Esempio n. 1
0
deconvolutional_layer parse_deconvolutional(list *options, size_params params)
{
    int n = option_find_int(options, "filters",1);
    int size = option_find_int(options, "size",1);
    int stride = option_find_int(options, "stride",1);
    char *activation_s = option_find_str(options, "activation", "logistic");
    ACTIVATION activation = get_activation(activation_s);

    int batch,h,w,c;
    h = params.h;
    w = params.w;
    c = params.c;
    batch=params.batch;
    if(!(h && w && c)) error("Layer before deconvolutional layer must output image.");

    deconvolutional_layer layer = make_deconvolutional_layer(batch,h,w,c,n,size,stride,activation);

    char *weights = option_find_str(options, "weights", 0);
    char *biases = option_find_str(options, "biases", 0);
    parse_data(weights, layer.filters, c*n*size*size);
    parse_data(biases, layer.biases, n);
    #ifdef GPU
    if(weights || biases) push_deconvolutional_layer(layer);
    #endif
    return layer;
}
Esempio n. 2
0
convolutional_layer parse_convolutional(list *options, size_params params)
{
    int n = option_find_int(options, "filters",1);
    int size = option_find_int(options, "size",1);
    int stride = option_find_int(options, "stride",1);
    int pad = option_find_int(options, "pad",0);
    char *activation_s = option_find_str(options, "activation", "logistic");
    ACTIVATION activation = get_activation(activation_s);

    int batch,h,w,c;
    h = params.h;
    w = params.w;
    c = params.c;
    batch=params.batch;
    if(!(h && w && c)) error("Layer before convolutional layer must output image.");
    int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0);
    int binary = option_find_int_quiet(options, "binary", 0);
    int xnor = option_find_int_quiet(options, "xnor", 0);

    convolutional_layer layer = make_convolutional_layer(batch,h,w,c,n,size,stride,pad,activation, batch_normalize, binary, xnor);
    layer.flipped = option_find_int_quiet(options, "flipped", 0);
    layer.dot = option_find_float_quiet(options, "dot", 0);

    char *weights = option_find_str(options, "weights", 0);
    char *biases = option_find_str(options, "biases", 0);
    parse_data(weights, layer.filters, c*n*size*size);
    parse_data(biases, layer.biases, n);
    #ifdef GPU
    if(weights || biases) push_convolutional_layer(layer);
    #endif
    return layer;
}
Esempio n. 3
0
void label_classifier(char *datacfg, char *filename, char *weightfile)
{
    int i;
    network *net = load_network(filename, weightfile, 0);
    set_batch_network(net, 1);
    srand(time(0));

    list *options = read_data_cfg(datacfg);

    char *label_list = option_find_str(options, "names", "data/labels.list");
    char *test_list = option_find_str(options, "test", "data/train.list");
    int classes = option_find_int(options, "classes", 2);

    char **labels = get_labels(label_list);
    list *plist = get_paths(test_list);

    char **paths = (char **)list_to_array(plist);
    int m = plist->size;
    free_list(plist);

    for(i = 0; i < m; ++i){
        image im = load_image_color(paths[i], 0, 0);
        image resized = resize_min(im, net->w);
        image crop = crop_image(resized, (resized.w - net->w)/2, (resized.h - net->h)/2, net->w, net->h);
        float *pred = network_predict(net, crop.data);

        if(resized.data != im.data) free_image(resized);
        free_image(im);
        free_image(crop);
        int ind = max_index(pred, classes);

        printf("%s\n", labels[ind]);
    }
}
Esempio n. 4
0
void validate_classifier_full(char *datacfg, char *filename, char *weightfile)
{
    int i, j;
    network net = parse_network_cfg(filename);
    set_batch_network(&net, 1);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    srand(time(0));

    list *options = read_data_cfg(datacfg);

    char *label_list = option_find_str(options, "labels", "data/labels.list");
    char *valid_list = option_find_str(options, "valid", "data/train.list");
    int classes = option_find_int(options, "classes", 2);
    int topk = option_find_int(options, "top", 1);

    char **labels = get_labels(label_list);
    list *plist = get_paths(valid_list);

    char **paths = (char **)list_to_array(plist);
    int m = plist->size;
    free_list(plist);

    float avg_acc = 0;
    float avg_topk = 0;
    int *indexes = calloc(topk, sizeof(int));

    int size = net.w;
    for(i = 0; i < m; ++i){
        int class = -1;
        char *path = paths[i];
        for(j = 0; j < classes; ++j){
            if(strstr(path, labels[j])){
                class = j;
                break;
            }
        }
        image im = load_image_color(paths[i], 0, 0);
        image resized = resize_min(im, size);
        resize_network(&net, resized.w, resized.h);
        //show_image(im, "orig");
        //show_image(crop, "cropped");
        //cvWaitKey(0);
        float *pred = network_predict(net, resized.data);
        if(net.hierarchy) hierarchy_predictions(pred, net.outputs, net.hierarchy, 1, 1);

        free_image(im);
        free_image(resized);
        top_k(pred, classes, topk, indexes);

        if(indexes[0] == class) avg_acc += 1;
        for(j = 0; j < topk; ++j){
            if(indexes[j] == class) avg_topk += 1;
        }

        printf("%d: top 1: %f, top %d: %f\n", i, avg_acc/(i+1), topk, avg_topk/(i+1));
    }
}
Esempio n. 5
0
void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename, int top)
{
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    set_batch_network(&net, 1);
    srand(2222222);

    list *options = read_data_cfg(datacfg);

    char *name_list = option_find_str(options, "names", 0);
    if(!name_list) name_list = option_find_str(options, "labels", "data/labels.list");
    if(top == 0) top = option_find_int(options, "top", 1);

