/*_________________________________________________________________________________________________ | | simplifyDB : [void] -> [bool] | | Description: | Simplify all constraints according to the current top-level assigment (redundant constraints | may be removed altogether). |________________________________________________________________________________________________@*/ void Solver::simplifyDB(void) { if (!ok) return; // GUARD (public method) assert(decisionLevel == 0); Constr* confl; if ((confl = propagate()) != NULL){ if (doDeriv) { analyzeFinalDeriv(confl); } ok = false; return; } if (nAssigns() == last_simplify) return; last_simplify = nAssigns(); for (int type = 0; type < 2; type++){ vec<Constr*>& cs = type ? (vec<Constr*>&)learnts : constrs; int j = 0; for (int i = 0; i < cs.size(); i++){ if (cs[i]->simplify(*this)) cs[i]->remove(*this); else cs[j++] = cs[i]; } cs.shrink(cs.size()-j); } }
/*_________________________________________________________________________________________________ | | simplify : [void] -> [bool] | | Description: | Simplify the clause database according to the current top-level assigment. Currently, the only | thing done here is the removal of satisfied clauses, but more things can be put here. |________________________________________________________________________________________________@*/ bool MiniSATP::simplify() { remove_satisfied = false; assert(decisionLevel() == 0); // Modified Lines // if (!ok || propagate() != NULL) // return ok = false; if (!ok) return false; Clause * confl = propagate( ); if ( confl != NULL ) { fillExplanation( confl ); return ok = false; } if (nAssigns() == simpDB_assigns || (simpDB_props > 0)) return true; // Remove satisfied clauses: removeSatisfied(learnts); if (remove_satisfied) // Can be turned off. removeSatisfied(clauses); // Remove fixed variables from the variable heap: order_heap.filter(VarFilter(*this)); simpDB_assigns = nAssigns(); simpDB_props = clauses_literals + learnts_literals; // (shouldn't depend on stats really, but it will do for now) return true; }
/*_________________________________________________________________________________________________ | | simplifyDB : [void] -> [bool] | | Description: | Simplify the clause database according to the current top-level assigment. Currently, the only | thing done here is the removal of satisfied clauses, but more things can be put here. |________________________________________________________________________________________________@*/ void Solver::simplifyDB() { if (!ok) return; // GUARD (public method) assert(decisionLevel() == 0); if (propagate() != NULL){ ok = false; return; } if (nAssigns() == simpDB_assigns || simpDB_props > 0) // (nothing has changed or preformed a simplification too recently) return; // Clear watcher lists: for (int i = simpDB_assigns; i < nAssigns(); i++){ Lit p = trail[i]; vec<GClause>& ws = watches[index(~p)]; for (int j = 0; j < ws.size(); j++) if (ws[j].isLit()) if (removeWatch(watches[index(~ws[j].lit())], GClause_new(p))) // (remove binary GClause from "other" watcher list) n_bin_clauses--; watches[index( p)].clear(true); watches[index(~p)].clear(true); } // Remove satisfied clauses: for (int type = 0; type < 2; type++){ vec<Clause*>& cs = type ? learnts : clauses; int j = 0; for (int i = 0; i < cs.size(); i++){ if (!locked(cs[i]) && simplify(cs[i])) // (the test for 'locked()' is currently superfluous, but without it the reason-graph is not correctly maintained for decision level 0) remove(cs[i]); else cs[j++] = cs[i]; } cs.shrink(cs.size()-j); } simpDB_assigns = nAssigns(); simpDB_props = stats.clauses_literals + stats.learnts_literals; // (shouldn't depend on 'stats' really, but it will do for now) }
