static int send_rpm_msg(struct device *device) { int ret = 0; int ctx; int rsc_type; struct msm_bus_node_device_type *ndev = device->platform_data; struct msm_rpm_kvp rpm_kvp; if (!ndev) { MSM_BUS_ERR("%s: Error getting node info.", __func__); ret = -ENODEV; goto exit_send_rpm_msg; } rpm_kvp.length = sizeof(uint64_t); rpm_kvp.key = RPM_MASTER_FIELD_BW; for (ctx = MSM_RPM_CTX_ACTIVE_SET; ctx <= MSM_RPM_CTX_SLEEP_SET; ctx++) { if (ctx == MSM_RPM_CTX_ACTIVE_SET) rpm_kvp.data = (uint8_t *)&ndev->node_ab.ab[MSM_RPM_CTX_ACTIVE_SET]; else { rpm_kvp.data = (uint8_t *) &ndev->node_ab.ab[MSM_RPM_CTX_SLEEP_SET]; } if (ndev->node_info->mas_rpm_id != -1) { rsc_type = RPM_BUS_MASTER_REQ; ret = msm_rpm_send_message(ctx, rsc_type, ndev->node_info->mas_rpm_id, &rpm_kvp, 1); if (ret) { MSM_BUS_ERR("%s: Failed to send RPM message:", __func__); MSM_BUS_ERR("%s:Node Id %d RPM id %d", __func__, ndev->node_info->id, ndev->node_info->mas_rpm_id); goto exit_send_rpm_msg; } } if (ndev->node_info->slv_rpm_id != -1) { rsc_type = RPM_BUS_SLAVE_REQ; ret = msm_rpm_send_message(ctx, rsc_type, ndev->node_info->slv_rpm_id, &rpm_kvp, 1); if (ret) { MSM_BUS_ERR("%s: Failed to send RPM message:", __func__); MSM_BUS_ERR("%s: Node Id %d RPM id %d", __func__, ndev->node_info->id, ndev->node_info->slv_rpm_id); goto exit_send_rpm_msg; } } } exit_send_rpm_msg: return ret; }
static int clk_rpmrs_set_rate_smd(struct rpm_clk *r, uint32_t value, uint32_t context) { struct msm_rpm_kvp kvp = { .key = r->rpm_key, .data = (void *)&value, .length = sizeof(value), }; return msm_rpm_send_message(context, r->rpm_res_type, r->rpm_clk_id, &kvp, 1); } static int clk_rpmrs_handoff_smd(struct rpm_clk *r) { if (!r->branch) r->c.rate = INT_MAX; return 0; } static int clk_rpmrs_is_enabled_smd(struct rpm_clk *r) { return !!r->c.prepare_count; } struct clk_rpmrs_data { int (*set_rate_fn)(struct rpm_clk *r, uint32_t value, uint32_t context); int (*get_rate_fn)(struct rpm_clk *r); int (*handoff_fn)(struct rpm_clk *r); int (*is_enabled)(struct rpm_clk *r); int ctx_active_id; int ctx_sleep_id; }; struct clk_rpmrs_data clk_rpmrs_data_smd = { .set_rate_fn = clk_rpmrs_set_rate_smd, .handoff_fn = clk_rpmrs_handoff_smd, .is_enabled = clk_rpmrs_is_enabled_smd, .ctx_active_id = MSM_RPM_CTX_ACTIVE_SET, .ctx_sleep_id = MSM_RPM_CTX_SLEEP_SET, }; static DEFINE_MUTEX(rpm_clock_lock); static void to_active_sleep_khz(struct rpm_clk *r, unsigned long rate, unsigned long *active_khz, unsigned long *sleep_khz) { /* Convert the rate (hz) to khz */ *active_khz = DIV_ROUND_UP(rate, 1000); /* * Active-only clocks don't care what the rate is during sleep. So, * they vote for zero. */ if (r->active_only) *sleep_khz = 0; else *sleep_khz = *active_khz; }