    int i = 0;
    char **names = get_labels(name_list);
    clock_t time;
    int *indexes = calloc(top, sizeof(int));
    char buff[256];
    char *input = buff;
    while(1){
        if(filename){
            strncpy(input, filename, 256);
        }else{
            printf("Enter Image Path: ");
            fflush(stdout);
            input = fgets(input, 256, stdin);
            if(!input) return;
            strtok(input, "\n");
        }
        image im = load_image_color(input, 0, 0);
        image r = letterbox_image(im, net.w, net.h);
        //resize_network(&net, r.w, r.h);
        //printf("%d %d\n", r.w, r.h);

        float *X = r.data;
        time=clock();
        float *predictions = network_predict(net, X);
        if(net.hierarchy) hierarchy_predictions(predictions, net.outputs, net.hierarchy, 1, 1);
        top_k(predictions, net.outputs, top, indexes);
        fprintf(stderr, "%s: Predicted in %f seconds.\n", input, sec(clock()-time));
        for(i = 0; i < top; ++i){
            int index = indexes[i];
            //if(net.hierarchy) printf("%d, %s: %f, parent: %s \n",index, names[index], predictions[index], (net.hierarchy->parent[index] >= 0) ? names[net.hierarchy->parent[index]] : "Root");
            //else printf("%s: %f\n",names[index], predictions[index]);
            printf("%5.2f%%: %s\n", predictions[index]*100, names[index]);
        }
        if(r.data != im.data) free_image(r);
        free_image(im);
        if (filename) break;
    }
}
Esempio n. 6
0
void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename)
{
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    set_batch_network(&net, 1);
    srand(2222222);

    list *options = read_data_cfg(datacfg);

    char *name_list = option_find_str(options, "names", 0);
    if(!name_list) name_list = option_find_str(options, "labels", "data/labels.list");
    int top = option_find_int(options, "top", 1);

    int i = 0;
    char **names = get_labels(name_list);
    clock_t time;
    int *indexes = calloc(top, sizeof(int));
    char buff[256];
    char *input = buff;
    int size = net.w;
    while(1){
        if(filename){
            strncpy(input, filename, 256);
        }else{
            printf("Enter Image Path: ");
            fflush(stdout);
            input = fgets(input, 256, stdin);
            if(!input) return;
            strtok(input, "\n");
        }
        image im = load_image_color(input, 0, 0);
        image r = resize_min(im, size);
        resize_network(&net, r.w, r.h);
        printf("%d %d\n", r.w, r.h);

        float *X = r.data;
        time=clock();
        float *predictions = network_predict(net, X);
        top_predictions(net, top, indexes);
        printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
        for(i = 0; i < top; ++i){
            int index = indexes[i];
            printf("%s: %f\n", names[index], predictions[index]);
        }
        if(r.data != im.data) free_image(r);
        free_image(im);
        if (filename) break;
    }
}
Esempio n. 7
0
layer parse_region(list *options, size_params params)
{
    int coords = option_find_int(options, "coords", 4);
    int classes = option_find_int(options, "classes", 20);
    int num = option_find_int(options, "num", 1);

    layer l = make_region_layer(params.batch, params.w, params.h, num, classes, coords);
    assert(l.outputs == params.inputs);

    l.log = option_find_int_quiet(options, "log", 0);
    l.sqrt = option_find_int_quiet(options, "sqrt", 0);

    l.softmax = option_find_int(options, "softmax", 0);
    l.background = option_find_int_quiet(options, "background", 0);
    l.max_boxes = option_find_int_quiet(options, "max",30);
    l.jitter = option_find_float(options, "jitter", .2);
    l.rescore = option_find_int_quiet(options, "rescore",0);

    l.thresh = option_find_float(options, "thresh", .5);
    l.classfix = option_find_int_quiet(options, "classfix", 0);
    l.absolute = option_find_int_quiet(options, "absolute", 0);
    l.random = option_find_int_quiet(options, "random", 0);

    l.coord_scale = option_find_float(options, "coord_scale", 1);
    l.object_scale = option_find_float(options, "object_scale", 1);
    l.noobject_scale = option_find_float(options, "noobject_scale", 1);
    l.mask_scale = option_find_float(options, "mask_scale", 1);
    l.class_scale = option_find_float(options, "class_scale", 1);
    l.bias_match = option_find_int_quiet(options, "bias_match",0);

    char *tree_file = option_find_str(options, "tree", 0);
    if (tree_file) l.softmax_tree = read_tree(tree_file);
    char *map_file = option_find_str(options, "map", 0);
    if (map_file) l.map = read_map(map_file);

    char *a = option_find_str(options, "anchors", 0);
    if(a){
        int len = strlen(a);
        int n = 1;
        int i;
        for(i = 0; i < len; ++i){
            if (a[i] == ',') ++n;
        }
        for(i = 0; i < n; ++i){
            float bias = atof(a);
            l.biases[i] = bias;
            a = strchr(a, ',')+1;
        }
    }
    return l;
}
Esempio n. 8
0
convolutional_layer parse_convolutional(list *options, size_params params)
{
    int n = option_find_int(options, "filters",1);
    int size = option_find_int(options, "size",1);
    int stride = option_find_int(options, "stride",1);
    int pad = option_find_int_quiet(options, "pad",0);
    int padding = option_find_int_quiet(options, "padding",0);
    if(pad) padding = size/2;

    char *activation_s = option_find_str(options, "activation", "logistic");
    ACTIVATION activation = get_activation(activation_s);

    int batch,h,w,c;
    h = params.h;
    w = params.w;
    c = params.c;
    batch=params.batch;
    if(!(h && w && c)) error("Layer before convolutional layer must output image.");
    int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0);
    int binary = option_find_int_quiet(options, "binary", 0);
    int xnor = option_find_int_quiet(options, "xnor", 0);

