0 && argc > option_index + req_args) { die("<background file> cannot be given together with --sdbg.\n"); } else if (argc != option_index + req_args) { fprintf(stderr, usage, pseudocount, verbosity, max_seq_length); exit(EXIT_FAILURE); } // Get required arguments. char* motif_filename = argv[option_index]; option_index++; char* fasta_filename = argv[option_index]; option_index++; char* bg_filename; if (req_args == 3) { // required unless --sdbg given bg_filename = argv[option_index]; option_index++; } else { bg_filename = "--uniform--"; // So PSSMs will use uniform background; // we can multiply them out later. } // measure time c0 = clock(); // Set up hash tables for computing reverse complement if doing --sdbg if (sdbg_order >= 0) setup_hash_alph(DNAB); // Create cisml data structure for recording results cisml = allocate_cisml(program_name, motif_filename, fasta_filename); set_cisml_background_file(cisml, bg_filename); /********************************************** * Read the motifs and background model. **********************************************/ int num_motifs = 0; MREAD_T *mread; ARRAYLST_T *motifs; PSSM_PAIR_T** pssm_pairs; // note pssm_pairs is an array of pointers //this reads any meme file, xml, txt and html mread = mread_create(motif_filename, OPEN_MFILE); mread_set_bg_source(mread, bg_filename); mread_set_pseudocount(mread, pseudocount); motifs = mread_load(mread, NULL); alph = mread_get_alphabet(mread); pos_bg_freqs = mread_get_background(mread); mread_destroy(mread); num_motifs = arraylst_size(motifs); // allocate memory for PSSM pairs pssm_pairs = (PSSM_PAIR_T**)mm_malloc(sizeof(PSSM_PAIR_T*) * num_motifs); if (verbosity >= NORMAL_VERBOSE) fprintf(stderr, "Number of motifs in file %d.\n", num_motifs); // make a CISML pattern to hold scores for each motif PATTERN_T** patterns = NULL; Resize(patterns, num_motifs, PATTERN_T*); int motif_index; for (motif_index = 0; motif_index < num_motifs; motif_index++) { MOTIF_T* motif = (MOTIF_T*)arraylst_get(motif_index, motifs); patterns[motif_index] = allocate_pattern(get_motif_id(motif), ""); add_cisml_pattern(cisml, patterns[motif_index]); } // make reverse complement motifs and background frequencies. if (scan_both_strands == TRUE) { add_reverse_complements(motifs); assert(arraylst_size(motifs) == (2 * num_motifs)); rev_bg_freqs = allocate_array(get_array_length(pos_bg_freqs)); complement_dna_freqs(pos_bg_freqs, rev_bg_freqs); } /************************************************************** * Convert motif matrices into log-odds matrices. * Scale them. * Compute the lookup tables for the PDF of scaled log-odds scores. **************************************************************/ int ns = scan_both_strands ? 2 : 1; // number of strands for (motif_index = 0; motif_index < num_motifs; motif_index++) { MOTIF_T *motif, *motif_rc; motif = (MOTIF_T*)arraylst_get(motif_index*ns, motifs); if (scan_both_strands) motif_rc = (MOTIF_T*)arraylst_get(motif_index*ns + 1, motifs); else motif_rc = NULL; /* * Note: If scanning both strands, we complement the motif frequencies * but not the background frequencies so the motif looks the same. * However, the given frequencies are used in computing the p-values * since they represent the frequencies on the negative strands. * (If we instead were to complement the input sequence, keeping the * the motif fixed, we would need to use the complemented frequencies * in computing the p-values. Is that any clearer?) */ double range = 300; // 100 is not very good; 1000 is great but too slow PSSM_T* pos_pssm = build_motif_pssm( motif, pos_bg_freqs, pos_bg_freqs, NULL, // Priors not used 0.0L, // alpha not used range, num_gc_bins, TRUE ); PSSM_T* neg_pssm = (scan_both_strands ? build_motif_pssm( motif_rc, rev_bg_freqs, pos_bg_freqs, NULL, // Priors not used 0.0L, // alpha not used range, num_gc_bins, TRUE ) : NULL ); pssm_pairs[motif_index] = create_pssm_pair(pos_pssm, neg_pssm); } // Open the FASTA file for reading. FILE* fasta_file = NULL; if (open_file(fasta_filename, "r", FALSE, "FASTA", "sequences", &fasta_file) == 0) { die("Couldn't open the file %s.\n", fasta_filename); } if (verbosity >= NORMAL_VERBOSE) { if (last == 0) { fprintf(stderr, "Using entire sequence\n"); } else { fprintf(stderr, "Limiting sequence to last %d positions.