Esempio n. 1
0
 virtual MutableMatrix * submatrix(M2_arrayint cols) const
 {
   for (size_t c = 0; c<cols->len; c++)
     if (cols->array[c] < 0 || cols->array[c] >= n_cols())
       {
         ERROR("column index %d out of bounds 0..%d", cols->array[c], n_cols()-1);
         return 0;
       }
   MutableMat *result = new MutableMat(*this); // zero matrix, over the same ring
   result->getMat().setFromSubmatrix(getMat(), cols);
   return result;
 }
Esempio n. 2
0
void MutableMatrix::text_out(buffer &o) const
{
  const Ring *R = get_ring();
  size_t nrows = n_rows();
  size_t ncols = n_cols();
  buffer *p = new buffer[nrows];
  size_t r;
  for (size_t c=0; c<ncols; c++)
    {
      size_t maxcount = 0;
      for (r=0; r<nrows; r++)
        {
          ring_elem f;
          get_entry(r,c,f);
          if (!R->is_zero(f))
            R->elem_text_out(p[r], f);
          else
            p[r] << ".";
          if (p[r].size() > maxcount)
            maxcount = p[r].size();
        }
      for (r=0; r<nrows; r++)
        for (size_t k=maxcount+1-p[r].size(); k > 0; k--)
          p[r] << ' ';
    }
  for (r=0; r<nrows; r++)
    {
      p[r] << '\0';
      char *s = p[r].str();
      o << s << newline;
    }
  delete[] p;
}
Esempio n. 3
0
Raster* Raster::getRasterFromASCFile(std::string const& fname)
{
	std::ifstream in(fname.c_str());

	if (!in.is_open()) {
		WARN("Raster::getRasterFromASCFile(): Could not open file %s.", fname.c_str());
		return NULL;
	}

	// header information
	std::size_t n_cols(0), n_rows(0);
	double xllcorner(0.0), yllcorner(0.0), cell_size(0.0), no_data_val(-9999);

	if (readASCHeader(in, n_cols, n_rows, xllcorner, yllcorner, cell_size, no_data_val)) {
		double* values = new double[n_cols*n_rows];
		std::string s;
		// read the data into the double-array
		for (size_t j(0); j < n_rows; ++j) {
			const size_t idx ((n_rows - j - 1) * n_cols);
			for (size_t i(0); i < n_cols; ++i) {
				in >> s;
				values[idx+i] = strtod(BaseLib::replaceString(",", ".", s).c_str(),0);

			}
		}
		in.close();
		Raster *raster(new Raster(n_cols, n_rows, xllcorner, yllcorner,
						cell_size, values, values+n_cols*n_rows, no_data_val));
		delete [] values;
		return raster;
	} else {
Esempio n. 4
0
 virtual bool interchange_columns(size_t i, size_t j)
 /* swap columns: column(i) <--> column(j) */
 {
   size_t ncols = n_cols();
   if (error_column_bound(i,ncols) || error_column_bound(j,ncols))
     return false;
   mat.interchange_columns(i,j);
   return true;
 }
Esempio n. 5
0
 /// Get the \p i:th row.
 std::vector<bool> row(size_t i) const
 {
     const size_t n = n_cols();
     std::vector<bool> a(n);
     for (size_t j = 0; j < n; j++)
     {
         a[i] = get_bit(i, j);
     }
     return a;
 }
Esempio n. 6
0
 virtual bool set_entry(size_t r, size_t c, const ring_elem a)
 // Returns false if (r,c) is out of range, or the ring of a is wrong.
 {
   if (error_row_bound(r,n_rows())) return false;
   if (error_column_bound(c,n_cols())) return false;
   elem b;
   mat.get_CoeffRing()->from_ring_elem(b,a);
   mat.set_entry(r,c,b);
   return true;
 }
Esempio n. 7
0
MutableMatrix* MutableMat<T>::invert() const
{
  MutableMat<T>*  result = makeZeroMatrix(n_rows(), n_cols());
  bool val = mat.invert(result->mat);
  if (!val)
    {
      delete result;
      return 0;
    }
  return result;
}
Esempio n. 8
0
 virtual bool insert_columns(size_t i, size_t n_to_add)
 /* Insert n_to_add columns directly BEFORE column i. */
 {
   if (i < 0 || i > n_cols() || n_to_add < 0)
     {
       ERROR("cannot insert %l columns before column %ln",n_to_add,i);
       return false;
     }
   mat.insert_columns(i, n_to_add);
   return true;
 }
Esempio n. 9
0
 virtual bool dot_product(size_t c1, size_t c2, ring_elem &result) const
 {
   size_t ncols = n_cols();
   if (error_column_bound(c1,ncols) || error_column_bound(c2,ncols))
     return false;
   elem a;
   mat.get_CoeffRing()->set_zero(a);
   mat.dot_product(c1,c2,a);
   mat.get_CoeffRing()->to_ring_elem(result,a);
   return true;
 }
Esempio n. 10
0
 virtual bool divide_column(size_t i, ring_elem r)
 /* column(i) <- column(i) / r */
 {
   size_t ncols = n_cols();
   if (error_column_bound(i,ncols))
     return false;
   elem b;
   mat.get_CoeffRing()->from_ring_elem(b,r);
   mat.divide_column(i,b);
   return true;
 }
Esempio n. 11
0
void backwardSolve ( Matrix<double> const& mat, double* x, double* b)
{
	size_t n_cols (mat.getNCols());
	for (int r = (n_cols - 1); r >= 0; r--) {
		double t = 0.0;

