/** * reconstruct makes an 2d-adjoint-nfft for every slice */ static void reconstruct(char* filename,int N,int M,int Z, int weight ,fftw_complex *mem) { int j,k,z; /* some variables */ double weights; /* store one weight temporary */ double tmp; /* tmp to read the obsolent z from the input file */ double real,imag; /* to read the real and imag part of a complex number */ nfft_plan my_plan; /* plan for the two dimensional nfft */ int my_N[2],my_n[2]; /* to init the nfft */ FILE* fin; /* input file */ FILE* fweight; /* input file for the weights */ /* initialise my_plan */ my_N[0]=N; my_n[0]=ceil(N*1.2); my_N[1]=N; my_n[1]=ceil(N*1.2); nfft_init_guru(&my_plan, 2, my_N, M/Z, my_n, 6, PRE_PHI_HUT| PRE_PSI| MALLOC_X| MALLOC_F_HAT| MALLOC_F| FFTW_INIT| FFT_OUT_OF_PLACE, FFTW_MEASURE| FFTW_DESTROY_INPUT); /* precompute lin psi if set */ if(my_plan.nfft_flags & PRE_LIN_PSI) nfft_precompute_lin_psi(&my_plan); fin=fopen(filename,"r"); for(z=0;z<Z;z++) { fweight=fopen("weights.dat","r"); for(j=0;j<my_plan.M_total;j++) { fscanf(fweight,"%le ",&weights); fscanf(fin,"%le %le %le %le %le", &my_plan.x[2*j+0],&my_plan.x[2*j+1],&tmp,&real,&imag); my_plan.f[j] = real + _Complex_I*imag; if(weight) my_plan.f[j] = my_plan.f[j] * weights; } fclose(fweight); /* precompute psi if set just one time because the knots equal each slice */ if(z==0 && my_plan.nfft_flags & PRE_PSI) nfft_precompute_psi(&my_plan); /* precompute full psi if set just one time because the knots equal each slice */ if(z==0 && my_plan.nfft_flags & PRE_FULL_PSI) nfft_precompute_full_psi(&my_plan); /* compute the adjoint nfft */ nfft_adjoint(&my_plan); for(k=0;k<my_plan.N_total;k++) { /* write every slice in the memory. here we make an fftshift direct */ mem[(Z*N*N/2+z*N*N+ k)%(Z*N*N)] = my_plan.f_hat[k]; } } fclose(fin); nfft_finalize(&my_plan); }
/** precomputation for fastsum */ void fastsum_precompute(fastsum_plan *ths) { int j,k,t; int n_total; ticks t0, t1; ths->MEASURE_TIME_t[0] = 0.0; ths->MEASURE_TIME_t[1] = 0.0; ths->MEASURE_TIME_t[2] = 0.0; ths->MEASURE_TIME_t[3] = 0.0; #ifdef MEASURE_TIME t0 = getticks(); #endif if (ths->flags & NEARFIELD_BOXES) { BuildBox(ths); } else { /** sort source knots */ BuildTree(ths->d,0,ths->x,ths->alpha,ths->N_total); } #ifdef MEASURE_TIME t1 = getticks(); ths->MEASURE_TIME_t[3] += nfft_elapsed_seconds(t1,t0); #endif #ifdef MEASURE_TIME t0 = getticks(); #endif /** precompute spline values for near field*/ if (!