    convolutional_layer layer = make_convolutional_layer(batch,h,w,c,n,size,stride,padding,activation, batch_normalize, binary, xnor, params.net.adam);
    layer.flipped = option_find_int_quiet(options, "flipped", 0);
    layer.dot = option_find_float_quiet(options, "dot", 0);
    if(params.net.adam){
        layer.B1 = params.net.B1;
        layer.B2 = params.net.B2;
        layer.eps = params.net.eps;
    }

    return layer;
}
Esempio n. 9
0
cost_layer parse_cost(list *options, size_params params)
{
    char *type_s = option_find_str(options, "type", "sse");
    COST_TYPE type = get_cost_type(type_s);
    cost_layer layer = make_cost_layer(params.batch, params.inputs, type);
    return layer;
}
Esempio n. 10
0
void parse_net_options(list *options, network *net)
{
    net->batch = option_find_int(options, "batch",1);
    net->learning_rate = option_find_float(options, "learning_rate", .001);
    net->momentum = option_find_float(options, "momentum", .9);
    net->decay = option_find_float(options, "decay", .0001);
    int subdivs = option_find_int(options, "subdivisions",1);
    net->time_steps = option_find_int_quiet(options, "time_steps",1);
    net->batch /= subdivs;
    net->batch *= net->time_steps;
    net->subdivisions = subdivs;

    net->h = option_find_int_quiet(options, "height",0);
    net->w = option_find_int_quiet(options, "width",0);
    net->c = option_find_int_quiet(options, "channels",0);
    net->inputs = option_find_int_quiet(options, "inputs", net->h * net->w * net->c);
    net->max_crop = option_find_int_quiet(options, "max_crop",net->w*2);
    net->min_crop = option_find_int_quiet(options, "min_crop",net->w);

    if(!net->inputs && !(net->h && net->w && net->c)) error("No input parameters supplied");

    char *policy_s = option_find_str(options, "policy", "constant");
    net->policy = get_policy(policy_s);
    if(net->policy == STEP){
        net->step = option_find_int(options, "step", 1);
        net->scale = option_find_float(options, "scale", 1);
    } else if (net->policy == STEPS){
        char *l = option_find(options, "steps");   
        char *p = option_find(options, "scales");   
        if(!l || !p) error("STEPS policy must have steps and scales in cfg file");

        int len = strlen(l);
        int n = 1;
        int i;
        for(i = 0; i < len; ++i){
            if (l[i] == ',') ++n;
        }
        int *steps = calloc(n, sizeof(int));
        float *scales = calloc(n, sizeof(float));
        for(i = 0; i < n; ++i){
            int step    = atoi(l);
            float scale = atof(p);
            l = strchr(l, ',')+1;
            p = strchr(p, ',')+1;
            steps[i] = step;
            scales[i] = scale;
        }
        net->scales = scales;
        net->steps = steps;
        net->num_steps = n;
    } else if (net->policy == EXP){
        net->gamma = option_find_float(options, "gamma", 1);
    } else if (net->policy == SIG){
        net->gamma = option_find_float(options, "gamma", 1);
        net->step = option_find_int(options, "step", 1);
    } else if (net->policy == POLY || net->policy == RANDOM){
        net->power = option_find_float(options, "power", 1);
    }
    net->max_batches = option_find_int(options, "max_batches", 0);
}
Esempio n. 11
0
metadata get_metadata(char *file)
{
    metadata m = {0};
    list *options = read_data_cfg(file);

    char *name_list = option_find_str(options, "names", 0);
    if(!name_list) name_list = option_find_str(options, "labels", 0);
    if(!name_list) {
        fprintf(stderr, "No names or labels found\n");
    } else {
        m.names = get_labels(name_list);
    }
    m.classes = option_find_int(options, "classes", 2);
    free_list(options);
    return m;
}
Esempio n. 12
0
void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, float hier_thresh)
{
	int show_flag = 1;
    list *options = read_data_cfg(datacfg);
    char *name_list = option_find_str(options, "names", "data/names.list");
    char **names = get_labels(name_list);

    image **alphabet = load_alphabet();
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    set_batch_network(&net, 1);
    srand(2222222);
    clock_t time;
    char buff[256];
    char *input = buff;
    int j;
    float nms=.4;
    while(1){
        if(filename){
            strncpy(input, filename, 256);
        } else {
            printf("Enter Image Path: ");
            fflush(stdout);
            input = fgets(input, 256, stdin);
            if(!input) return;
            strtok(input, "\n");
        }
        image im = load_image_color(input,0,0);
        image sized = resize_image(im, net.w, net.h);
        layer l = net.layers[net.n-1];

        box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
        float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
        for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(l.classes + 1, sizeof(float *));

        float *X = sized.data;
        time=clock();
        network_predict(net, X);
        printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
        get_region_boxes(l, 1, 1, thresh, probs, boxes, 0, 0, hier_thresh);
        if (l.softmax_tree && nms) do_nms_obj(boxes, probs, l.w*l.h*l.n, l.classes, nms);
        else if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, l.classes, nms);
        draw_detections(im, l.w*l.h*l.n, thresh, boxes, probs, names, alphabet, l.classes, show_flag);
        save_image(im, "predictions");
        show_image(im, "predictions");

        free_image(im);
        free_image(sized);
        free(boxes);
        free_ptrs((void **)probs, l.w*l.h*l.n);
#ifdef OPENCV
        cvWaitKey(0);
        cvDestroyAllWindows();
#endif
        if (filename) break;
    }
}
Esempio n. 13
0
connected_layer parse_connected(list *options, size_params params)
{
    int output = option_find_int(options, "output",1);
    char *activation_s = option_find_str(options, "activation", "logistic");
    ACTIVATION activation = get_activation(activation_s);

    connected_layer layer = make_connected_layer(params.batch, params.inputs, output, activation);