		for (size_t c = r+1; c < n_cols; c++) {
			t += mat(r,c) * b[c];
		}
		x[r] = (b[r] - t) / mat(r, r);
	}
}
Esempio n. 12
0
 virtual bool column_op(size_t i, ring_elem r, size_t j)
 /* column(i) <- column(i) + r * column(j) */
 {
   size_t ncols = n_cols();
   if (error_column_bound(i,ncols) || error_column_bound(j,ncols))
     return false;
   if (i == j) return true;
   elem b;
   mat.get_CoeffRing()->from_ring_elem(b,r);
   mat.column_op(i,b,j);
   return true;
 }
Esempio n. 13
0
  virtual bool delete_columns(size_t i, size_t j)
  /* Delete columns i .. j from M */
  {
    size_t ncols = n_cols();
    if (error_column_bound(i,ncols) || error_column_bound(j,ncols))
      {
        ERROR("column index out of range");
        return false;
      }

    mat.delete_columns(i, j);
    return true;
  }
Esempio n. 14
0
 /// \name IO.
 /// \{
 void print(std::ostream & os) const
 {
     const bit_matrix & mat = *this;
     os << "[ ";
     for (size_t i = 0; i < n_rows(); i++)
     {
         for (size_t j = 0; j < n_cols(); j++)
         {
             os << mat(i,j) << ' ';
         }
         if (i != n_rows()-1)
         {
             os << "; ";
         }
     }
     os << "]";
 }
Esempio n. 15
0
  virtual bool get_entry(size_t r, size_t c, ring_elem &result) const
  // Returns false if (r,c) is out of range or if result is 0.  No error
  // is returned. result <-- this(r,c), and is set to zero if false is returned.
  {
    if (r >= 0 && r < n_rows() && c >= 0 && c < n_cols())
      {
        elem a;
        mat.get_CoeffRing()->set_zero(a);
        if (mat.get_entry(r,c,a))
          {
            mat.get_CoeffRing()->to_ring_elem(result,a);
            return true;
          }
      }

    result = mat.get_ring()->zero();
    return false;
  }
Esempio n. 16
0
 virtual bool column2by2(size_t c1, size_t c2,
                         ring_elem a1, ring_elem a2,
                         ring_elem b1, ring_elem b2)
 /* column(c1) <- a1 * column(c1) + a2 * column(c2),
    column(c2) <- b1 * column(c1) + b2 * column(c2)
 */
 {
   size_t ncols = n_cols();
   if (error_column_bound(c1,ncols) || error_column_bound(c2,ncols))
     return false;
   if (c1 == c2) return true;
   elem aa1, aa2, bb1, bb2;
   mat.get_CoeffRing()->from_ring_elem(aa1,a1);
   mat.get_CoeffRing()->from_ring_elem(aa2,a2);
   mat.get_CoeffRing()->from_ring_elem(bb1,b1);
   mat.get_CoeffRing()->from_ring_elem(bb2,b2);
   mat.column2by2(c1,c2,aa1,aa2,bb1,bb2);
   return true;
 }
Esempio n. 17
0
  virtual MutableMat * add(const MutableMatrix *B) const
  // return this + B.  return NULL if sizes or types do not match.
  {
    const Mat *B1 = B->coerce<Mat>();
    if (B1 == NULL) 
      {
        ERROR("expected matrices with the same ring and sparsity");
        return NULL;
      }
    if (B->get_ring() != get_ring())
      {
        ERROR("expected matrices with the same ring");
        return NULL;
      }
    if (B1->n_rows() != n_rows() || B1->n_cols() != n_cols())
      {
        ERROR("expected matrices of the same shape");
        return NULL;
      }