/*_________________________________________________________________________________________________ | | simplify : [void] -> [bool] | | Description: | Simplify the clause database according to the current top-level assigment. Currently, the only | thing done here is the removal of satisfied clauses, but more things can be put here. |________________________________________________________________________________________________@*/ bool Solver::simplify() { assert(decisionLevel() == 0); if (!ok || propagate() != NULL) return ok = false; if (nAssigns() == simpDB_assigns || (simpDB_props > 0)) return true; // Remove satisfied clauses: removeSatisfied(learnts); if (remove_satisfied) // Can be turned off. removeSatisfied(clauses); // Remove fixed variables from the variable heap: order_heap.filter(VarFilter(*this)); simpDB_assigns = nAssigns(); simpDB_props = clauses_literals + learnts_literals; // (shouldn't depend on stats really, but it will do for now) return true; }
/*_________________________________________________________________________________________________ | | search : (nof_conflicts : int) (nof_learnts : int) (params : const SearchParams&) -> [lbool] | | Description: | Search for a model the specified number of conflicts, keeping the number of learnt clauses | below the provided limit. NOTE! Use negative value for 'nof_conflicts' or 'nof_learnts' to | indicate infinity. | | Output: | 'l_True' if a partial assigment that is consistent with respect to the clauseset is found. If | all variables are decision variables, this means that the clause set is satisfiable. 'l_False' | if the clause set is unsatisfiable. 'l_Undef' if the bound on number of conflicts is reached. |________________________________________________________________________________________________@*/ lbool Solver::search(int nof_conflicts, int nof_learnts, const SearchParams& params) { if (!ok) return l_False; // GUARD (public method) assert(root_level == decisionLevel); stats.starts++; int conflictC = 0; var_decay = 1 / params.var_decay; cla_decay = 1 / params.clause_decay; model.clear(); for (;;){ Constr* confl = propagate(); if (confl != NULL){ // CONFLICT //if (verbosity >= 2) printf(L_IND"**CONFLICT**\n", L_ind); stats.conflicts++; conflictC++; vec<Lit> learnt_clause; int backtrack_level; if (decisionLevel == root_level) { if (doDeriv) { analyzeFinalDeriv(confl); } return l_False; } Deriv* deriv = new Deriv(); derivs.push_back(deriv); analyze(confl, learnt_clause, backtrack_level, deriv); cancelUntil(max(backtrack_level, root_level)); record(learnt_clause, deriv); varDecayActivity(); claDecayActivity(); }else{ // NO CONFLICT if (nof_conflicts >= 0 && conflictC >= nof_conflicts){ // Reached bound on number of conflicts: progress_estimate = progressEstimate(); propQ.clear(); cancelUntil(root_level); return l_Undef; } if (decisionLevel == 0) // Simplify the set of problem clauses: simplifyDB(), assert(ok); if (nof_learnts >= 0 && learnts.size()-nAssigns() >= nof_learnts) // Reduce the set of learnt clauses: reduceDB(); // New variable decision: stats.decisions++; Var next = order.select(params.random_var_freq); if (next == var_Undef){ // Model found: model.growTo(nVars); for (int i = 0; i < nVars; i++) model[i] = (value(i) == l_True); cancelUntil(root_level); return l_True; } // VERY important for the Y-variables to try positive polarity first // - follows the value ordering heuristic of aiming for solutions (as opposed to fail-first var order) check(assume(Lit(next))); //check(assume(~Lit(next))); } } }