    char *weights = option_find_str(options, "weights", 0);
    char *biases = option_find_str(options, "biases", 0);
    parse_data(biases, layer.biases, output);
    parse_data(weights, layer.weights, params.inputs*output);
    #ifdef GPU
    if(weights || biases) push_connected_layer(layer);
    #endif
    return layer;
}
Esempio n. 14
0
cost_layer parse_cost(list *options, size_params params)
{
    char *type_s = option_find_str(options, "type", "sse");
    COST_TYPE type = get_cost_type(type_s);
    float scale = option_find_float_quiet(options, "scale",1);
    cost_layer layer = make_cost_layer(params.batch, params.inputs, type, scale);
    layer.ratio =  option_find_float_quiet(options, "ratio",0);
    return layer;
}
Esempio n. 15
0
softmax_layer parse_softmax(list *options, size_params params)
{
    int groups = option_find_int_quiet(options, "groups",1);
    softmax_layer layer = make_softmax_layer(params.batch, params.inputs, groups);
    layer.temperature = option_find_float_quiet(options, "temperature", 1);
    char *tree_file = option_find_str(options, "tree", 0);
    if (tree_file) layer.softmax_tree = read_tree(tree_file);
    return layer;
}
Esempio n. 16
0
layer parse_connected(list *options, size_params params)
{
    int output = option_find_int(options, "output",1);
    char *activation_s = option_find_str(options, "activation", "logistic");
    ACTIVATION activation = get_activation(activation_s);
    int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0);

    layer l = make_connected_layer(params.batch, params.inputs, output, activation, batch_normalize, params.net->adam);
    return l;
}
Esempio n. 17
0
layer parse_activation(list *options, size_params params)
{
    char *activation_s = option_find_str(options, "activation", "linear");
    ACTIVATION activation = get_activation(activation_s);

    layer l = make_activation_layer(params.batch, params.inputs, activation);

    l.h = l.out_h = params.h;
    l.w = l.out_w = params.w;
    l.c = l.out_c = params.c;

    return l;
}
Esempio n. 18
0
void run_detector(int argc, char **argv)
{
    char *prefix = find_char_arg(argc, argv, "-prefix", 0);
    float thresh = find_float_arg(argc, argv, "-thresh", .24);
    int cam_index = find_int_arg(argc, argv, "-c", 0);
    int frame_skip = find_int_arg(argc, argv, "-s", 0);
    if(argc < 4){
        fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
        return;
    }
    char *gpu_list = find_char_arg(argc, argv, "-gpus", 0);
    int *gpus = 0;
    int gpu = 0;
    int ngpus = 0;
    if(gpu_list){
        printf("%s\n", gpu_list);
        int len = strlen(gpu_list);
        ngpus = 1;
        int i;
        for(i = 0; i < len; ++i){
            if (gpu_list[i] == ',') ++ngpus;
        }
        gpus = calloc(ngpus, sizeof(int));
        for(i = 0; i < ngpus; ++i){
            gpus[i] = atoi(gpu_list);
            gpu_list = strchr(gpu_list, ',')+1;
        }
    } else {
        gpu = gpu_index;
        gpus = &gpu;
        ngpus = 1;
    }

    int clear = find_arg(argc, argv, "-clear");

    char *datacfg = argv[3];
    char *cfg = argv[4];
    char *weights = (argc > 5) ? argv[5] : 0;
    char *filename = (argc > 6) ? argv[6]: 0;
    if(0==strcmp(argv[2], "test")) test_detector(datacfg, cfg, weights, filename, thresh);
    else if(0==strcmp(argv[2], "train")) train_detector(datacfg, cfg, weights, gpus, ngpus, clear);
    else if(0==strcmp(argv[2], "valid")) validate_detector(datacfg, cfg, weights);
    else if(0==strcmp(argv[2], "recall")) validate_detector_recall(cfg, weights);
    else if(0==strcmp(argv[2], "demo")) {
        list *options = read_data_cfg(datacfg);
        int classes = option_find_int(options, "classes", 20);
        char *name_list = option_find_str(options, "names", "data/names.list");
        char **names = get_labels(name_list);
        demo(cfg, weights, thresh, cam_index, filename, names, classes, frame_skip, prefix);
    }
}
Esempio n. 19
0
layer parse_crnn(list *options, size_params params)
{
    int output_filters = option_find_int(options, "output_filters",1);
    int hidden_filters = option_find_int(options, "hidden_filters",1);
    char *activation_s = option_find_str(options, "activation", "logistic");
    ACTIVATION activation = get_activation(activation_s);
    int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0);

    layer l = make_crnn_layer(params.batch, params.w, params.h, params.c, hidden_filters, output_filters, params.time_steps, activation, batch_normalize);

    l.shortcut = option_find_int_quiet(options, "shortcut", 0);

    return l;
}
Esempio n. 20
0
layer parse_softmax(list *options, size_params params)
{
    int groups = option_find_int_quiet(options, "groups",1);
    layer l = make_softmax_layer(params.batch, params.inputs, groups);
    l.temperature = option_find_float_quiet(options, "temperature", 1);
    char *tree_file = option_find_str(options, "tree", 0);
    if (tree_file) l.softmax_tree = read_tree(tree_file);
    l.w = params.w;
    l.h = params.h;
    l.c = params.c;
    l.spatial = option_find_float_quiet(options, "spatial", 0);
    l.noloss =  option_find_int_quiet(options, "noloss", 0);
    return l;
}
Esempio n. 21
0
layer parse_yolo(list *options, size_params params)
{
    int classes = option_find_int(options, "classes", 20);
    int total = option_find_int(options, "num", 1);
    int num = total;

    char *a = option_find_str(options, "mask", 0);
    int *mask = parse_yolo_mask(a, &num);
    layer l = make_yolo_layer(params.batch, params.w, params.h, num, total, mask, classes);
    assert(l.outputs == params.inputs);

    l.max_boxes = option_find_int_quiet(options, "max",90);
    l.jitter = option_find_float(options, "jitter", .2);

