void LayerBase::dump(String8& result, char* buffer, size_t SIZE) const
{
    const Layer::State& s(drawingState());
    snprintf(buffer, SIZE,
            "+ %s %p\n"
            "      "
            "z=%9d, pos=(%4d,%4d), size=(%4d,%4d), "
            "needsBlending=%1d, needsDithering=%1d, invalidate=%1d, "
            "alpha=0x%02x, flags=0x%08x, tr=[%.2f, %.2f][%.2f, %.2f]\n",
            getTypeId(), this, s.z, tx(), ty(), s.w, s.h,
            needsBlending(), needsDithering(), contentDirty,
            s.alpha, s.flags,
            s.transform[0][0], s.transform[0][1],
            s.transform[1][0], s.transform[1][1]);
    result.append(buffer);
}
Esempio n. 2
0
void LayerBase::drawWithOpenGL(const Region& clip,
        GLint textureName, const GGLSurface& t) const
{
    const DisplayHardware& hw(graphicPlane(0).displayHardware());
    const uint32_t fbHeight = hw.getHeight();
    const State& s(drawingState());

    // bind our texture
    validateTexture(textureName);
    glEnable(GL_TEXTURE_2D);

    // Dithering...
    if (s.flags & ISurfaceComposer::eLayerDither) {
        glEnable(GL_DITHER);
    } else {
        glDisable(GL_DITHER);
    }

    if (UNLIKELY(s.alpha < 0xFF)) {
        // We have an alpha-modulation. We need to modulate all
        // texture components by alpha because we're always using 
        // premultiplied alpha.
        
        // If the texture doesn't have an alpha channel we can
        // use REPLACE and switch to non premultiplied alpha
        // blending (SRCA/ONE_MINUS_SRCA).
        
        GLenum env, src;
        if (needsBlending()) {
            env = GL_MODULATE;
            src = mPremultipliedAlpha ? GL_ONE : GL_SRC_ALPHA;
        } else {
            env = GL_REPLACE;
            src = GL_SRC_ALPHA;
        }
        const GGLfixed alpha = (s.alpha << 16)/255;
        glColor4x(alpha, alpha, alpha, alpha);
        glEnable(GL_BLEND);
        glBlendFunc(src, GL_ONE_MINUS_SRC_ALPHA);
        glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, env);
    } else {
        glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
        glColor4x(0x10000, 0x10000, 0x10000, 0x10000);
        if (needsBlending()) {
            GLenum src = mPremultipliedAlpha ? GL_ONE : GL_SRC_ALPHA;
            glEnable(GL_BLEND);
            glBlendFunc(src, GL_ONE_MINUS_SRC_ALPHA);
        } else {
            glDisable(GL_BLEND);
        }
    }

    if (UNLIKELY(transformed()
            || !(mFlags & DisplayHardware::DRAW_TEXTURE_EXTENSION) )) 
    {
        //StopWatch watch("GL transformed");
        Region::iterator iterator(clip);
        if (iterator) {
            // always use high-quality filtering with fast configurations
            bool fast = !(mFlags & DisplayHardware::SLOW_CONFIG);
            if (!fast && s.flags & ISurfaceComposer::eLayerFilter) {
                glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
                glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
            }            
            const GLfixed texCoords[4][2] = {
                    { 0,        0 },
                    { 0,        0x10000 },
                    { 0x10000,  0x10000 },
                    { 0x10000,  0 }
            };

            glMatrixMode(GL_TEXTURE);
            glLoadIdentity();
            if (!(mFlags & DisplayHardware::NPOT_EXTENSION)) {
                // find the smallest power-of-two that will accommodate our surface
                GLuint tw = 1 << (31 - clz(t.width));
                GLuint th = 1 << (31 - clz(t.height));
                if (tw < t.width)  tw <<= 1;
                if (th < t.height) th <<= 1;
                // this divide should be relatively fast because it's
                // a power-of-two (optimized path in libgcc)
                GLfloat ws = GLfloat(t.width) /tw;
                GLfloat hs = GLfloat(t.height)/th;
                glScalef(ws, hs, 1.0f);
            }

            glEnableClientState(GL_TEXTURE_COORD_ARRAY);
            glVertexPointer(2, GL_FIXED, 0, mVertices);
            glTexCoordPointer(2, GL_FIXED, 0, texCoords);

            Rect r;
            while (iterator.iterate(&r)) {
                const GLint sy = fbHeight - (r.top + r.height());
                glScissor(r.left, sy, r.width(), r.height());
                glDrawArrays(GL_TRIANGLE_FAN, 0, 4); 
            }

            if (!fast && s.flags & ISurfaceComposer::eLayerFilter) {
                glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
                glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
            }
            glDisableClientState(GL_TEXTURE_COORD_ARRAY);
        }
    } else {
        Region::iterator iterator(clip);
        if (iterator) {
            Rect r;
            GLint crop[4] = { 0, t.height, t.width, -t.height };
            glTexParameteriv(GL_TEXTURE_2D, GL_TEXTURE_CROP_RECT_OES, crop);
            int x = tx();
            int y = ty();
            y = fbHeight - (y + t.height);
            while (iterator.iterate(&r)) {
                const GLint sy = fbHeight - (r.top + r.height());
                glScissor(r.left, sy, r.width(), r.height());
                glDrawTexiOES(x, y, 0, t.width, t.height);
            }
        }
    }
}
void LayerBase::drawWithOpenGL(const Region& clip, const Texture& texture) const
{
    const DisplayHardware& hw(graphicPlane(0).displayHardware());
    const uint32_t fbHeight = hw.getHeight();
    const State& s(drawingState());
    