/*_________________________________________________________________________________________________ | | search : (nof_conflicts : int) (nof_learnts : int) (params : const SearchParams&) -> [lbool] | | Description: | Search for a model the specified number of conflicts, keeping the number of learnt clauses | below the provided limit. NOTE! Use negative value for 'nof_conflicts' or 'nof_learnts' to | indicate infinity. | | Output: | 'l_True' if a partial assigment that is consistent with respect to the clauseset is found. If | all variables are decision variables, this means that the clause set is satisfiable. 'l_False' | if the clause set is unsatisfiable. 'l_Undef' if the bound on number of conflicts is reached. |________________________________________________________________________________________________@*/ lbool Solver::search(int nof_conflicts, int nof_learnts) { assert(ok); int backtrack_level; int conflictC = 0; vec<Lit> learnt_clause; starts++; for (;;){ #ifdef _DEBUGSEARCH for(int k=0; k<decisionLevel(); ++k) std::cout << " "; std::cout << "propagate" << std::endl; #endif Clause* confl = propagate(); if (confl != NULL){ // CONFLICT conflicts++; conflictC++; if (decisionLevel() <= init_level) { #ifdef _DEBUGSEARCH std::cout << "infeasible" << std::endl; #endif return l_False; } learnt_clause.clear(); analyze(confl, learnt_clause, backtrack_level); cancelUntil(backtrack_level); #ifdef _DEBUGSEARCH for(int k=0; k<decisionLevel(); ++k) std::cout << " "; std::cout << "backtrack to " << decisionLevel() << std::endl; #endif assert(value(learnt_clause[0]) == l_Undef); if (learnt_clause.size() == 1){ uncheckedEnqueue(learnt_clause[0]); #ifdef _DEBUGSEARCH for(int k=0; k<decisionLevel(); ++k) std::cout << " "; std::cout << "deduce " ; printLit(learnt_clause[0]); std::cout << std::endl; #endif }else{ Clause* c = Clause_new(learnt_clause, true); #ifdef _DEBUGSEARCH for(int k=0; k<decisionLevel(); ++k) std::cout << " "; std::cout << "deduce "; printClause(*c); std::cout << std::endl; #endif learnts.push(c); attachClause(*c); claBumpActivity(*c); uncheckedEnqueue(learnt_clause[0], c); } varDecayActivity(); claDecayActivity(); }else{ // NO CONFLICT if (nof_conflicts >= 0 && conflictC >= nof_conflicts){ // Reached bound on number of conflicts: progress_estimate = progressEstimate(); cancelUntil(0); return l_Undef; } // Simplify the set of problem clauses: if (decisionLevel() == 0 && !simplify()) return l_False; if (nof_learnts >= 0 && learnts.size()-nAssigns() >= nof_learnts) // Reduce the set of learnt clauses: reduceDB(); Lit next = lit_Undef; while (decisionLevel() < assumptions.size()){ // Perform user provided assumption: Lit p = assumptions[decisionLevel()]; if (value(p) == l_True){ // Dummy decision level: newDecisionLevel(); }else if (value(p) == l_False){ analyzeFinal(~p, conflict); return l_False; }else{ next = p; break; } } if (next == lit_Undef){ // New variable decision: decisions++; next = pickBranchLit(polarity_mode, random_var_freq); if (next == lit_Undef) // Model found: return l_True; } #ifdef _DEBUGSEARCH for(int k=0; k<decisionLevel(); ++k) std::cout << " "; std::cout << "branch on " ; printLit(next); std::cout << std::endl; #endif // Increase decision level and enqueue 'next' assert(value(next) == l_Undef); newDecisionLevel(); uncheckedEnqueue(next); } } }
/*_________________________________________________________________________________________________ | | search : (nof_conflicts : int) (nof_learnts : int) (params : const SearchParams&) -> [lbool] | | Description: | Search for a model the specified number of conflicts, keeping the number of learnt clauses | below the provided limit. NOTE! Use negative value for 'nof_conflicts' or 'nof_learnts' to | indicate infinity. | | Output: | 'l_True' if a partial assigment that is consistent with respect to the clauseset is found. If | all variables are decision variables, this means that the clause set is satisfiable. 'l_False' | if the clause set is unsatisfiable. 