static int clk_rpmrs_set_rate(struct rpm_clk *r, uint32_t value, uint32_t context, int noirq) { struct msm_rpm_iv_pair iv = { .id = r->rpm_clk_id, .value = value, }; if (noirq) return msm_rpmrs_set_noirq(context, &iv, 1); else return msm_rpmrs_set(context, &iv, 1); } static int clk_rpmrs_get_rate(struct rpm_clk *r) { int rc; struct msm_rpm_iv_pair iv = { .id = r->rpm_status_id, }; rc = msm_rpm_get_status(&iv, 1); return (rc < 0) ? rc : iv.value * r->factor; } static int clk_rpmrs_set_rate_smd(struct rpm_clk *r, uint32_t value, uint32_t context, int noirq) { struct msm_rpm_kvp kvp = { .key = r->rpm_key, .data = (void *)&value, .length = sizeof(value), }; if (noirq) return msm_rpm_send_message_noirq(context, r->rpm_res_type, r->rpm_clk_id, &kvp, 1); else return msm_rpm_send_message(context, r->rpm_res_type, r->rpm_clk_id, &kvp, 1); } struct clk_rpmrs_data { int (*set_rate_fn)(struct rpm_clk *r, uint32_t value, uint32_t context, int noirq); int (*get_rate_fn)(struct rpm_clk *r); int ctx_active_id; int ctx_sleep_id; }; struct clk_rpmrs_data clk_rpmrs_data = { .set_rate_fn = clk_rpmrs_set_rate, .get_rate_fn = clk_rpmrs_get_rate, .ctx_active_id = MSM_RPM_CTX_SET_0, .ctx_sleep_id = MSM_RPM_CTX_SET_SLEEP, }; struct clk_rpmrs_data clk_rpmrs_data_smd = { .set_rate_fn = clk_rpmrs_set_rate_smd, .ctx_active_id = MSM_RPM_CTX_ACTIVE_SET, .ctx_sleep_id = MSM_RPM_CTX_SLEEP_SET, }; static DEFINE_SPINLOCK(rpm_clock_lock); static int rpm_clk_enable(struct clk *clk) { unsigned long flags; struct rpm_clk *r = to_rpm_clk(clk); uint32_t value; int rc = 0; unsigned long this_khz, this_sleep_khz; unsigned long peer_khz = 0, peer_sleep_khz = 0; struct rpm_clk *peer = r->peer; spin_lock_irqsave(&rpm_clock_lock, flags); this_khz = r->last_set_khz; /* Don't send requests to the RPM if the rate has not been set. */ if (this_khz == 0) goto out; this_sleep_khz = r->last_set_sleep_khz; /* Take peer clock's rate into account only if it's enabled. */ if (peer->enabled) { peer_khz = peer->last_set_khz; peer_sleep_khz = peer->last_set_sleep_khz; } value = max(this_khz, peer_khz); if (r->branch) value = !!value; rc = clk_rpmrs_set_rate_active_noirq(r, value); if (rc) goto out; value = max(this_sleep_khz, peer_sleep_khz); if (r->branch) value = !!value; rc = clk_rpmrs_set_rate_sleep_noirq(r, value); if (rc) { /* Undo the active set vote and restore it to peer_khz */ value = peer_khz; rc = clk_rpmrs_set_rate_active_noirq(r, value); } out: if (!rc) r->enabled = true; spin_unlock_irqrestore(&rpm_clock_lock, flags); return rc; } static void rpm_clk_disable(struct clk *clk) { unsigned long flags; struct rpm_clk *r = to_rpm_clk(clk); spin_lock_irqsave(&rpm_clock_lock, flags); if (r->last_set_khz) { uint32_t value; struct rpm_clk *peer = r->peer; unsigned long peer_khz = 0, peer_sleep_khz = 0; int rc; /* Take peer clock's rate into account only if it's enabled. */ if (peer->enabled) { peer_khz = peer->last_set_khz; peer_sleep_khz = peer->last_set_sleep_khz; } value = r->branch ? !!peer_khz : peer_khz; rc = clk_rpmrs_set_rate_active_noirq(r, value); if (rc) goto out; value = r->branch ? !!peer_sleep_khz : peer_sleep_khz; rc = clk_rpmrs_set_rate_sleep_noirq(r, value); } r->enabled = false; out: spin_unlock_irqrestore(&rpm_clock_lock, flags); return; }