    // bind our texture
    TextureManager::activateTexture(texture, needsFiltering());
    uint32_t width  = texture.width; 
    uint32_t height = texture.height;

    GLenum src = mPremultipliedAlpha ? GL_ONE : GL_SRC_ALPHA;

    int renderEffect = mFlinger->getRenderEffect();
    int renderColorR = mFlinger->getRenderColorR();
    int renderColorG = mFlinger->getRenderColorG();
    int renderColorB = mFlinger->getRenderColorB();

    bool noEffect = renderEffect == 0;

    if (UNLIKELY(s.alpha < 0xFF) && noEffect) {
        const GLfloat alpha = s.alpha * (1.0f/255.0f);
        if (mPremultipliedAlpha) {
            glColor4f(alpha, alpha, alpha, alpha);
        } else {
            glColor4f(1, 1, 1, alpha);
        }
        glEnable(GL_BLEND);
        glBlendFunc(src, GL_ONE_MINUS_SRC_ALPHA);
        glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
    } else if (noEffect) {
        glColor4f(1, 1, 1, 1);
        glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
        if (needsBlending()) {
            glEnable(GL_BLEND);
            glBlendFunc(src, GL_ONE_MINUS_SRC_ALPHA);
        } else {
            glDisable(GL_BLEND);
        }
    } else {
        // Apply a render effect, which is simple color masks for now.
        GLenum env, src;
        env = GL_MODULATE;
        src = mPremultipliedAlpha ? GL_ONE : GL_SRC_ALPHA;
        const GGLfixed alpha = (s.alpha << 16)/255;
        switch (renderEffect) {
            case RENDER_EFFECT_NIGHT:
                glColor4x(alpha, alpha*0.6204, alpha*0.3018, alpha);
                break;
            case RENDER_EFFECT_TERMINAL:
                glColor4x(0, alpha, 0, alpha);
                break;
            case RENDER_EFFECT_BLUE:
                glColor4x(0, 0, alpha, alpha);
                break;
            case RENDER_EFFECT_AMBER:
                glColor4x(alpha, alpha*0.75, 0, alpha);
                break;
            case RENDER_EFFECT_SALMON:
                glColor4x(alpha, alpha*0.5, alpha*0.5, alpha);
                break;
            case RENDER_EFFECT_FUSCIA:
                glColor4x(alpha, 0, alpha*0.5, alpha);
                break;
            case RENDER_EFFECT_N1_CALIBRATED_N:
                glColor4x(alpha*renderColorR/1000, alpha*renderColorG/1000, alpha*renderColorB/1000, alpha);
                break;
            case RENDER_EFFECT_N1_CALIBRATED_R:
                glColor4x(alpha*(renderColorR-50)/1000, alpha*renderColorG/1000, alpha*(renderColorB-30)/1000, alpha);
                break;
            case RENDER_EFFECT_N1_CALIBRATED_C:
                glColor4x(alpha*renderColorR/1000, alpha*renderColorG/1000, alpha*(renderColorB+30)/1000, alpha);
                break;
            case RENDER_EFFECT_RED:
                glColor4x(alpha, 0, 0, alpha);
                break;
        }
        glEnable(GL_BLEND);
        glBlendFunc(src, GL_ONE_MINUS_SRC_ALPHA);
        glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, env);
    }

    /*
     *  compute texture coordinates
     *  here, we handle NPOT, cropping and buffer transformations
     */

    GLfloat cl, ct, cr, cb;
    if (!mBufferCrop.isEmpty()) {
        // source is cropped
        const GLfloat us = (texture.NPOTAdjust ? texture.wScale : 1.0f) / width;
        const GLfloat vs = (texture.NPOTAdjust ? texture.hScale : 1.0f) / height;
        cl = mBufferCrop.left   * us;
        ct = mBufferCrop.top    * vs;
        cr = mBufferCrop.right  * us;
        cb = mBufferCrop.bottom * vs;
    } else {
        cl = 0;
        ct = 0;
        cr = (texture.NPOTAdjust ? texture.wScale : 1.0f);
        cb = (texture.NPOTAdjust ? texture.hScale : 1.0f);
    }