(ths->flags & EXACT_NEARFIELD)) { if (ths->d==1) #pragma omp parallel for default(shared) private(k) for (k=-ths->Ad/2-2; k <= ths->Ad/2+2; k++) ths->Add[k+ths->Ad/2+2] = regkern1(ths->k, ths->eps_I*(double)k/ths->Ad*2, ths->p, ths->kernel_param, ths->eps_I, ths->eps_B); else #pragma omp parallel for default(shared) private(k) for (k=0; k <= ths->Ad+2; k++) ths->Add[k] = regkern3(ths->k, ths->eps_I*(double)k/ths->Ad, ths->p, ths->kernel_param, ths->eps_I, ths->eps_B); } #ifdef MEASURE_TIME t1 = getticks(); ths->MEASURE_TIME_t[0] += nfft_elapsed_seconds(t1,t0); #endif #ifdef MEASURE_TIME t0 = getticks(); #endif /** init NFFT plan for transposed transform in first step*/ for (k=0; k<ths->mv1.M_total; k++) for (t=0; t<ths->mv1.d; t++) ths->mv1.x[ths->mv1.d*k+t] = - ths->x[ths->mv1.d*k+t]; /* note the factor -1 for transposed transform instead of adjoint*/ /** precompute psi, the entries of the matrix B */ if(ths->mv1.nfft_flags & PRE_LIN_PSI) nfft_precompute_lin_psi(&(ths->mv1)); if(ths->mv1.nfft_flags & PRE_PSI) nfft_precompute_psi(&(ths->mv1)); if(ths->mv1.nfft_flags & PRE_FULL_PSI) nfft_precompute_full_psi(&(ths->mv1)); #ifdef MEASURE_TIME t1 = getticks(); ths->MEASURE_TIME_t[1] += nfft_elapsed_seconds(t1,t0); #endif /** init Fourier coefficients */ for(k=0; k<ths->mv1.M_total;k++) ths->mv1.f[k] = ths->alpha[k]; #ifdef MEASURE_TIME t0 = getticks(); #endif /** init NFFT plan for transform in third step*/ for (j=0; j<ths->mv2.M_total; j++) for (t=0; t<ths->mv2.d; t++) ths->mv2.x[ths->mv2.d*j+t] = - ths->y[ths->mv2.d*j+t]; /* note the factor -1 for conjugated transform instead of standard*/ /** precompute psi, the entries of the matrix B */ if(ths->mv2.nfft_flags & PRE_LIN_PSI) nfft_precompute_lin_psi(&(ths->mv2)); if(ths->mv2.nfft_flags & PRE_PSI) nfft_precompute_psi(&(ths->mv2)); if(ths->mv2.nfft_flags & PRE_FULL_PSI) nfft_precompute_full_psi(&(ths->mv2)); #ifdef MEASURE_TIME t1 = getticks(); ths->MEASURE_TIME_t[2] += nfft_elapsed_seconds(t1,t0); #endif #ifdef MEASURE_TIME t0 = getticks(); #endif /** precompute Fourier coefficients of regularised kernel*/ n_total = 1; for (t=0; t<ths->d; t++) n_total *= ths->n; #pragma omp parallel for default(shared) private(j,k,t) for (j=0; j<n_total; j++) { if (ths->d==1) ths->b[j] = regkern1(ths->k, (double)j / (ths->n) - 0.5, ths->p, ths->kernel_param, ths->eps_I, ths->eps_B)/n_total; else { k=j; ths->b[j]=0.0; for (t=0; t<ths->d; t++) { ths->b[j] += ((double)(k % (ths->n)) / (ths->n) - 0.5) * ((double)(k % (ths->n)) / (ths->n) - 0.5); k = k / (ths->n); } ths->b[j] = regkern3(ths->k, sqrt(ths->b[j]), ths->p, ths->kernel_param, ths->eps_I, ths->eps_B)/n_total; } } nfft_fftshift_complex(ths->b, ths->mv1.d, ths->mv1.N); fftw_execute(ths->fft_plan); nfft_fftshift_complex(ths->b, ths->mv1.d, ths->mv1.N); #ifdef MEASURE_TIME t1 = getticks(); ths->MEASURE_TIME_t[0] += nfft_elapsed_seconds(t1,t0); #endif }