    l.ignore_thresh = option_find_float(options, "ignore_thresh", .5);
    l.truth_thresh = option_find_float(options, "truth_thresh", 1);
    l.random = option_find_int_quiet(options, "random", 0);

    char *map_file = option_find_str(options, "map", 0);
    if (map_file) l.map = read_map(map_file);

    a = option_find_str(options, "anchors", 0);
    if(a){
        int len = strlen(a);
        int n = 1;
        int i;
        for(i = 0; i < len; ++i){
            if (a[i] == ',') ++n;
        }
        for(i = 0; i < n; ++i){
            float bias = atof(a);
            l.biases[i] = bias;
            a = strchr(a, ',')+1;
        }
    }
    return l;
}
Esempio n. 22
0
void demo_regressor(char *datacfg, char *cfgfile, char *weightfile, int cam_index, const char *filename)
{
#ifdef OPENCV
    printf("Regressor Demo\n");
    network *net = load_network(cfgfile, weightfile, 0);
    set_batch_network(net, 1);

    srand(2222222);
    list *options = read_data_cfg(datacfg);
    int classes = option_find_int(options, "classes", 1);
    char *name_list = option_find_str(options, "names", 0);
    char **names = get_labels(name_list);

    void * cap = open_video_stream(filename, cam_index, 0,0,0);
    if(!cap) error("Couldn't connect to webcam.\n");
    float fps = 0;

    while(1){
        struct timeval tval_before, tval_after, tval_result;
        gettimeofday(&tval_before, NULL);

        image in = get_image_from_stream(cap);
        image crop = center_crop_image(in, net->w, net->h);
        grayscale_image_3c(crop);

        float *predictions = network_predict(net, crop.data);

        printf("\033[2J");
        printf("\033[1;1H");
        printf("\nFPS:%.0f\n",fps);

        int i;
        for(i = 0; i < classes; ++i){
            printf("%s: %f\n", names[i], predictions[i]);
        }

        show_image(crop, "Regressor", 10);
        free_image(in);
        free_image(crop);

        gettimeofday(&tval_after, NULL);
        timersub(&tval_after, &tval_before, &tval_result);
        float curr = 1000000.f/((long int)tval_result.tv_usec);
        fps = .9*fps + .1*curr;
    }
    free_network(net);
#endif
}
Esempio n. 23
0
layer parse_shortcut(list *options, size_params params, network net)
{
    char *l = option_find(options, "from");   
    int index = atoi(l);
    if(index < 0) index = params.index + index;

    int batch = params.batch;
    layer from = net.layers[index];

    layer s = make_shortcut_layer(batch, index, params.w, params.h, params.c, from.out_w, from.out_h, from.out_c);

    char *activation_s = option_find_str(options, "activation", "linear");
    ACTIVATION activation = get_activation(activation_s);
    s.activation = activation;
    return s;
}
Esempio n. 24
0
local_layer parse_local(list *options, size_params params)
{
    int n = option_find_int(options, "filters",1);
    int size = option_find_int(options, "size",1);
    int stride = option_find_int(options, "stride",1);
    int pad = option_find_int(options, "pad",0);
    char *activation_s = option_find_str(options, "activation", "logistic");
    ACTIVATION activation = get_activation(activation_s);

    int batch,h,w,c;
    h = params.h;
    w = params.w;
    c = params.c;
    batch=params.batch;
    if(!(h && w && c)) error("Layer before local layer must output image.");

    local_layer layer = make_local_layer(batch,h,w,c,n,size,stride,pad,activation);

    return layer;
}
Esempio n. 25
0
layer parse_deconvolutional(list *options, size_params params)
{
    int n = option_find_int(options, "filters",1);
    int size = option_find_int(options, "size",1);
    int stride = option_find_int(options, "stride",1);

    char *activation_s = option_find_str(options, "activation", "logistic");
    ACTIVATION activation = get_activation(activation_s);

    int batch,h,w,c;
    h = params.h;
    w = params.w;
    c = params.c;
    batch=params.batch;
    if(!(h && w && c)) error("Layer before deconvolutional layer must output image.");
    int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0);
    int pad = option_find_int_quiet(options, "pad",0);
    int padding = option_find_int_quiet(options, "padding",0);
    if(pad) padding = size/2;

    layer l = make_deconvolutional_layer(batch,h,w,c,n,size,stride,padding, activation, batch_normalize, params.net->adam);

    return l;
}
Esempio n. 26
0
void validate_yolo(char *datacfg, char *cfgfile, char *weightfile)
{
    list *options = read_data_cfg(datacfg);
    
    //char *train_list = option_find_str(options, "train", "data/train_list.txt");
    //char *test_list = option_find_str(options, "test", "data/test_list.txt");
    char *valid_list = option_find_str(options, "valid", "data/valid_list.txt");
    
    //char *backup_directory = option_find_str(options, "backup", "/backup/");
    //char *label_list = option_find_str(options, "labels", "data/labels_list.txt");
    
    //int classes = option_find_int(options, "classes", 2);
    
    //char **labels = get_labels(label_list);
    