    MutableMat* result = clone();
    result->getMat().addInPlace(*B1);
    return result;
  }
Esempio n. 18
0
TEST(MathLib, DenseGaussAlgorithm)
{
	std::size_t n_rows(100);
	std::size_t n_cols(n_rows);

	MathLib::DenseMatrix<double,std::size_t> mat(n_rows, n_cols);

	// *** fill matrix with arbitrary values
	// ** initialize random seed
	srand ( static_cast<unsigned>(time(nullptr)) );
	// ** loop over rows and columns
	for (std::size_t i(0); i<n_rows; i++) {
		for (std::size_t j(0); j<n_cols; j++) {
			mat(i,j) = rand()/static_cast<double>(RAND_MAX);
		}
	}

	// *** create solution vector, set all entries to 0.0
	double *x(new double[n_cols]);
	std::fill(x,x+n_cols, 0.0);
	double *b0(mat * x);

	// *** create other right hand sides,
	// set all entries of the solution vector to 1.0
	std::fill(x,x+n_cols, 1.0);
	double *b1(mat * x);

	std::generate(x,x+n_cols, std::rand);
	double *b2(mat * x);

	// right hand side and solution vector with random entries
	double *b3(mat * x);
	double *b3_copy(mat * x);
	double *x3 (new double[n_cols]);
	std::generate(x3,x3+n_cols, std::rand);

	MathLib::GaussAlgorithm<MathLib::DenseMatrix<double, std::size_t>, double*> gauss(mat);

	// solve with b0 as right hand side
	gauss.solve(b0, true);
	for (std::size_t i(0); i<n_rows; i++) {
		ASSERT_NEAR(b0[i], 0.0, std::numeric_limits<float>::epsilon());
	}

	// solve with b1 as right hand side
	gauss.solve(b1, false);
	for (std::size_t i(0); i<n_rows; i++) {
		ASSERT_NEAR(b1[i], 1.0, std::numeric_limits<float>::epsilon());
	}

	// solve with b2 as right hand side
	gauss.solve(b2, false);
	for (std::size_t i(0); i<n_rows; i++) {
		ASSERT_NEAR(fabs(b2[i]-x[i])/fabs(x[i]), 0.0, std::numeric_limits<float>::epsilon());
	}

	// solve with b3 as right hand side and x3 as solution vector
	gauss.solve(b3, x3, false);
	for (std::size_t i(0); i<n_rows; i++) {
		ASSERT_NEAR(fabs(x3[i]-x[i])/fabs(x[i]), 0.0, std::numeric_limits<float>::epsilon());
	}
	// assure entries of vector b3 are not changed
	for (std::size_t i(0); i<n_rows; i++) {
		ASSERT_NEAR(fabs(b3[i]-b3_copy[i])/fabs(b3[i]), 0.0, std::numeric_limits<float>::epsilon());
	}

	delete [] x;
	delete [] b0;
	delete [] b1;
	delete [] b2;
	delete [] b3;
	delete [] x3;
	delete [] b3_copy;
}
Esempio n. 19
0
TEST(MathLib, DenseGaussAlgorithmDenseVector)
{
	std::size_t n_rows(50);
	std::size_t n_cols(n_rows);

	MathLib::DenseMatrix<double,std::size_t> mat(n_rows, n_cols);

	// *** fill matrix with arbitrary values
	// ** initialize random seed
	srand ( static_cast<unsigned>(time(nullptr)) );
	// ** loop over rows and columns
	for (std::size_t i(0); i<n_rows; i++) {
		for (std::size_t j(0); j<n_cols; j++) {
			mat(i,j) = rand()/static_cast<double>(RAND_MAX);
		}
	}

	// *** create solution vector, set all entries to 0.0
	MathLib::DenseVector<double> x(n_cols);
	std::fill(std::begin(x), std::end(x), 0.0);
	MathLib::DenseVector<double> b0(mat * x);

	// *** create other right hand sides,
	// set all entries of the solution vector to 1.0
	std::fill(std::begin(x), std::end(x), 1.0);
	MathLib::DenseVector<double> b1(mat * x);

	std::generate(std::begin(x), std::end(x), std::rand);
	MathLib::DenseVector<double> b2(mat * x);

