Esempio n. 1
0
File: rat.c Progetto: ptigwe/gte
/* GSoC12: Tobenna Peter, Igwe (Edited) */
Rat ratadd (Rat a, Rat b)
{
    /*
    a.num = a.num * b.den + a.den * b.num;
    a.den *= b.den;
    return ratreduce(a);
    */

    mp num, den, x, y, t;

    /*itomp (a.num, num) ;*/
    copy(num, a.num);
    /*itomp (a.den, den) ;*/
    copy(den, a.den);
    /*itomp (b.num, x) ;*/
    copy(x, b.num);
    /*itomp (b.den, y) ;*/
    copy(y, b.den);
    mulint (y, num, t);
    copy(num, t);
    mulint (den, x, x);
    linint (num, 1, x, 1);
    mulint (y, den, den);
    reduce(num, den) ;
    /*mptoi( num, &a.num, 1 );
    mptoi( den, &a.den, 1 );*/
    copy(a.num, num);
    copy(a.den, den);
    return a ; 
}
Esempio n. 2
0
void
mulrat ( lrs_mp Na, lrs_mp Da, lrs_mp Nb, lrs_mp Db, lrs_mp Nc, lrs_mp Dc )
/* computes Nc/Dc = Na/Da  * Nb/Db and reduces by gcd(Nc,Dc) */
{
  mulint ( Na, Nb, Nc );
  mulint ( Da, Db, Dc );
  reduce ( Nc, Dc );
}
Esempio n. 3
0
void
divrat ( lrs_mp Na, lrs_mp Da, lrs_mp Nb, lrs_mp Db, lrs_mp Nc, lrs_mp Dc )
/* computes Nc/Dc = (Na/Da)  / ( Nb/Db )
   and reduces answer by gcd(Nc,Dc) */
{
  mulint ( Na, Db, Nc );
  mulint ( Da, Nb, Dc );
  reduce ( Nc, Dc );
}
Esempio n. 4
0
void
linrat ( lrs_mp Na, lrs_mp Da, long ka, lrs_mp Nb, lrs_mp Db, long kb, lrs_mp Nc, lrs_mp Dc )
/* computes Nc/Dc = ka*Na/Da  +kb* Nb/Db
   and reduces answer by gcd(Nc,Dc) */
{
  lrs_mp c;
  mulint ( Na, Db, Nc );
  mulint ( Da, Nb, c );
  linint ( Nc, ka, c, kb ); /* Nc = (ka*Na*Db)+(kb*Da*Nb)  */
  mulint ( Da, Db, Dc );  /* Dc =  Da*Db           */
  reduce ( Nc, Dc );
}
Esempio n. 5
0
long 
comprod (lrs_mp Na, lrs_mp Nb, lrs_mp Nc, lrs_mp Nd)	/* +1 if Na*Nb > Nc*Nd  */
			  /* -1 if Na*Nb < Nc*Nd  */
			  /*  0 if Na*Nb = Nc*Nd  */
{
  lrs_mp mc, md;
  mulint (Na, Nb, mc);
  mulint (Nc, Nd, md);
  linint (mc, ONE, md, -ONE);
  if (positive (mc))
    return (1);
  if (negative (mc))
    return (-1);
  return (0);
}
Esempio n. 6
0
void
getfactorial ( lrs_mp factorial, long k ) { /* compute k factorial in lrs_mp */
  lrs_mp temp;
  long i;
  itomp ( ONE, factorial );

  for ( i = 2; i <= k; i++ ) {
    itomp ( i, temp );
    mulint ( temp, factorial, factorial );
  }
}       /* end of getfactorial */
Esempio n. 7
0
void
lcm ( lrs_mp a, lrs_mp b )
/* a = least common multiple of a, b; b is preserved */
{
  lrs_mp u, v;
  copy ( u, a );
  copy ( v, b );
  gcd ( u, v );
  exactdivint ( a, u, v );  /* v=a/u   no remainder*/
  mulint ( v, b, a );
}       /* end of lcm */
Esempio n. 8
0
void mixedtorealplan(int pl, Rat *mixed, Rat *rplan)
{
    int r ;
    int i, len;
    int *list;
    mp num, den;        /* numerator and denominator of sum     */
    mp x, y;

    list = TALLOC(nstrats[pl], int);
    
    /* for test purposes, we even compute the probability
     * of the empty sequence. Otherwise, we would start like this:
     *       rplan[0] = ratfromi(1);  
     *       for (r = 1 ....
     */
    for (r = 0; r < nseqs[pl]; r++)
	{
        itomp(0, num);
        itomp(1, den);
        len = seqtostratlist(firstmove[pl] + r, pl, list);
	for (i=0; i<len; i++)
            {
            itomp(mixed[list[i]].den, y);
            mulint (y, num, num);
            itomp(mixed[list[i]].num, x);
            mulint (den, x, x);
            linint (num, 1, x, 1);
            mulint (y, den, den);
            reduce(num, den) ;
            }
        /* mptoi( num, &(rplan[r].num), 1 ); */
        if (mptoi( num, &(rplan[r].num), 1 ))
	    printf(" numerator in mixed strategy probability %3d overflown\n",
	   	   i);
        /* mptoi( den, &(rplan[r].den), 1 ); */
        if (mptoi( den, &(rplan[r].den), 1 ))
	    printf(" denominator in mixed strategy probability %3d overflown\n",
	   	   i);
        }
    free(list);
}
Esempio n. 9
0
File: rat.c Progetto: ptigwe/gte
/* GSoC12: Tobenna Peter, Igwe (Edited) */
Rat ratmult (Rat a, Rat b)
{
    mp x;

    /* avoid overflow in intermediate product by cross-cancelling first
    */
    /*x = a.num ; */
    copy(x, a.num);
    /*a.num = b.num ;*/
    copy(a.num, b.num);
    /*b.num = x ;*/
    copy(b.num, x);
    a = ratreduce(a);
    b = ratreduce(b);
    /*a.num *= b.num;*/
    mulint(a.num, b.num, x);
    copy(a.num, x);
    /*a.den *= b.den;*/
    mulint(a.den, b.den, x);
    copy(a.den, x);
    return ratreduce(a);        /* a  or  b  might be non-normalized    s*/
}
Esempio n. 10
0
Rat ratadd (Rat a, Rat b)
{
    /*
    a.num = a.num * b.den + a.den * b.num;
    a.den *= b.den;
    return ratreduce(a);
    */

    mp num, den, x, y;

    itomp (a.num, num) ;
    itomp (a.den, den) ;
    itomp (b.num, x) ;
    itomp (b.den, y) ;
    mulint (y, num, num);
    mulint (den, x, x);
    linint (num, 1, x, 1);
    mulint (y, den, den);
    reduce(num, den) ;
    mptoi( num, &a.num, 1 );
    mptoi( den, &a.den, 1 );
    return a ; 
}