'l_Undef' if the bound on number of conflicts is reached. |________________________________________________________________________________________________@*/ lbool MiniSATP::search(int nof_conflicts, int nof_learnts) { assert(ok); int backtrack_level; int conflictC = 0; vec<Lit> learnt_clause; starts++; bool first = true; for (;;){ Clause* confl = propagate(); if (confl != NULL){ // CONFLICT conflicts++; conflictC++; if (decisionLevel() == 0) { // Added Lines fillExplanation(confl); return l_False; } first = false; learnt_clause.clear(); analyze(confl, learnt_clause, backtrack_level); cancelUntil(backtrack_level); assert(value(learnt_clause[0]) == l_Undef); if (learnt_clause.size() == 1){ uncheckedEnqueue(learnt_clause[0]); }else{ Clause* c = Clause_new(learnt_clause, true); learnts.push(c); attachClause(*c); claBumpActivity(*c); uncheckedEnqueue(learnt_clause[0], c); } varDecayActivity(); claDecayActivity(); }else{ // NO CONFLICT if (nof_conflicts >= 0 && conflictC >= nof_conflicts){ // Reached bound on number of conflicts: progress_estimate = progressEstimate(); cancelUntil(0); return l_Undef; } // Simplify the set of problem clauses: if (decisionLevel() == 0 && !simplify()) { return l_False; } if (nof_learnts >= 0 && learnts.size()-nAssigns() >= nof_learnts) // Reduce the set of learnt clauses: reduceDB(); Lit next = lit_Undef; while (decisionLevel() < assumptions.size()){ // Perform user provided assumption: Lit p = assumptions[decisionLevel()]; if (value(p) == l_True){ // Dummy decision level: newDecisionLevel(); }else if (value(p) == l_False){ analyzeFinal(~p, conflict); return l_False; }else{ next = p; break; } } if (next == lit_Undef){ // New variable decision: decisions++; next = pickBranchLit(polarity_mode, random_var_freq); if (next == lit_Undef) { // Added Line // Clear explanation vector if satisfiable explanation.clear( ); // Model found: return l_True; } } // Increase decision level and enqueue 'next' assert(value(next) == l_Undef); newDecisionLevel(); uncheckedEnqueue(next); } } }
/*_________________________________________________________________________________________________ | | search : (nof_conflicts : int) (nof_learnts : int) (params : const SearchParams&) -> [lbool] | | Description: | Search for a model the specified number of conflicts, keeping the number of learnt clauses | below the provided limit. NOTE! Use negative value for 'nof_conflicts' or 'nof_learnts' to | indicate infinity. | | Output: | 'l_True' if a partial assigment that is consistent with respect to the clauseset is found. If | all variables are decision variables, this means that the clause set is satisfiable. 'l_False' | if the clause set is unsatisfiable. 'l_Undef' if the bound on number of conflicts is reached. |________________________________________________________________________________________________@*/ lbool Solver::search(int nof_conflicts, int nof_learnts, const SearchParams& params) { if (!ok) return l_False; // GUARD (public method) assert(root_level == decisionLevel()); stats.starts++; int conflictC = 0; var_decay = 1 / params.var_decay; cla_decay = 1 / params.clause_decay; model.clear(); for (;;){ Clause* confl = propagate(); if (confl != NULL){ // CONFLICT stats.conflicts++; conflictC++; vec<Lit> learnt_clause; int backtrack_level; if (decisionLevel() == root_level){ // Contradiction found: analyzeFinal(confl); return l_False; } analyze(confl, learnt_clause, backtrack_level); cancelUntil(max(backtrack_level, root_level)); newClause(learnt_clause, true); if (learnt_clause.size() == 1) level[var(learnt_clause[0])] = 0; // (this is ugly (but needed for 'analyzeFinal()') -- in future versions, we will backtrack past the 'root_level' and redo the assumptions) varDecayActivity(); claDecayActivity(); }else{ // NO CONFLICT if (nof_conflicts >= 0 && conflictC >= nof_conflicts){ // Reached bound on number of conflicts: progress_estimate = progressEstimate(); cancelUntil(root_level); return l_Undef; } if (decisionLevel() == 0) // Simplify the set of problem clauses: simplifyDB(), assert(ok); if (nof_learnts >= 0 && learnts.size()-nAssigns() >= nof_learnts) // Reduce the set of learnt clauses: reduceDB(); // New variable decision: stats.decisions++; Var next = order.select(params.random_var_freq); if (next == var_Undef){ // Model found: model.growTo(nVars()); for (int i = 0; i < nVars(); i++) model[i] = value(i); cancelUntil(root_level); return l_True; } check(assume(~Lit(next))); } } }