	// right hand side and solution vector with random entries
	MathLib::DenseVector<double> b3(mat * x);
	MathLib::DenseVector<double> b3_copy(mat * x);
	MathLib::DenseVector<double> x3 (n_cols);
	std::generate(std::begin(x3),std::end(x3), std::rand);

	MathLib::GaussAlgorithm<MathLib::DenseMatrix<double, std::size_t>, MathLib::DenseVector<double>> gauss(mat);

	// solve with b0 as right hand side
	gauss.solve(b0, true);
	for (std::size_t i(0); i<n_rows; i++) {
		ASSERT_NEAR(b0[i], 0.0, 1e5 * std::numeric_limits<float>::epsilon());
	}

	// solve with b1 as right hand side
	gauss.solve(b1, false);
	for (std::size_t i(0); i<n_rows; i++) {
		ASSERT_NEAR(b1[i], 1.0, std::numeric_limits<float>::epsilon());
	}

	// solve with b2 as right hand side
	gauss.solve(b2, false);
	for (std::size_t i(0); i<n_rows; i++) {
		ASSERT_NEAR(fabs(b2[i]-x[i])/fabs(x[i]), 0.0, std::numeric_limits<float>::epsilon());
	}

	gauss.solve(b3, x3, false);
	for (std::size_t i(0); i<n_rows; i++) {
		ASSERT_NEAR(fabs(x3[i]-x[i])/fabs(x[i]), 0.0, std::numeric_limits<float>::epsilon());
	}
	// assure entries of vector b3 are not changed
	for (std::size_t i(0); i<n_rows; i++) {
		ASSERT_NEAR(fabs(b3[i]-b3_copy[i])/fabs(b3[i]), 0.0, std::numeric_limits<float>::epsilon());
	}
}
int main (int argc, char* argv[])
{
	LOGOG_INITIALIZE();
	logog::Cout* logog_cout (new logog::Cout);
	BaseLib::LogogSimpleFormatter *custom_format (new BaseLib::LogogSimpleFormatter);
	logog_cout->SetFormatter(*custom_format);

	TCLAP::CmdLine cmd(
	        "Generates properties for mesh elements of an input mesh deploying a ASC raster file",
	        ' ',
	        "0.1");

	TCLAP::ValueArg<std::string> out_mesh_arg("o",
	                                          "out-mesh",
	                                          "the mesh is stored to a file of this name",
	                                          false,
	                                          "",
	                                          "filename for mesh output");
	cmd.add( out_mesh_arg );

	TCLAP::ValueArg<bool> refinement_raster_output_arg("",
	                                                   "output-refined-raster",
	                                                   "write refined raster to a new ASC file",
	                                                   false,
	                                                   false,
	                                                   "0");
	cmd.add( refinement_raster_output_arg );

	TCLAP::ValueArg<unsigned> refinement_arg(
	        "r",
	        "refine",
	        "refinement factor that raises the resolution of the raster data",
	        false,
	        1,
	        "factor (default = 1)");
	cmd.add( refinement_arg );

	TCLAP::ValueArg<std::string> mapping_arg("",
	                                         "mapping-name",
	                                         "file name of mapping",
	                                         true,
	                                         "",
	                                         "file name");
	cmd.add( mapping_arg );

	TCLAP::ValueArg<std::string> raster_arg("",
	                                        "raster-file",
	                                        "the name of the ASC raster file",
	                                        true,
	                                        "",
	                                        "file name");
	cmd.add( raster_arg );

	TCLAP::ValueArg<std::string> mesh_arg("m",
	                                      "mesh",
	                                      "the mesh is read from this file",
	                                      true,
	                                      "test.msh",
	                                      "file name");
	cmd.add( mesh_arg );

	cmd.parse( argc, argv );

	// read mesh
	MeshLib::Mesh* dest_mesh(FileIO::readMeshFromFile(mesh_arg.getValue()));

	// read raster and if required manipulate it
	GeoLib::Raster* raster(FileIO::AsciiRasterInterface::getRasterFromASCFile(
		raster_arg.getValue()));
	if (refinement_arg.getValue() > 1) {
		raster->refineRaster(refinement_arg.getValue());
		if (refinement_raster_output_arg.getValue()) {
			// write new asc file
			std::string new_raster_fname (BaseLib::dropFileExtension(
			                                      raster_arg.getValue()));
			new_raster_fname += "-" + std::to_string(raster->getNRows()) + "x" +
			                    std::to_string(raster->getNCols()) + ".asc";
			FileIO::AsciiRasterInterface::writeRasterAsASC(*raster, new_raster_fname);
		}
	}