/** * reconstruct makes an inverse 3d-nfft */ static void reconstruct(char* filename,int N,int M,int Z,int iteration, int weight) { int j,k,z,l; /* some variables */ double real,imag; /* to read the real and imag part of a complex number */ nfft_plan my_plan; /* plan for the two dimensional nfft */ solver_plan_complex my_iplan; /* plan for the two dimensional infft */ FILE* fin; /* input file */ FILE* fout_real; /* output file (real part) */ FILE* fout_imag; /* output file (imag part) */ int my_N[3],my_n[3]; /* to init the nfft */ double epsilon=0.0000003; /* tmp to read the obsolent z from 700.acs epsilon is a the break criterion for the iteration */ unsigned infft_flags = CGNR | PRECOMPUTE_DAMP; /* flags for the infft */ /* initialise my_plan, specific. we don't precompute psi */ my_N[0]=Z; my_n[0]=ceil(Z*1.2); my_N[1]=N; my_n[1]=ceil(N*1.2); my_N[2]=N; my_n[2]=ceil(N*1.2); nfft_init_guru(&my_plan, 3, my_N, M, my_n, 6, PRE_PHI_HUT| PRE_PSI |MALLOC_X| MALLOC_F_HAT| MALLOC_F| FFTW_INIT| FFT_OUT_OF_PLACE, FFTW_MEASURE| FFTW_DESTROY_INPUT); /* precompute lin psi */ if(my_plan.nfft_flags & PRE_LIN_PSI) nfft_precompute_lin_psi(&my_plan); if (weight) infft_flags = infft_flags | PRECOMPUTE_WEIGHT; /* initialise my_iplan, advanced */ solver_init_advanced_complex(&my_iplan,(nfft_mv_plan_complex*)(&my_plan), infft_flags ); /* get the weights */ if(my_iplan.flags & PRECOMPUTE_WEIGHT) { fin=fopen("weights.dat","r"); for(j=0;j<M;j++) { fscanf(fin,"%le ",&my_iplan.w[j]); } fclose(fin); } /* get the damping factors */ if(my_iplan.flags & PRECOMPUTE_DAMP) { for(j=0;j<N;j++){ for(k=0;k<N;k++) { for(z=0;z<N;z++) { int j2= j-N/2; int k2= k-N/2; int z2= z-N/2; double r=sqrt(j2*j2+k2*k2+z2*z2); if(r>(double) N/2) my_iplan.w_hat[z*N*N+j*N+k]=0.0; else my_iplan.w_hat[z*N*N+j*N+k]=1.0; } } } } /* open the input file */ fin=fopen(filename,"r"); /* open the output files */ fout_real=fopen("output_real.dat","w"); fout_imag=fopen("output_imag.dat","w"); /* read x,y,freal and fimag from the knots */ for(j=0;j<M;j++) { fscanf(fin,"%le %le %le %le %le ",&my_plan.x[3*j+1],&my_plan.x[3*j+2], &my_plan.x[3*j+0], &real,&imag); my_iplan.y[j] = real + _Complex_I*imag; } /* precompute psi */ if(my_plan.nfft_flags & PRE_PSI) nfft_precompute_psi(&my_plan); /* precompute full psi */ if(my_plan.nfft_flags & PRE_FULL_PSI) nfft_precompute_full_psi(&my_plan); /* init some guess */ for(k=0;k<my_plan.N_total;k++) my_iplan.f_hat_iter[k]=0.0; /* inverse trafo */ solver_before_loop_complex(&my_iplan); for(l=0;l<iteration;l++) { /* break if dot_r_iter is smaller than epsilon*/ if(my_iplan.dot_r_iter<epsilon) break; fprintf(stderr,"%e, %i of %i\n",sqrt(my_iplan.dot_r_iter), l+1,iteration); solver_loop_one_step_complex(&my_iplan); } for(l=0;l<Z;l++) { for(k=0;k<N*N;k++) { /* write every Layer in the files */ fprintf(fout_real,"%le ",creal(my_iplan.f_hat_iter[ k+N*N*l ])); fprintf(fout_imag,"%le ",cimag(my_iplan.f_hat_iter[ k+N*N*l ])); } fprintf(fout_real,"\n"); fprintf(fout_imag,"\n"); } fclose(fout_real); fclose(fout_imag); solver_finalize_complex(&my_iplan); nfft_finalize(&my_plan); }