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    set_batch_network(&net, 1);
    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
    srand(time(0));

    char *base = "results/comp4_det_test_";
    list *plist = get_paths(valid_list);
    char **paths = (char **)list_to_array(plist);

    layer l = net.layers[net.n-1];
    int classes = l.classes;
    int square = l.sqrt;
    int side = l.side;

    int j;
    FILE **fps = calloc(classes, sizeof(FILE *));
    for(j = 0; j < classes; ++j){
        char buff[1024];
        snprintf(buff, 1024, "%s%s.txt", base, voc_names[j]);
        fps[j] = fopen(buff, "w");
    }
    box *boxes = calloc(side*side*l.n, sizeof(box));
    float **probs = calloc(side*side*l.n, sizeof(float *));
    for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));

    int m = plist->size;
    int i=0;
    int t;

    float thresh = .001;
    int nms = 1;
    float iou_thresh = .5;

    int nthreads = 2;
    image *val = calloc(nthreads, sizeof(image));
    image *val_resized = calloc(nthreads, sizeof(image));
    image *buf = calloc(nthreads, sizeof(image));
    image *buf_resized = calloc(nthreads, sizeof(image));
    pthread_t *thr = calloc(nthreads, sizeof(pthread_t));

    load_args args = {0};
    args.w = net.w;
    args.h = net.h;
    args.type = IMAGE_DATA;

    for(t = 0; t < nthreads; ++t){
        args.path = paths[i+t];
        args.im = &buf[t];
        args.resized = &buf_resized[t];
        thr[t] = load_data_in_thread(args);
    }
    time_t start = time(0);
    for(i = nthreads; i < m+nthreads; i += nthreads){
        fprintf(stderr, "%d\n", i);
        for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
            pthread_join(thr[t], 0);
            val[t] = buf[t];
            val_resized[t] = buf_resized[t];
        }
        for(t = 0; t < nthreads && i+t < m; ++t){
            args.path = paths[i+t];
            args.im = &buf[t];
            args.resized = &buf_resized[t];
            thr[t] = load_data_in_thread(args);
        }
        for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
            char *path = paths[i+t-nthreads];
            char *id = basecfg(path);
            float *X = val_resized[t].data;
            float *predictions = network_predict(net, X);
            int w = val[t].w;
            int h = val[t].h;
            convert_yolo_detections(predictions, classes, l.n, square, side, w, h, thresh, probs, boxes, 0);
            if (nms) do_nms_sort(boxes, probs, side*side*l.n, classes, iou_thresh);
            print_yolo_detections(fps, id, boxes, probs, side*side*l.n, classes, w, h);
            free(id);
            free_image(val[t]);
            free_image(val_resized[t]);
        }
    }
    fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
}
Esempio n. 27
0
void validate_detector(char *datacfg, char *cfgfile, char *weightfile, char *outfile)
{
    int j;
    list *options = read_data_cfg(datacfg);
    char *valid_images = option_find_str(options, "valid", "data/train.list");
    char *name_list = option_find_str(options, "names", "data/names.list");
    char *prefix = option_find_str(options, "results", "results");
    char **names = get_labels(name_list);
    char *mapf = option_find_str(options, "map", 0);
    int *map = 0;
    if (mapf) map = read_map(mapf);

    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    set_batch_network(&net, 1);
    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
    srand(time(0));

    list *plist = get_paths(valid_images);
    char **paths = (char **)list_to_array(plist);

    layer l = net.layers[net.n-1];
    int classes = l.classes;

    char buff[1024];
    char *type = option_find_str(options, "eval", "voc");
    FILE *fp = 0;
    FILE **fps = 0;
    int coco = 0;
    int imagenet = 0;
    if(0==strcmp(type, "coco")){
        if(!outfile) outfile = "coco_results";
        snprintf(buff, 1024, "%s/%s.json", prefix, outfile);
        fp = fopen(buff, "w");
        fprintf(fp, "[\n");
        coco = 1;
    } else if(0==strcmp(type, "imagenet")){
        if(!outfile) outfile = "imagenet-detection";
        snprintf(buff, 1024, "%s/%s.txt", prefix, outfile);
        fp = fopen(buff, "w");
        imagenet = 1;
        classes = 200;
    } else {
        if(!outfile) outfile = "comp4_det_test_";
        fps = calloc(classes, sizeof(FILE *));
        for(j = 0; j < classes; ++j){
            snprintf(buff, 1024, "%s/%s%s.txt", prefix, outfile, names[j]);
            fps[j] = fopen(buff, "w");
        }
    }


    box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
    float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
    for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));

    int m = plist->size;
    int i=0;
    int t;

    float thresh = .005;
    float nms = .45;

    int nthreads = 4;
    image *val = calloc(nthreads, sizeof(image));
    image *val_resized = calloc(nthreads, sizeof(image));
    image *buf = calloc(nthreads, sizeof(image));
    image *buf_resized = calloc(nthreads, sizeof(image));
    pthread_t *thr = calloc(nthreads, sizeof(pthread_t));

    load_args args = {0};
    args.w = net.w;
    args.h = net.h;
    args.type = IMAGE_DATA;

    for(t = 0; t < nthreads; ++t){
        args.path = paths[i+t];
        args.im = &buf[t];
        args.resized = &buf_resized[t];
        thr[t] = load_data_in_thread(args);
    }
    time_t start = time(0);
    for(i = nthreads; i < m+nthreads; i += nthreads){
        fprintf(stderr, "%d\n", i);
        for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
            pthread_join(thr[t], 0);
            val[t] = buf[t];
            val_resized[t] = buf_resized[t];
        }
        for(t = 0; t < nthreads && i+t < m; ++t){
            args.path = paths[i+t];
            args.im = &buf[t];
            args.resized = &buf_resized[t];
            thr[t] = load_data_in_thread(args);
        }
        for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
            char *path = paths[i+t-nthreads];
            char *id = basecfg(path);
            float *X = val_resized[t].data;
            network_predict(net, X);
            int w = val[t].w;
            int h = val[t].h;
            get_region_boxes(l, w, h, thresh, probs, boxes, 0, map, .5);
            if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, classes, nms);
            if (coco){
                print_cocos(fp, path, boxes, probs, l.w*l.h*l.n, classes, w, h);
            } else if (imagenet){
                print_imagenet_detections(fp, i+t-nthreads+1, boxes, probs, l.w*l.h*l.n, classes, w, h);
            } else {
                print_detector_detections(fps, id, boxes, probs, l.w*l.h*l.n, classes, w, h);
            }
            free(id);
            free_image(val[t]);
            free_image(val_resized[t]);
        }
    }
    for(j = 0; j < classes; ++j){
        if(fps) fclose(fps[j]);
    }
    if(coco){
        fseek(fp, -2, SEEK_CUR); 
        fprintf(fp, "\n]\n");
        fclose(fp);
    }
    fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
}
Esempio n. 28
0
void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear)
{
    list *options = read_data_cfg(datacfg);
    char *train_images = option_find_str(options, "train", "data/train.list");
    char *backup_directory = option_find_str(options, "backup", "/backup/");