    /*
     * For the buffer transformation, we apply the rotation last.
     * Since we're transforming the texture-coordinates, we need
     * to apply the inverse of the buffer transformation:
     *   inverse( FLIP_V -> FLIP_H -> ROT_90 )
     *   <=> inverse( ROT_90 * FLIP_H * FLIP_V )
     *    =  inverse(FLIP_V) * inverse(FLIP_H) * inverse(ROT_90)
     *    =  FLIP_V * FLIP_H * ROT_270
     *   <=> ROT_270 -> FLIP_H -> FLIP_V
     *
     * The rotation is performed first, in the texture coordinate space.
     *
     */

    struct TexCoords {
        GLfloat u;
        GLfloat v;
    };

    enum {
        // name of the corners in the texture map
        LB = 0, // left-bottom
        LT = 1, // left-top
        RT = 2, // right-top
        RB = 3  // right-bottom
    };

    // vertices in screen space
    int vLT = LB;
    int vLB = LT;
    int vRB = RT;
    int vRT = RB;

    // the texture's source is rotated
    uint32_t transform = mBufferTransform;
    if (transform & HAL_TRANSFORM_ROT_90) {
        vLT = RB;
        vLB = LB;
        vRB = LT;
        vRT = RT;
    }
    if (transform & HAL_TRANSFORM_FLIP_V) {
        swap(vLT, vLB);
        swap(vRT, vRB);
    }
    if (transform & HAL_TRANSFORM_FLIP_H) {
        swap(vLT, vRT);
        swap(vLB, vRB);
    }

    TexCoords texCoords[4];
    texCoords[vLT].u = cl;
    texCoords[vLT].v = ct;
    texCoords[vLB].u = cl;
    texCoords[vLB].v = cb;
    texCoords[vRB].u = cr;
    texCoords[vRB].v = cb;
    texCoords[vRT].u = cr;
    texCoords[vRT].v = ct;

    if (needsDithering()) {
        glEnable(GL_DITHER);
    } else {
        glDisable(GL_DITHER);
    }

    glEnableClientState(GL_TEXTURE_COORD_ARRAY);
    glVertexPointer(2, GL_FLOAT, 0, mVertices);
    glTexCoordPointer(2, GL_FLOAT, 0, texCoords);

    Region::const_iterator it = clip.begin();
    Region::const_iterator const end = clip.end();
    while (it != end) {
        const Rect& r = *it++;
        const GLint sy = fbHeight - (r.top + r.height());
        glScissor(r.left, sy, r.width(), r.height());
        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
    }
    glDisableClientState(GL_TEXTURE_COORD_ARRAY);
}
Esempio n. 4
0
void LayerBase::validateVisibility(const Transform& planeTransform)
{
    const Layer::State& s(drawingState());
    const Transform tr(planeTransform * s.transform);
    const bool transformed = tr.transformed();
   
    const Point size(getPhysicalSize());
    uint32_t w = size.x;
    uint32_t h = size.y;    
    tr.transform(mVertices[0], 0, 0);
    tr.transform(mVertices[1], 0, h);
    tr.transform(mVertices[2], w, h);
    tr.transform(mVertices[3], w, 0);
    if (UNLIKELY(transformed)) {
        // NOTE: here we could also punt if we have too many rectangles
        // in the transparent region
        if (tr.preserveRects()) {
            // transform the transparent region
            transparentRegionScreen = tr.transform(s.transparentRegion);
        } else {
            // transformation too complex, can't do the transparent region
            // optimization.
            transparentRegionScreen.clear();
        }
    } else {
        transparentRegionScreen = s.transparentRegion;
    }

    // cache a few things...
    mOrientation = tr.getOrientation();
    mTransformedBounds = tr.makeBounds(w, h);
    mTransformed = transformed;
    mLeft = tr.tx();
    mTop  = tr.ty();

    // see if we can/should use 2D h/w with the new configuration
    mCanUseCopyBit = false;
    copybit_device_t* copybit = mFlinger->getBlitEngine();
    if (copybit) { 
        const int step = copybit->get(copybit, COPYBIT_ROTATION_STEP_DEG);
        const int scaleBits = copybit->get(copybit, COPYBIT_SCALING_FRAC_BITS);
        mCanUseCopyBit = true;
        if ((mOrientation < 0) && (step > 1)) {
            // arbitrary orientations not supported
            mCanUseCopyBit = false;
        } else if ((mOrientation > 0) && (step > 90)) {
            // 90 deg rotations not supported
            mCanUseCopyBit = false;
        } else if ((tr.getType() & SkMatrix::kScale_Mask) && (scaleBits < 12)) { 
            // arbitrary scaling not supported
            mCanUseCopyBit = false;
        }
#if HONOR_PREMULTIPLIED_ALPHA 
        else if (needsBlending() && mPremultipliedAlpha) {
            // pre-multiplied alpha not supported
            mCanUseCopyBit = false;
        }
#endif
        else {
            // here, we determined we can use copybit
            if (tr.getType() & SkMatrix::kScale_Mask) {
                // and we have scaling
                if (!transparentRegionScreen.isRect()) {
                    // we punt because blending is cheap (h/w) and the region is
                    // complex, which may causes artifacts when copying
                    // scaled content
                    transparentRegionScreen.clear();
                }
            }
        }
    }
}