	// put raster data in a std::vector
	GeoLib::Raster::const_iterator raster_it(raster->begin());
	std::size_t n_cols(raster->getNCols()), n_rows(raster->getNRows());
	std::size_t size(n_cols * n_rows);
	std::vector<double> src_properties(size);
	for (unsigned row(0); row<n_rows; row++) {
		for (unsigned col(0); col<n_cols; col++) {
			src_properties[row * n_cols + col] = *raster_it;
			++raster_it;
		}
	}

	{
		double mu, var;
		std::tie(mu, var) = computeMeanAndVariance(src_properties.begin(), src_properties.end());
		INFO("Mean value of source: %f.", mu);
		INFO("Variance of source: %f.", var);
	}

	MeshLib::Mesh* src_mesh(MeshLib::ConvertRasterToMesh(*raster, MeshLib::MeshElemType::QUAD,
					MeshLib::UseIntensityAs::MATERIAL).execute());

	std::vector<std::size_t> src_perm(size);
	std::iota(src_perm.begin(), src_perm.end(), 0);
	BaseLib::Quicksort<double>(src_properties, 0, size, src_perm);

	// compress the property data structure
	const std::size_t mat_map_size(src_properties.size());
	std::vector<std::size_t> mat_map(mat_map_size);
	mat_map[0] = 0;
	std::size_t n_mat(1);
	for (std::size_t k(1); k<mat_map_size; ++k) {
		if (std::fabs(src_properties[k] - src_properties[k-1]) > std::numeric_limits<double>::epsilon()) {
			mat_map[k] = mat_map[k - 1] + 1;
			n_mat++;
		} else
			mat_map[k] = mat_map[k - 1];
	}
	std::vector<double> compressed_src_properties(n_mat);
	compressed_src_properties[0] = src_properties[0];
	for (std::size_t k(1), id(1); k<mat_map_size; ++k) {
		if (std::fabs(src_properties[k] - src_properties[k-1]) > std::numeric_limits<double>::epsilon()) {
			compressed_src_properties[id] = src_properties[k];
			id++;
		}
	}
	compressed_src_properties[n_mat - 1] = src_properties[mat_map_size - 1];

	// reset materials in source mesh
	const std::size_t n_mesh_elements(src_mesh->getNElements());
	for (std::size_t k(0); k<n_mesh_elements; k++) {
		const_cast<MeshLib::Element*>(src_mesh->getElement(src_perm[k]))->setValue(mat_map[k]);
	}

	// do the interpolation
	MeshLib::Mesh2MeshPropertyInterpolation mesh_interpolation(src_mesh,
	                                                           &compressed_src_properties);
	std::vector<double> dest_properties(dest_mesh->getNElements());
	mesh_interpolation.setPropertiesForMesh(const_cast<MeshLib::Mesh*>(dest_mesh),
	                                        dest_properties);

	const std::size_t n_dest_mesh_elements(dest_mesh->getNElements());

	{ // write property file
		std::string property_fname(mapping_arg.getValue());
		std::ofstream property_out(property_fname.c_str());
		if (!property_out)
		{
			ERR("Could not open file %s for writing the mapping.", property_fname.c_str());
			return -1;
		}

		for (std::size_t k(0); k < n_dest_mesh_elements; k++)
			property_out << k << " " << dest_properties[k] << "\n";
		property_out.close();
	}

	{
		double mu, var;
		std::tie(mu, var) = computeMeanAndVariance(dest_properties.begin(), dest_properties.end());
		INFO("Mean value of destination: %f.", mu);
		INFO("Variance of destination: %f.", var);
	}

	if (! out_mesh_arg.getValue().empty()) {
		std::vector<std::size_t> dest_perm(n_dest_mesh_elements);
		std::iota(dest_perm.begin(), dest_perm.end(), 0);
		BaseLib::Quicksort<double>(dest_properties, 0, n_dest_mesh_elements, dest_perm);

		// reset materials in destination mesh
		for (std::size_t k(0); k<n_dest_mesh_elements; k++) {
			const_cast<MeshLib::Element*>(dest_mesh->getElement(dest_perm[k]))->setValue(k);
		}

		FileIO::Legacy::MeshIO mesh_writer;
		mesh_writer.setPrecision(12);
		mesh_writer.setMesh(dest_mesh);
		mesh_writer.writeToFile(out_mesh_arg.getValue());
	}

	delete raster;
	delete src_mesh;
	delete dest_mesh;

	delete custom_format;
	delete logog_cout;
	LOGOG_SHUTDOWN();

	return 0;
}