    srand(time(0));
    char *base = basecfg(cfgfile);
    printf("%s\n", base);
    float avg_loss = -1;
    network *nets = calloc(ngpus, sizeof(network));

    srand(time(0));
    int seed = rand();
    int i;
    for(i = 0; i < ngpus; ++i){
        srand(seed);
#ifdef GPU
        cuda_set_device(gpus[i]);
#endif
        nets[i] = parse_network_cfg(cfgfile);
        if(weightfile){
            load_weights(&nets[i], weightfile);
        }
        if(clear) *nets[i].seen = 0;
        nets[i].learning_rate *= ngpus;
    }
    srand(time(0));
    network net = nets[0];

    int imgs = net.batch * net.subdivisions * ngpus;
    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
    data train, buffer;

    layer l = net.layers[net.n - 1];

    int classes = l.classes;
    float jitter = l.jitter;

    list *plist = get_paths(train_images);
    //int N = plist->size;
    char **paths = (char **)list_to_array(plist);

    load_args args = {0};
    args.w = net.w;
    args.h = net.h;
    args.paths = paths;
    args.n = imgs;
    args.m = plist->size;
    args.classes = classes;
    args.jitter = jitter;
    args.num_boxes = l.max_boxes;
    args.d = &buffer;
    args.type = DETECTION_DATA;
    args.threads = 8;

    args.angle = net.angle;
    args.exposure = net.exposure;
    args.saturation = net.saturation;
    args.hue = net.hue;

    pthread_t load_thread = load_data(args);
    clock_t time;
    int count = 0;
    //while(i*imgs < N*120){
    while(get_current_batch(net) < net.max_batches){
        if(l.random && count++%10 == 0){
            printf("Resizing\n");
            //int dim = (rand() % 10 + 10) * 32;
            //if (get_current_batch(net)+200 > net.max_batches) dim = 608;
            //int dim = (rand() % 4 + 16) * 32;
            int dim = (args.w <= args.h ? args.w : args.h);
            printf("%d\n", dim);
            args.w = dim;
            args.h = dim;

            pthread_join(load_thread, 0);
            train = buffer;
            free_data(train);
            load_thread = load_data(args);

            for(i = 0; i < ngpus; ++i){
                resize_network(nets + i, dim, dim);
            }
            net = nets[0];
        }
        time=clock();
        pthread_join(load_thread, 0);
        train = buffer;
        load_thread = load_data(args);

        /*
           int k;
           for(k = 0; k < l.max_boxes; ++k){
           box b = float_to_box(train.y.vals[10] + 1 + k*5);
           if(!b.x) break;
           printf("loaded: %f %f %f %f\n", b.x, b.y, b.w, b.h);
           }
           image im = float_to_image(448, 448, 3, train.X.vals[10]);
           int k;
           for(k = 0; k < l.max_boxes; ++k){
           box b = float_to_box(train.y.vals[10] + 1 + k*5);
           printf("%d %d %d %d\n", truth.x, truth.y, truth.w, truth.h);
           draw_bbox(im, b, 8, 1,0,0);
           }
           save_image(im, "truth11");
         */

        printf("Loaded: %lf seconds\n", sec(clock()-time));

        time=clock();
        float loss = 0;
#ifdef GPU
        if(ngpus == 1){
            loss = train_network(net, train);
        } else {
            loss = train_networks(nets, ngpus, train, 4);
        }
#else
        loss = train_network(net, train);
#endif
        if (avg_loss < 0) avg_loss = loss;
        avg_loss = avg_loss*.9 + loss*.1;

        i = get_current_batch(net);
        printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
        if(i%1000==0 || (i < 1000 && i%100 == 0)){
#ifdef GPU
            if(ngpus != 1) sync_nets(nets, ngpus, 0);
#endif
            char buff[256];
            sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
            save_weights(net, buff);
        }
        free_data(train);
    }
#ifdef GPU
    if(ngpus != 1) sync_nets(nets, ngpus, 0);
#endif
    char buff[256];
    sprintf(buff, "%s/%s_final.weights", backup_directory, base);
    save_weights(net, buff);
}
Esempio n. 29
0
void train_yolo(char *datacfg, char *cfgfile, char *weightfile)
{    
    list *options = read_data_cfg(datacfg);
    
    char *train_list = option_find_str(options, "train", "data/train_list.txt");
    //char *test_list = option_find_str(options, "test", "data/test_list.txt");
    //char *valid_list = option_find_str(options, "valid", "data/valid_list.txt");
    
    char *backup_directory = option_find_str(options, "backup", "/backup/");
    //char *label_list = option_find_str(options, "labels", "data/labels_list.txt");
    