\n", last); } } /************************************************************** * Read in all sequences and score with all motifs **************************************************************/ int seq_loading_num = 0; // keeps track on the number of sequences read in total int seq_counter = 0; // holds the index to the seq in the pattern int unique_seqs = 0; // keeps track on the number of unique sequences BOOLEAN_T need_postprocessing = FALSE; SEQ_T* sequence = NULL; RBTREE_T* seq_ids = rbtree_create(rbtree_strcasecmp,NULL,free,rbtree_intcpy,free); RBNODE_T* seq_node; BOOLEAN_T created; while (read_one_fasta(alph, fasta_file, max_seq_length, &sequence)) { ++seq_loading_num; created = FALSE; char* seq_name = get_seq_name(sequence); int seq_len = get_seq_length(sequence); int scan_len; if (last != 0) { scan_len = last; } else { scan_len = seq_len; } // red-black trees are only required if duplicates should be combined if (combine_duplicates){ //lookup seq id and create new entry if required, return sequence index char *tmp_id = mm_malloc(strlen(seq_name)+1); // required copy for rb-tree strncpy(tmp_id,seq_name,strlen(seq_name)+1); seq_node = rbtree_lookup(seq_ids, tmp_id, TRUE, &created); if (created) {// assign it a loading number rbtree_set(seq_ids, seq_node, &unique_seqs); seq_counter = unique_seqs; ++unique_seqs; } else { seq_counter = *((int*)rbnode_get(seq_node)); } } // // Set up sequence-dependent background model and compute // log cumulative probability of sequence. // double *logcumback = NULL; // array of log cumulative probs. if (sdbg_order >= 0) { Resize(logcumback, seq_len+1, double); char* raw_seq = get_raw_sequence(sequence); BOOLEAN rc = FALSE; double *a_cp = get_markov_from_sequence(raw_seq, alph_string(alph), rc, sdbg_order, 0); log_cum_back(raw_seq, a_cp, sdbg_order, logcumback); myfree(a_cp); } // Get the GC content of the sequence if binning p-values by GC // and store it in the sequence object. if (num_gc_bins > 1) { ARRAY_T *freqs = get_sequence_freqs(sequence, alph); set_total_gc_sequence(sequence, get_array_item(1,freqs) + get_array_item(2,freqs)); // f(C) + f(G) free_array(freqs); // clean up } else { set_total_gc_sequence(sequence, -1); // flag ignore } /************************************************************** * Process all motifs. **************************************************************/ int ns = scan_both_strands ? 2 : 1; for (motif_index = 0; motif_index < num_motifs; motif_index++) { PATTERN_T *pattern = patterns[motif_index]; MOTIF_T* motif = (MOTIF_T*)arraylst_get(ns*motif_index, motifs); char* motif_id = (scan_both_strands ? get_motif_st_id(motif) : get_motif_id(motif)); if (verbosity >= HIGH_VERBOSE) { fprintf(stderr, "Using motif %s of width %d.\n", motif_id, get_motif_length(motif)); } if ((selected_motifs == NULL) || (have_string(get_motif_id(motif), selected_motifs) == TRUE)) { if (verbosity >= HIGHER_VERBOSE) { fprintf(stderr, "Scanning %s sequence with length %d " "abbreviated to %d with motif %s with length %d.\n", seq_name, seq_len, scan_len, motif_id, get_motif_length(motif)); } SCANNED_SEQUENCE_T* scanned_seq = NULL; if (!combine_duplicates || get_pattern_num_scanned_sequences(pattern) <= seq_counter){ // Create a scanned_sequence record and save it in the pattern. scanned_seq = allocate_scanned_sequence(seq_name, seq_name, pattern); set_scanned_sequence_length(scanned_seq, scan_len); } else { // get existing sequence record scanned_seq = get_pattern_scanned_sequences(pattern)[seq_counter]; set_scanned_sequence_length(scanned_seq, max(scan_len, get_scanned_sequence_length(scanned_seq))); } // check if scanned component of sequence has sufficient length for the motif if (scan_len < get_motif_length(motif)) { // set score to zero and p-value to 1 if not set yet if(!has_scanned_sequence_score(scanned_seq)){ set_scanned_sequence_score(scanned_seq, 0.0); } if(pvalues && !has_scanned_sequence_pvalue(scanned_seq)){ set_scanned_sequence_pvalue(scanned_seq, 1.0); } add_scanned_sequence_scanned_position(scanned_seq); if (get_scanned_sequence_num_scanned_positions(scanned_seq) > 0L) need_postprocessing = TRUE; if (verbosity >= HIGH_VERBOSE) fprintf(stderr, "%s too short for motif %s. Score set to 0!\n", seq_name, motif_id); } else { // scan the sequence using average/maximum motif affinity ama_sequence_scan(alph, sequence, logcumback, pssm_pairs[motif_index], scoring, pvalues, last, scanned_seq, &need_postprocessing); } } else { if (verbosity >= HIGH_VERBOSE) fprintf(stderr, "Skipping motif %s.\n", motif_id); } } // All motifs parsed free_seq(sequence); if (sdbg_order >= 0) myfree(logcumback); } // read sequences