static int clk_rpmrs_set_rate(struct rpm_clk *r, uint32_t value, uint32_t context, int noirq) { struct msm_rpm_iv_pair iv = { .id = r->rpm_clk_id, .value = value, }; if (noirq) return msm_rpmrs_set_noirq(context, &iv, 1); else return msm_rpmrs_set(context, &iv, 1); } static int clk_rpmrs_get_rate(struct rpm_clk *r) { int rc; struct msm_rpm_iv_pair iv = { .id = r->rpm_status_id, }; rc = msm_rpm_get_status(&iv, 1); return (rc < 0) ? rc : iv.value * r->factor; } #define RPM_SMD_KEY_RATE 0x007A484B #define RPM_SMD_KEY_ENABLE 0x62616E45 static int clk_rpmrs_set_rate_smd(struct rpm_clk *r, uint32_t value, uint32_t context, int noirq) { u32 rpm_key = r->branch ? RPM_SMD_KEY_ENABLE : RPM_SMD_KEY_RATE; struct msm_rpm_kvp kvp = { .key = rpm_key, .data = (void *)&value, .length = sizeof(value), }; if (noirq) return msm_rpm_send_message_noirq(context, r->rpm_res_type, r->rpm_clk_id, &kvp, 1); else return msm_rpm_send_message(context, r->rpm_res_type, r->rpm_clk_id, &kvp, 1); } struct clk_rpmrs_data { int (*set_rate_fn)(struct rpm_clk *r, uint32_t value, uint32_t context, int noirq); int (*get_rate_fn)(struct rpm_clk *r); int ctx_active_id; int ctx_sleep_id; }; struct clk_rpmrs_data clk_rpmrs_data = { .set_rate_fn = clk_rpmrs_set_rate, .get_rate_fn = clk_rpmrs_get_rate, .ctx_active_id = MSM_RPM_CTX_SET_0, .ctx_sleep_id = MSM_RPM_CTX_SET_SLEEP, }; struct clk_rpmrs_data clk_rpmrs_data_smd = { .set_rate_fn = clk_rpmrs_set_rate_smd, .ctx_active_id = MSM_RPM_CTX_ACTIVE_SET, .ctx_sleep_id = MSM_RPM_CTX_SLEEP_SET, }; static DEFINE_SPINLOCK(rpm_clock_lock); static int rpm_clk_enable(struct clk *clk) { unsigned long flags; struct rpm_clk *r = to_rpm_clk(clk); uint32_t value; int rc = 0; unsigned long this_khz, this_sleep_khz; unsigned long peer_khz = 0, peer_sleep_khz = 0; struct rpm_clk *peer = r->peer; spin_lock_irqsave(&rpm_clock_lock, flags); this_khz = r->last_set_khz; if (this_khz == 0) goto out; this_sleep_khz = r->last_set_sleep_khz; if (peer->enabled) { peer_khz = peer->last_set_khz; peer_sleep_khz = peer->last_set_sleep_khz; } value = max(this_khz, peer_khz); if (r->branch) value = !!value; rc = clk_rpmrs_set_rate_active_noirq(r, value); if (rc) goto out; value = max(this_sleep_khz, peer_sleep_khz); if (r->branch) value = !!value; rc = clk_rpmrs_set_rate_sleep_noirq(r, value); if (rc) { value = peer_khz; rc = clk_rpmrs_set_rate_active_noirq(r, value); } out: if (!rc) r->enabled = true; spin_unlock_irqrestore(&rpm_clock_lock, flags); return rc; }