static void reconstruct(char* filename,int N,int M,int iteration , int weight) { int j,k,l; double time,min_time,max_time,min_inh,max_inh; ticks t0, t1; double t,real,imag; double w,epsilon=0.0000003; /* epsilon is a the break criterium for the iteration */; mri_inh_2d1d_plan my_plan; solver_plan_complex my_iplan; FILE* fp,*fw,*fout_real,*fout_imag,*finh,*ftime; int my_N[3],my_n[3]; int flags = PRE_PHI_HUT| PRE_PSI |MALLOC_X| MALLOC_F_HAT| MALLOC_F| FFTW_INIT| FFT_OUT_OF_PLACE; unsigned infft_flags = CGNR | PRECOMPUTE_DAMP; double Ts; double W,T; int N3; int m=2; double sigma = 1.25; ftime=fopen("readout_time.dat","r"); finh=fopen("inh.dat","r"); min_time=INT_MAX; max_time=INT_MIN; for(j=0;j<M;j++) { fscanf(ftime,"%le ",&time); if(time<min_time) min_time = time; if(time>max_time) max_time = time; } fclose(ftime); Ts=(min_time+max_time)/2.0; min_inh=INT_MAX; max_inh=INT_MIN; for(j=0;j<N*N;j++) { fscanf(finh,"%le ",&w); if(w<min_inh) min_inh = w; if(w>max_inh) max_inh = w; } fclose(finh); N3=ceil((MAX(fabs(min_inh),fabs(max_inh))*(max_time-min_time)/2.0+(m)/(2*sigma))*4*sigma); /* N3 has to be even */ if(N3%2!=0) N3++; T=((max_time-min_time)/2.0)/(0.5-((double) (m))/N3); W=N3/T; my_N[0]=N; my_n[0]=ceil(N*sigma); my_N[1]=N; my_n[1]=ceil(N*sigma); my_N[2]=N3; my_n[2]=N3; /* initialise nfft */ mri_inh_2d1d_init_guru(&my_plan, my_N, M, my_n, m, sigma, flags, FFTW_MEASURE| FFTW_DESTROY_INPUT); /* precompute lin psi if set */ if(my_plan.plan.nfft_flags & PRE_LIN_PSI) nfft_precompute_lin_psi(&my_plan.plan); if (weight) infft_flags = infft_flags | PRECOMPUTE_WEIGHT; /* initialise my_iplan, advanced */ solver_init_advanced_complex(&my_iplan,(nfft_mv_plan_complex*)(&my_plan), infft_flags ); /* get the weights */ if(my_iplan.flags & PRECOMPUTE_WEIGHT) { fw=fopen("weights.dat","r"); for(j=0;j<my_plan.M_total;j++) { fscanf(fw,"%le ",&my_iplan.w[j]); } fclose(fw); } /* get the damping factors */ if(my_iplan.flags & PRECOMPUTE_DAMP) { for(j=0;j<N;j++){ for(k=0;k<N;k++) { int j2= j-N/2; int k2= k-N/2; double r=sqrt(j2*j2+k2*k2); if(r>(double) N/2) my_iplan.w_hat[j*N+k]=0.0; else my_iplan.w_hat[j*N+k]=1.0; } } } fp=fopen(filename,"r"); ftime=fopen("readout_time.dat","r"); for(j=0;j<my_plan.M_total;j++) { fscanf(fp,"%le %le %le %le",&my_plan.plan.x[2*j+0],&my_plan.plan.x[2*j+1],&real,&imag); my_iplan.y[j]=real+ _Complex_I*imag; fscanf(ftime,"%le ",&my_plan.t[j]); my_plan.t[j] = (my_plan.t[j]-Ts)/T; } fclose(fp); fclose(ftime); finh=fopen("inh.dat","r"); for(j=0;j<N*N;j++) { fscanf(finh,"%le ",&my_plan.w[j]); my_plan.w[j]/=W; } fclose(finh); if(my_plan.plan.nfft_flags & PRE_PSI) { nfft_precompute_psi(&my_plan.plan); } if(my_plan.plan.nfft_flags & PRE_FULL_PSI) { nfft_precompute_full_psi(&my_plan.plan); } /* init some guess */ for(j=0;j<my_plan.N_total;j++) { my_iplan.f_hat_iter[j]=0.0; } t0 = getticks(); /* inverse trafo */ solver_before_loop_complex(&my_iplan); for(l=0;l<iteration;l++) { /* break if dot_r_iter is smaller than epsilon*/ if(my_iplan.dot_r_iter<epsilon) break; fprintf(stderr,"%e, %i of %i\n",sqrt(my_iplan.dot_r_iter), l+1,iteration); solver_loop_one_step_complex(&my_iplan); } t1 = getticks(); t = nfft_elapsed_seconds(t1,t0); fout_real=fopen("output_real.dat","w"); fout_imag=fopen("output_imag.dat","w"); for (j=0;j<N*N;j++) { /* Verschiebung wieder herausrechnen */ my_iplan.f_hat_iter[j]*=cexp(-2.0*_Complex_I*KPI*Ts*my_plan.w[j]*W); fprintf(fout_real,"%le ",creal(my_iplan.f_hat_iter[j])); fprintf(fout_imag,"%le ",cimag(my_iplan.f_hat_iter[j])); } fclose(fout_real); fclose(fout_imag); solver_finalize_complex(&my_iplan); mri_inh_2d1d_finalize(&my_plan); }
/** inverse NFFT-based mpolar FFT */ static int inverse_mpolar_fft(fftw_complex *f, int T, int R, fftw_complex *f_hat, int NN, int max_i, int m) { ticks t0, t1; int j,k; /**< index for nodes and freqencies */ nfft_plan my_nfft_plan; /**< plan for the nfft-2D */ solver_plan_complex my_infft_plan; /**< plan for the inverse nfft */ double *x, *w; /**< knots and associated weights */ int l; /**< index for iterations */ int N[2],n[2]; int M; /**< number of knots */ N[0]=NN; n[0]=2*N[0]; /**< oversampling factor sigma=2 */ N[1]=NN; n[1]=2*N[1]; /**< oversampling factor sigma=2 */ x = (double *)nfft_malloc(5*T*R/2*(sizeof(double))); if (x==NULL) return -1; w = (double *)nfft_malloc(5*T*R/4*(sizeof(double))); if (w==NULL) return -1; /** init two dimensional NFFT plan */ M=mpolar_grid(T,R,x,w); nfft_init_guru(&my_nfft_plan, 2, N, M, n, m, PRE_PHI_HUT| PRE_PSI| MALLOC_X | MALLOC_F_HAT| MALLOC_F| FFTW_INIT | FFT_OUT_OF_PLACE, FFTW_MEASURE| FFTW_DESTROY_INPUT); /** init two dimensional infft plan */ solver_init_advanced_complex(&my_infft_plan,(nfft_mv_plan_complex*)(&my_nfft_plan), CGNR | PRECOMPUTE_WEIGHT ); /** init nodes, given samples and weights */ for(j=0;j<my_nfft_plan.M_total;j++) { my_nfft_plan.x[2*j+0] = x[2*j+0]; my_nfft_plan.x[2*j+1] = x[2*j+1]; my_infft_plan.y[j] = f[j]; my_infft_plan.w[j] = w[j]; } /** precompute psi, the entries of the matrix B */ if(my_nfft_plan.nfft_flags & PRE_LIN_PSI) nfft_precompute_lin_psi(&my_nfft_plan); if(my_nfft_plan.nfft_flags & PRE_PSI) nfft_precompute_psi(&my_nfft_plan); if(my_nfft_plan.nfft_flags & PRE_FULL_PSI) nfft_precompute_full_psi(&my_nfft_plan); /** initialise damping factors */ if(my_infft_plan.flags & PRECOMPUTE_DAMP) for(j=0;j<my_nfft_plan.N[0];j++) for(k=0;k<my_nfft_plan.N[1];k++) { my_infft_plan.w_hat[j*my_nfft_plan.N[1]+k]= (sqrt(pow(j-my_nfft_plan.N[0]/2,2)+pow(k-my_nfft_plan.N[1]/2,2))>(my_nfft_plan.N[0]/2)?0:1); } /** initialise some guess f_hat_0 */ for(k=0;k<my_nfft_plan.N_total;k++) my_infft_plan.f_hat_iter[k] = 