    //int classes = option_find_int(options, "classes", 2);
    
    srand(time(0));
    data_seed = time(0);
    char *base = basecfg(cfgfile);
    printf("%s\n", base);
    float avg_loss = -1;
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
    int imgs = net.batch*net.subdivisions;
    int i = *net.seen/imgs;
    data train, buffer;


    layer l = net.layers[net.n - 1];

    int side = l.side;
    int classes = l.classes;
    float jitter = l.jitter;

    list *plist = get_paths(train_list);
    //int N = plist->size;
    char **paths = (char **)list_to_array(plist);

    load_args args = {0};
    args.w = net.w;
    args.h = net.h;
    args.paths = paths;
    args.n = imgs;
    args.m = plist->size;
    args.classes = classes;
    args.jitter = jitter;
    args.num_boxes = side;
    args.d = &buffer;
    args.type = REGION_DATA;

    pthread_t load_thread = load_data_in_thread(args);
    clock_t time;
    //while(i*imgs < N*120){
    while(get_current_batch(net) < net.max_batches){
        i += 1;
        time=clock();
        pthread_join(load_thread, 0);
        train = buffer;
        load_thread = load_data_in_thread(args);

        printf("Loaded: %lf seconds\n", sec(clock()-time));

        time=clock();
        float loss = train_network(net, train);
        if (avg_loss < 0) avg_loss = loss;
        avg_loss = avg_loss*.9 + loss*.1;

        printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
        if(i%1000==0 || (i < 1000 && i%100 == 0)){
            char buff[256];
            sprintf(buff, "%s/%s_%06d.weights", backup_directory, base, i);
            save_weights(net, buff);
        }
        free_data(train);
    }
    char buff[256];
    sprintf(buff, "%s/%s_final.weights", backup_directory, base);
    save_weights(net, buff);
}
Esempio n. 30
0
void validate_yolo_classify(char *datacfg, char *cfgfile, char *weightfile)
{
    list *options = read_data_cfg(datacfg);
    
    //char *train_list = option_find_str(options, "train", "data/train_list.txt");
    //char *test_list = option_find_str(options, "test", "data/test_list.txt");
    char *valid_list = option_find_str(options, "valid", "data/valid_list.txt");
    
    //char *backup_directory = option_find_str(options, "backup", "/backup/");
    //char *label_list = option_find_str(options, "labels", "data/labels_list.txt");
    
    //int classes = option_find_int(options, "classes", 2);
    
    //char **labels = get_labels(label_list);
    
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    set_batch_network(&net, 1);
    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
    srand(time(0));

    char *base = "results/comp4_det_test_";
    //list *plist = get_paths("data/voc.2007.test");
    list *plist = get_paths(valid_list);
    
    char **paths = (char **)list_to_array(plist);

    layer l = net.layers[net.n-1];
    int classes = l.classes;
    int square = l.sqrt;
    int side = l.side;

    int j, k;
    FILE **fps = calloc(classes, sizeof(FILE *));
    for(j = 0; j < classes; ++j){
        char buff[1024];
        snprintf(buff, 1024, "%s%s.txt", base, voc_names[j]);
        fps[j] = fopen(buff, "w");
    }
    box *boxes = calloc(side*side*l.n, sizeof(box));
    float **probs = calloc(side*side*l.n, sizeof(float *));
    for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));

    int m = plist->size;
    int i=0;

    //float thresh = .001;
    float thresh = .2;
    float iou_thresh = .5;
    //float nms = 0;
    float nms = 0.5;
    

    int total = 0;
    int correct = 0;
    int class_correct = 0;
    int proposals = 0;
    float avg_iou = 0;

    for(i = 0; i < m; ++i){
        char *path = paths[i];
        image orig = load_image_color(path, 0, 0);
        image sized = resize_image(orig, net.w, net.h);
        char *id = basecfg(path);
        float *predictions = network_predict(net, sized.data);
        convert_yolo_detections(predictions, classes, l.n, square, side, 1, 1, thresh, probs, boxes, 0);
        //if (nms) do_nms(boxes, probs, side*side*l.n, 1, nms);
        if (nms) do_nms(boxes, probs, side*side*l.n, classes, nms);

        char *labelpath = find_replace(path, "images", "labels");
        labelpath = find_replace(labelpath, "JPEGImages", "labels");
        labelpath = find_replace(labelpath, ".jpg", ".txt");
        labelpath = find_replace(labelpath, ".JPEG", ".txt");
        labelpath = find_replace(labelpath, ".bmp", ".txt");
        labelpath = find_replace(labelpath, ".dib", ".txt");
        labelpath = find_replace(labelpath, ".jpe", ".txt");
        labelpath = find_replace(labelpath, ".jp2", ".txt");
        labelpath = find_replace(labelpath, ".png", ".txt");
        labelpath = find_replace(labelpath, ".pbm", ".txt");
        labelpath = find_replace(labelpath, ".pgm", ".txt");
        labelpath = find_replace(labelpath, ".ppm", ".txt");
        labelpath = find_replace(labelpath, ".sr", ".txt");
        labelpath = find_replace(labelpath, ".ras", ".txt");
        labelpath = find_replace(labelpath, ".tiff", ".txt");
        labelpath = find_replace(labelpath, ".tif", ".txt");

        int num_labels = 0;
        box_label *truth = read_boxes(labelpath, &num_labels);
        for(k = 0; k < side*side*l.n; ++k){
            int class = max_index(probs[k], classes);
            float prob = probs[k][class];
            //fprintf(stderr, "path=%s\t\tk=%d\tprob=%f\tclass=%d\n", path, k, prob, class);
        
            if(prob > thresh){
                ++proposals;
            }
        }
        for (j = 0; j < num_labels; ++j) {
            ++total;
            box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
            float best_iou = 0;
            int pre_class = -1;
            for(k = 0; k < side*side*l.n; ++k){
                float iou = box_iou(boxes[k], t);
                int class = max_index(probs[k], classes);
                float prob = probs[k][class];
                //fprintf(stderr, "path=%s\t\tk=%d\tprob=%f\tclass=%d\n", path, k, prob, class);
                if(prob > thresh && iou > best_iou){
                    best_iou = iou;
                    pre_class = class;
                }
            }
            avg_iou += best_iou;
            
            if(best_iou > iou_thresh){
                ++correct;
            }
            
            if(pre_class == truth[j].id){
                ++class_correct;
            }
            
            //fprintf(stderr, "true_class=%d\tpre_class=%d\n", truth[j].id, pre_class);
        
        }

        fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\t\tClassify:%.2f%%\n", i, correct, total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct/total, 100.*class_correct/total);
        free(id);
        free_image(orig);
        free_image(sized);
    }