static int clk_rpmrs_set_rate(struct rpm_clk *r, uint32_t value, uint32_t context) { struct msm_rpm_iv_pair iv = { .id = r->rpm_clk_id, .value = value, }; return msm_rpmrs_set(context, &iv, 1); } static int clk_rpmrs_get_rate(struct rpm_clk *r) { int rc; struct msm_rpm_iv_pair iv = { .id = r->rpm_status_id, }; rc = msm_rpm_get_status(&iv, 1); return (rc < 0) ? rc : iv.value * 1000; } static int clk_rpmrs_handoff(struct rpm_clk *r) { struct msm_rpm_iv_pair iv = { .id = r->rpm_status_id, }; int rc = msm_rpm_get_status(&iv, 1); if (rc < 0) return rc; if (!r->branch) r->c.rate = iv.value * 1000; return 0; } static int clk_rpmrs_set_rate_smd(struct rpm_clk *r, uint32_t value, uint32_t context) { struct msm_rpm_kvp kvp = { .key = r->rpm_key, .data = (void *)&value, .length = sizeof(value), }; return msm_rpm_send_message(context, r->rpm_res_type, r->rpm_clk_id, &kvp, 1); } static int clk_rpmrs_handoff_smd(struct rpm_clk *r) { if (!r->branch) r->c.rate = INT_MAX; return 0; } struct clk_rpmrs_data { int (*set_rate_fn)(struct rpm_clk *r, uint32_t value, uint32_t context); int (*get_rate_fn)(struct rpm_clk *r); int (*handoff_fn)(struct rpm_clk *r); int ctx_active_id; int ctx_sleep_id; }; struct clk_rpmrs_data clk_rpmrs_data = { .set_rate_fn = clk_rpmrs_set_rate, .get_rate_fn = clk_rpmrs_get_rate, .handoff_fn = clk_rpmrs_handoff, .ctx_active_id = MSM_RPM_CTX_SET_0, .ctx_sleep_id = MSM_RPM_CTX_SET_SLEEP, }; struct clk_rpmrs_data clk_rpmrs_data_smd = { .set_rate_fn = clk_rpmrs_set_rate_smd, .handoff_fn = clk_rpmrs_handoff_smd, .ctx_active_id = MSM_RPM_CTX_ACTIVE_SET, .ctx_sleep_id = MSM_RPM_CTX_SLEEP_SET, }; static DEFINE_MUTEX(rpm_clock_lock); static void to_active_sleep_khz(struct rpm_clk *r, unsigned long rate, unsigned long *active_khz, unsigned long *sleep_khz) { /* Convert the rate (hz) to khz */ *active_khz = DIV_ROUND_UP(rate, 1000); /* * Active-only clocks don't care what the rate is during sleep. So, * they vote for zero. */ if (r->active_only) *sleep_khz = 0; else *sleep_khz = *active_khz; } static int rpm_clk_prepare(struct clk *clk) { struct rpm_clk *r = to_rpm_clk(clk); uint32_t value; int rc = 0; unsigned long this_khz, this_sleep_khz; unsigned long peer_khz = 0, peer_sleep_khz = 0; struct rpm_clk *peer = r->peer; mutex_lock(&rpm_clock_lock); to_active_sleep_khz(r, r->c.rate, &this_khz, &this_sleep_khz); /* Don't send requests to the RPM if the rate has not been set. */ if (this_khz == 0) goto out; /* Take peer clock's rate into account only if it's enabled. */ if (peer->enabled) to_active_sleep_khz(peer, peer->c.rate, &peer_khz, &peer_sleep_khz); value = max(this_khz, peer_khz); if (r->branch) value = !!value; rc = clk_rpmrs_set_rate_active(r, value); if (rc) goto out; value = max(this_sleep_khz, peer_sleep_khz); if (r->branch) value = !!value; rc = clk_rpmrs_set_rate_sleep(r, value); if (rc) { /* Undo the active set vote and restore it to peer_khz */ value = peer_khz; rc = clk_rpmrs_set_rate_active(r, value); } out: if (!rc) r->enabled = true; mutex_unlock(&rpm_clock_lock); return rc; } static void rpm_clk_unprepare(struct clk *clk) { struct rpm_clk *r = to_rpm_clk(clk); mutex_lock(&rpm_clock_lock); if (r->c.rate) { uint32_t value; struct rpm_clk *peer = r->peer; unsigned long peer_khz = 0, peer_sleep_khz = 0; int rc; /* Take peer clock's rate into account only if it's enabled. */ if (peer->enabled) to_active_sleep_khz(peer, peer->c.rate, &peer_khz, &peer_sleep_khz); value = r->branch ? !!peer_khz : peer_khz; rc = clk_rpmrs_set_rate_active(r, value); if (rc) goto out; value = r->branch ? !!peer_sleep_khz : peer_sleep_khz; rc = clk_rpmrs_set_rate_sleep(r, value); } r->enabled = false; out: mutex_unlock(&rpm_clock_lock); return; } static int rpm_clk_set_rate(struct clk *clk, unsigned long rate) { struct rpm_clk *r = to_rpm_clk(clk); unsigned long this_khz, this_sleep_khz; int rc = 0; mutex_lock(&rpm_clock_lock); if (r->enabled) { uint32_t value; struct rpm_clk *peer = r->peer; unsigned long peer_khz = 0, peer_sleep_khz = 0; to_active_sleep_khz(r, rate, &this_khz, &this_sleep_khz); /* Take peer clock's rate into account only if it's enabled. */ if (peer->enabled) to_active_sleep_khz(peer, peer->c.rate, &peer_khz, &peer_sleep_khz); value = max(this_khz, peer_khz); rc = clk_rpmrs_set_rate_active(r, value); if (rc) goto out; value = max(this_sleep_khz, peer_sleep_khz); rc = clk_rpmrs_set_rate_sleep(r, value); } out: mutex_unlock(&rpm_clock_lock); return rc; } static int rpm_branch_clk_set_rate(struct clk *clk, unsigned long rate) { if (rate == clk->rate) return 0; return -EPERM; } static unsigned long rpm_clk_get_rate(struct clk *clk) { struct rpm_clk *r = to_rpm_clk(clk); if (r->rpmrs_data->get_rate_fn) return r->rpmrs_data->get_rate_fn(r); else return clk->rate; } static int rpm_clk_is_enabled(struct clk *clk) { return !!(rpm_clk_get_rate(clk)); } static long rpm_clk_round_rate(struct clk *clk, unsigned long rate) { /* Not supported. */ return rate; } static bool rpm_clk_is_local(struct clk *clk) { return false; } static enum handoff rpm_clk_handoff(struct clk *clk) { struct rpm_clk *r = to_rpm_clk(clk); int rc; /* * Querying an RPM clock's status will return 0 unless the clock's * rate has previously been set through the RPM. When handing off, * assume these clocks are enabled (unless the RPM call fails) so * child clocks of these RPM clocks can still be handed off. */ rc = r->rpmrs_data->handoff_fn(r); if (rc < 0) return HANDOFF_DISABLED_CLK; /* * Since RPM handoff code may update the software rate of the clock by * querying the RPM, we need to make sure our request to RPM now * matches the software rate of the clock. When we send the request * to RPM, we also need to update any other state info we would * normally update. So, call the appropriate clock function instead * of directly using the RPM driver APIs. */ rc = rpm_clk_prepare(clk); if (rc < 0) return HANDOFF_DISABLED_CLK; return HANDOFF_ENABLED_CLK; } struct clk_ops clk_ops_rpm = { .prepare = rpm_clk_prepare, .unprepare = rpm_clk_unprepare, .set_rate = rpm_clk_set_rate, .get_rate = rpm_clk_get_rate, .is_enabled = rpm_clk_is_enabled, .round_rate = rpm_clk_round_rate, .is_local = rpm_clk_is_local, .handoff = rpm_clk_handoff, }; struct clk_ops clk_ops_rpm_branch = { .prepare = rpm_clk_prepare, .unprepare = rpm_clk_unprepare, .set_rate = rpm_branch_clk_set_rate, .is_local = rpm_clk_is_local, .handoff = rpm_clk_handoff, };