/*_________________________________________________________________________________________________ | | search : (nof_conflicts : int) (nof_learnts : int) (params : const SearchParams&) -> [lbool] | | Description: | Search for a model the specified number of conflicts, keeping the number of learnt clauses | below the provided limit. NOTE! Use negative value for 'nof_conflicts' or 'nof_learnts' to | indicate infinity. | | Output: | 'l_True' if a partial assigment that is consistent with respect to the clauseset is found. If | all variables are decision variables, this means that the clause set is satisfiable. 'l_False' | if the clause set is unsatisfiable. 'l_Undef' if the bound on number of conflicts is reached. |________________________________________________________________________________________________@*/ lbool Solver::search(int nof_conflicts, int nof_learnts) { int backtrack_level; int conflictC = 0; vec<Lit> learnt_clause; starts++; // bool first = true; for (;;){ Clause* confl = propagate(); if (confl != NULL){ // CONFLICT conflicts++; conflictC++; if (decisionLevel() == 0) return l_False; // first = false; learnt_clause.clear(); analyze(confl, learnt_clause, backtrack_level); cancelUntil(backtrack_level); #ifdef __PRINT char c1 = sign(learnt_clause[0]) ? '-' : '+'; char c2 = polarity[var(learnt_clause[0])] == 0 ? '-' : '+'; if (decisionLevel() < minDecisionLevel && original_activity[var(learnt_clause[0])] > 0) { printf("Conflict record: "); printLit(learnt_clause[0]); printf(" .%d.\t.%d. %c .%c .%g\n", decisionLevel(), trail.size(), c1, c2, original_activity[var(learnt_clause[0])]); if (decisionLevel() == 0) { minDecisionLevel = (unsigned)(-1); } else { minDecisionLevel = decisionLevel(); } } #endif if (learnt_clause.size() == 1){ uncheckedEnqueue(learnt_clause[0]); }else{ Clause* c = Clause::Clause_new(learnt_clause, true); learnts.push(c); attachClause(*c); claBumpActivity(*c); uncheckedEnqueue(learnt_clause[0], c); } #ifdef _MINISAT_DEFAULT_VSS varDecayActivity(); #endif claDecayActivity(); }else{ // NO CONFLICT if (nof_conflicts >= 0 && conflictC >= nof_conflicts){ // Reached bound on number of conflicts: progress_estimate = progressEstimate(); // cancelUntil(0); return l_Undef; } // Simplify the set of problem clauses: if (decisionLevel() == 0 && !simplify()) return l_False; if (nof_learnts >= 0 && learnts.size()-nAssigns() >= nof_learnts) // Reduce the set of learnt clauses: reduceDB(); Lit next = lit_Undef; while (decisionLevel() < assumptions.size()){ // Perform user provided assumption: Lit p = assumptions[decisionLevel()]; if (value(p) == l_True){ // Dummy decision level: newDecisionLevel(); }else if (value(p) == l_False){ analyzeFinal(~p, conflict); return l_False; }else{ next = p; break; } } if (next == lit_Undef){ // New variable decision: decisions++; next = pickBranchLit(polarity_mode, random_var_freq); if (next == lit_Undef) // Model found: return l_True; #ifdef __PRINT printf("Decision: "); printLit(next); printf("\t.%f.\t.%d.\t.%d.", activity[var(next)], decisionLevel(), trail.size()); printf("\n"); #endif } // Increase decision level and enqueue 'next' newDecisionLevel(); uncheckedEnqueue(next); } //#ifdef __PRINT // printTrail(); //#endif } }