0.0 + _Complex_I*0.0; t0 = getticks(); /** solve the system */ solver_before_loop_complex(&my_infft_plan); if (max_i<1) { l=1; for(k=0;k<my_nfft_plan.N_total;k++) my_infft_plan.f_hat_iter[k] = my_infft_plan.p_hat_iter[k]; } else { for(l=1;l<=max_i;l++) { solver_loop_one_step_complex(&my_infft_plan); } } t1 = getticks(); GLOBAL_elapsed_time = nfft_elapsed_seconds(t1,t0); /** copy result */ for(k=0;k<my_nfft_plan.N_total;k++) f_hat[k] = my_infft_plan.f_hat_iter[k]; /** finalise the plans and free the variables */ solver_finalize_complex(&my_infft_plan); nfft_finalize(&my_nfft_plan); nfft_free(x); nfft_free(w); return EXIT_SUCCESS; }
/** NFFT-based mpolar FFT */ static int mpolar_fft(fftw_complex *f_hat, int NN, fftw_complex *f, int T, int R, int m) { ticks t0, t1; int j,k; /**< index for nodes and freqencies */ nfft_plan my_nfft_plan; /**< plan for the nfft-2D */ double *x, *w; /**< knots and associated weights */ int N[2],n[2]; int M; /**< number of knots */ N[0]=NN; n[0]=2*N[0]; /**< oversampling factor sigma=2 */ N[1]=NN; n[1]=2*N[1]; /**< oversampling factor sigma=2 */ x = (double *)nfft_malloc(5*T*R/2*(sizeof(double))); if (x==NULL) return -1; w = (double *)nfft_malloc(5*T*R/4*(sizeof(double))); if (w==NULL) return -1; /** init two dimensional NFFT plan */ M=mpolar_grid(T,R,x,w); nfft_init_guru(&my_nfft_plan, 2, N, M, n, m, PRE_PHI_HUT| PRE_PSI| MALLOC_X | MALLOC_F_HAT| MALLOC_F| FFTW_INIT | FFT_OUT_OF_PLACE, FFTW_MEASURE| FFTW_DESTROY_INPUT); /** init nodes from mpolar grid*/ for(j=0;j<my_nfft_plan.M_total;j++) { my_nfft_plan.x[2*j+0] = x[2*j+0]; my_nfft_plan.x[2*j+1] = x[2*j+1]; } /** precompute psi, the entries of the matrix B */ if(my_nfft_plan.nfft_flags & PRE_LIN_PSI) nfft_precompute_lin_psi(&my_nfft_plan); if(my_nfft_plan.nfft_flags & PRE_PSI) nfft_precompute_psi(&my_nfft_plan); if(my_nfft_plan.nfft_flags & PRE_FULL_PSI) nfft_precompute_full_psi(&my_nfft_plan); /** init Fourier coefficients from given image */ for(k=0;k<my_nfft_plan.N_total;k++) my_nfft_plan.f_hat[k] = f_hat[k]; t0 = getticks(); /** NFFT-2D */ nfft_trafo(&my_nfft_plan); t1 = getticks(); GLOBAL_elapsed_time = nfft_elapsed_seconds(t1,t0); /** copy result */ for(j=0;j<my_nfft_plan.M_total;j++) f[j] = my_nfft_plan.f[j]; /** finalise the plans and free the variables */ nfft_finalize(&my_nfft_plan); nfft_free(x); nfft_free(w); return EXIT_SUCCESS; }
/** computes the inverse discrete Radon transform of Rf * on the grid given by gridfcn() with T angles and R offsets * by a NFFT-based CG-type algorithm */ int Inverse_Radon_trafo(int (*gridfcn)(), int T, int S, double *Rf, int NN, double *f, int max_i) { int j,k; /**< index for nodes and freqencies */ nfft_plan my_nfft_plan; /**< plan for the nfft-2D */ solver_plan_complex my_infft_plan; /**< plan for the inverse nfft */ fftw_complex *fft; /**< variable for the fftw-1Ds */ fftw_plan my_fftw_plan; /**< plan for the fftw-1Ds */ int t,r; /**< index for directions and offsets */ double *x, *w; /**< knots and associated weights */ int l; /**< index for iterations */ int N[2],n[2]; int M=T*S; N[0]=NN; n[0]=2*N[0]; N[1]=NN; n[1]=2*N[1]; fft = (fftw_complex *)nfft_malloc(S*sizeof(fftw_complex)); my_fftw_plan = fftw_plan_dft_1d(S,fft,fft,FFTW_FORWARD,FFTW_MEASURE); x = (double *)nfft_malloc(2*T*S*(sizeof(double))); if (x==NULL) return -1; w = (double *)nfft_malloc(T*S*(sizeof(double))); if (w==NULL) return -1; /** init two dimensional NFFT plan */ nfft_init_guru(&my_nfft_plan, 2, N, M, n, 4, PRE_PHI_HUT| PRE_PSI| MALLOC_X | MALLOC_F_HAT| MALLOC_F| FFTW_INIT | FFT_OUT_OF_PLACE, FFTW_MEASURE| FFTW_DESTROY_INPUT); /** init two dimensional infft plan */ solver_init_advanced_complex(&my_infft_plan,(nfft_mv_plan_complex*)(&my_nfft_plan), CGNR | PRECOMPUTE_WEIGHT); /** init nodes and weights of grid*/ gridfcn(T,S,x,w); for(j=0;j<my_nfft_plan.M_total;j++) { my_nfft_plan.x[2*j+0] = x[2*j+0]; my_nfft_plan.x[2*j+1] = x[2*j+1]; if (j%S) my_infft_plan.w[j] = w[j]; else my_infft_plan.w[j] = 0.0; } /** precompute psi, the entries of the matrix B */ if(my_nfft_plan.nfft_flags & PRE_LIN_PSI) nfft_precompute_lin_psi(&my_nfft_plan); if(my_nfft_plan.nfft_flags & PRE_PSI) nfft_precompute_psi(&my_nfft_plan); if(my_nfft_plan.nfft_flags & PRE_FULL_PSI) nfft_precompute_full_psi(&my_nfft_plan); /** compute 1D-ffts and init given samples and weights */ for(t=0; t<T; t++) { /* for(r=0; r<R/2; r++) fft[r] = cexp(I*KPI*r)*Rf[t*R+(r+R/2)]; for(r=0; r<R/2; r++) fft[r+R/2] = cexp(I*KPI*r)*Rf[t*R+r]; */ for(r=0; r<S; r++) fft[r] = Rf[t*S+r] + _Complex_I*0.0; nfft_fftshift_complex(fft, 1, &S); fftw_execute(my_fftw_plan); nfft_fftshift_complex(fft, 1, &S); my_infft_plan.y[t*S] = 0.0; for(r=-S/2+1; r<S/2; r++) my_infft_plan.y[t*S+(r+S/2)] = fft[r+S/2]/KERNEL(r); } /** initialise some guess f_hat_0 */ for(k=0;k<my_nfft_plan.N_total;k++) my_infft_plan.f_hat_iter[k] = 0.0 + _Complex_I*0.0; /** solve the system */ solver_before_loop_complex(&my_infft_plan); if (max_i<1) { l=1; for(k=0;k<my_nfft_plan.N_total;k++) my_infft_plan.f_hat_iter[k] = my_infft_plan.p_hat_iter[k]; } else { for(l=1;l<=max_i;l++) { solver_loop_one_step_complex(&my_infft_plan); /*if (sqrt(my_infft_plan.dot_r_iter)<=1e-12) break;*/ } } /*printf("after %d iteration(s): weighted 2-norm of original residual vector = %g\n",l-1,sqrt(my_infft_plan.dot_r_iter));*/ /** copy result */ for(k=0;k<my_nfft_plan.N_total;k++) f[k] = creal(my_infft_plan.f_hat_iter[k]); /** finalise the plans and free the variables */ fftw_destroy_plan(my_fftw_plan); nfft_free(fft); solver_finalize_complex(&my_infft_plan); nfft_finalize(&my_nfft_plan); nfft_free(x); nfft_free(w); return 0; }