static int clk_rpmrs_set_rate(struct rpm_clk *r, uint32_t value, uint32_t context) { struct msm_rpm_iv_pair iv = { .id = r->rpm_clk_id, .value = value, }; return msm_rpmrs_set(context, &iv, 1); } static int clk_rpmrs_get_rate(struct rpm_clk *r) { int rc; struct msm_rpm_iv_pair iv = { .id = r->rpm_status_id, }; rc = msm_rpm_get_status(&iv, 1); return (rc < 0) ? rc : iv.value * 1000; } static int clk_rpmrs_handoff(struct rpm_clk *r) { struct msm_rpm_iv_pair iv = { .id = r->rpm_status_id, }; int rc = msm_rpm_get_status(&iv, 1); if (rc < 0) return rc; if (!r->branch) r->c.rate = iv.value * 1000; return 0; } static int clk_rpmrs_is_enabled(struct rpm_clk *r) { return !!clk_rpmrs_get_rate(r); } static int clk_rpmrs_set_rate_smd(struct rpm_clk *r, uint32_t value, uint32_t context) { struct msm_rpm_kvp kvp = { .key = r->rpm_key, .data = (void *)&value, .length = sizeof(value), }; return msm_rpm_send_message(context, r->rpm_res_type, r->rpm_clk_id, &kvp, 1); } static int clk_rpmrs_handoff_smd(struct rpm_clk *r) { if (!r->branch) r->c.rate = INT_MAX; return 0; } static int clk_rpmrs_is_enabled_smd(struct rpm_clk *r) { return !!r->c.prepare_count; } struct clk_rpmrs_data { int (*set_rate_fn)(struct rpm_clk *r, uint32_t value, uint32_t context); int (*get_rate_fn)(struct rpm_clk *r); int (*handoff_fn)(struct rpm_clk *r); int (*is_enabled)(struct rpm_clk *r); int ctx_active_id; int ctx_sleep_id; }; struct clk_rpmrs_data clk_rpmrs_data = { .set_rate_fn = clk_rpmrs_set_rate, .get_rate_fn = clk_rpmrs_get_rate, .handoff_fn = clk_rpmrs_handoff, .is_enabled = clk_rpmrs_is_enabled, .ctx_active_id = MSM_RPM_CTX_SET_0, .ctx_sleep_id = MSM_RPM_CTX_SET_SLEEP, }; struct clk_rpmrs_data clk_rpmrs_data_smd = { .set_rate_fn = clk_rpmrs_set_rate_smd, .handoff_fn = clk_rpmrs_handoff_smd, .is_enabled = clk_rpmrs_is_enabled_smd, .ctx_active_id = MSM_RPM_CTX_ACTIVE_SET, .ctx_sleep_id = MSM_RPM_CTX_SLEEP_SET, }; static DEFINE_MUTEX(rpm_clock_lock); static void to_active_sleep_khz(struct rpm_clk *r, unsigned long rate, unsigned long *active_khz, unsigned long *sleep_khz) { /* */ *active_khz = DIV_ROUND_UP(rate, 1000); /* */ if (r->active_only) *sleep_khz = 0; else *sleep_khz = *active_khz; } static int rpm_clk_prepare(struct clk *clk) { struct rpm_clk *r = to_rpm_clk(clk); uint32_t value; int rc = 0; unsigned long this_khz, this_sleep_khz; unsigned long peer_khz = 0, peer_sleep_khz = 0; struct rpm_clk *peer = r->peer; mutex_lock(&rpm_clock_lock); to_active_sleep_khz(r, r->c.rate, &this_khz, &this_sleep_khz); /* */ if (this_khz == 0) goto out; /* */ if (peer->enabled) to_active_sleep_khz(peer, peer->c.rate, &peer_khz, &peer_sleep_khz); value = max(this_khz, peer_khz); if (r->branch) value = !!value; rc = clk_rpmrs_set_rate_active(r, value); if (rc) goto out; value = max(this_sleep_khz, peer_sleep_khz); if (r->branch) value = !!value; rc = clk_rpmrs_set_rate_sleep(r, value); if (rc) { /* */ value = peer_khz; rc = clk_rpmrs_set_rate_active(r, value); } out: if (!rc) r->enabled = true; mutex_unlock(&rpm_clock_lock); return rc; } static void rpm_clk_unprepare(struct clk *clk) { struct rpm_clk *r = to_rpm_clk(clk); mutex_lock(&rpm_clock_lock); if (r->c.rate) { uint32_t value; struct rpm_clk *peer = r->peer; unsigned long peer_khz = 0, peer_sleep_khz = 0; int rc; /* */ if (peer->enabled) to_active_sleep_khz(peer, peer->c.rate, &peer_khz, &peer_sleep_khz); value = r->branch ? !!peer_khz : peer_khz; rc = clk_rpmrs_set_rate_active(r, value); if (rc) goto out; value = r->branch ? !!peer_sleep_khz : peer_sleep_khz; rc = clk_rpmrs_set_rate_sleep(r, value); } r->enabled = false; out: mutex_unlock(&rpm_clock_lock); return; } static int rpm_clk_set_rate(struct clk *clk, unsigned long rate) { struct rpm_clk *r = to_rpm_clk(clk); unsigned long this_khz, this_sleep_khz; int rc = 0; mutex_lock(&rpm_clock_lock); if (r->enabled) { uint32_t value; struct rpm_clk *peer = r->peer; unsigned long peer_khz = 0, peer_sleep_khz = 0; to_active_sleep_khz(r, rate, &this_khz, &this_sleep_khz); /* */ if (peer->enabled) to_active_sleep_khz(peer, peer->c.rate, &peer_khz, &peer_sleep_khz); value = max(this_khz, peer_khz); rc = clk_rpmrs_set_rate_active(r, value); if (rc) goto out; value = max(this_sleep_khz, peer_sleep_khz); rc = clk_rpmrs_set_rate_sleep(r, value); } out: mutex_unlock(&rpm_clock_lock); return rc; } static int rpm_branch_clk_set_rate(struct clk *clk, unsigned long rate) { if (rate == clk->rate) return 0; return -EPERM; } static unsigned long rpm_clk_get_rate(struct clk *clk) { struct rpm_clk *r = to_rpm_clk(clk); if (r->rpmrs_data->get_rate_fn) return r->rpmrs_data->get_rate_fn(r); else return clk->rate; } static int rpm_clk_is_enabled(struct clk *clk) { struct rpm_clk *r = to_rpm_clk(clk); return r->rpmrs_data->is_enabled(r); } static long rpm_clk_round_rate(struct clk *clk, unsigned long rate) { /* */ return rate; } static bool rpm_clk_is_local(struct clk *clk) { return false; } static enum handoff rpm_clk_handoff(struct clk *clk) { struct rpm_clk *r = to_rpm_clk(clk); int rc; /* */ rc = r->rpmrs_data->handoff_fn(r); if (rc < 0) return HANDOFF_DISABLED_CLK; /* */ rc = rpm_clk_prepare(clk); if (rc < 0) return HANDOFF_DISABLED_CLK; return HANDOFF_ENABLED_CLK; } #define RPM_MISC_CLK_TYPE 0x306b6c63 #define RPM_SCALING_ENABLE_ID 0x2 void enable_rpm_scaling(void) { int rc, value = 0x1; struct msm_rpm_kvp kvp = { .key = RPM_SMD_KEY_ENABLE, .data = (void *)&value, .length = sizeof(value), }; rc = msm_rpm_send_message_noirq(MSM_RPM_CTX_SLEEP_SET, RPM_MISC_CLK_TYPE, RPM_SCALING_ENABLE_ID, &kvp, 1); WARN(rc < 0, "RPM clock scaling (sleep set) did not enable!\n"); rc = msm_rpm_send_message_noirq(MSM_RPM_CTX_ACTIVE_SET, RPM_MISC_CLK_TYPE, RPM_SCALING_ENABLE_ID, &kvp, 1); WARN(rc < 0, "RPM clock scaling (active set) did not enable!\n"); } struct clk_ops clk_ops_rpm = { .prepare = rpm_clk_prepare, .unprepare = rpm_clk_unprepare, .set_rate = rpm_clk_set_rate, .get_rate = rpm_clk_get_rate, .is_enabled = rpm_clk_is_enabled, .round_rate = rpm_clk_round_rate, .is_local = rpm_clk_is_local, .handoff = rpm_clk_handoff, }; struct clk_ops clk_ops_rpm_branch = { .prepare = rpm_clk_prepare, .unprepare = rpm_clk_unprepare, .set_rate = rpm_branch_clk_set_rate, .is_local = rpm_clk_is_local, .handoff = rpm_clk_handoff, };
.length = sizeof(gpio_num), }, { .key = RPM_GPIO_STAT_KEY, .data = (void *)&gpio_status_active, .length = sizeof(gpio_status_active), }, { .key = RPM_GPIO_SETT_KEY, .data = (void *)&settling_time, .length = sizeof(settling_time), }, }; rc = msm_rpm_send_message(MSM_RPM_CTX_ACTIVE_SET, RPM_REQUEST_TYPE_GPIO, RPM_GPIO_RESOURCE_ID, kvp_active, ARRAY_SIZE(kvp_active)); WARN(rc < 0, "RPM GPIO toggling (active set) did not enable!\n"); rc = msm_rpm_send_message(MSM_RPM_CTX_SLEEP_SET, RPM_REQUEST_TYPE_GPIO, RPM_GPIO_RESOURCE_ID, kvp_sleep, ARRAY_SIZE(kvp_sleep)); WARN(rc < 0, "RPM GPIO toggling (sleep set) did not enable!\n"); return rc; } static int msm_ext_buck_probe(struct platform_device *pdev) { char *key = NULL; int gpio_num;
static int ddr_health_set(const char *val, struct kernel_param *kp) { int ret; void *virt; uint64_t old_addr = 0; uint32_t old_size = 0; mutex_lock(&lock); ret = param_set_uint(val, kp); if (ret) { pr_err("ddr-health: error setting value %d\n", ret); mutex_unlock(&lock); return ret; } if (rpm_kvp.data) { ddr_health = (struct ddr_health *)rpm_kvp.data; old_addr = ddr_health->addr; old_size = ddr_health->size; } rpm_kvp.key = RPM_MISC_REQ_DDR_HEALTH; if (mem_size) { virt = kzalloc(mem_size, GFP_KERNEL); if (!virt) { pr_err("ddr-health: failed to alloc mem request %x\n", mem_size); mutex_unlock(&lock); return -ENOMEM; } ddr_health->addr = (uint64_t)virt_to_phys(virt); ddr_health->size = mem_size; rpm_kvp.length = sizeof(struct ddr_health); rpm_kvp.data = (void *)ddr_health; ret = msm_rpm_send_message(MSM_RPM_CTX_ACTIVE_SET, RPM_MISC_REQ_TYPE, 0, &rpm_kvp, 1); if (ret) { pr_err("ddr-health: send buf to RPM failed %d, %x\n", ret, mem_size); kfree(virt); goto err; } } else { ddr_health->addr = 0; ddr_health->size = 0; rpm_kvp.length = sizeof(struct ddr_health); rpm_kvp.data = (void *)ddr_health; ret = msm_rpm_send_message(MSM_RPM_CTX_ACTIVE_SET, RPM_MISC_REQ_TYPE, 0, &rpm_kvp, 1); if (ret) { pr_err("ddr-health: send nobuf to RPM failed %d, %x\n", ret, mem_size); goto err; } } if (old_addr) kfree(phys_to_virt((phys_addr_t)old_addr)); mutex_unlock(&lock); return 0; err: ddr_health->addr = old_addr; ddr_health->size = old_size; mutex_unlock(&lock); return ret; }