Esempio n. 1
0
oskar_VisBlock* oskar_simulator_finalise_block(oskar_Simulator* h,
        int block_index, int* status)
{
    int i, i_active;
    oskar_VisBlock *b0 = 0, *b = 0;
    if (*status) return 0;

    /* The visibilities must be copied back
     * at the end of the block simulation. */

    /* Combine all vis blocks into the first one. */
    i_active = (block_index + 1) % 2;
    b0 = h->d[0].vis_block_cpu[!i_active];
    if (!h->coords_only)
    {
        oskar_Mem *xc0 = 0, *ac0 = 0;
        xc0 = oskar_vis_block_cross_correlations(b0);
        ac0 = oskar_vis_block_auto_correlations(b0);
        for (i = 1; i < h->num_devices; ++i)
        {
            b = h->d[i].vis_block_cpu[!i_active];
            if (oskar_vis_block_has_cross_correlations(b))
                oskar_mem_add(xc0, xc0, oskar_vis_block_cross_correlations(b),
                        oskar_mem_length(xc0), status);
            if (oskar_vis_block_has_auto_correlations(b))
                oskar_mem_add(ac0, ac0, oskar_vis_block_auto_correlations(b),
                        oskar_mem_length(ac0), status);
        }
    }

    /* Calculate baseline uvw coordinates for the block. */
    if (oskar_vis_block_has_cross_correlations(b0))
    {
        const oskar_Mem *x, *y, *z;
        x = oskar_telescope_station_measured_x_offset_ecef_metres_const(h->tel);
        y = oskar_telescope_station_measured_y_offset_ecef_metres_const(h->tel);
        z = oskar_telescope_station_measured_z_offset_ecef_metres_const(h->tel);
        oskar_convert_ecef_to_baseline_uvw(
                oskar_telescope_num_stations(h->tel), x, y, z,
                oskar_telescope_phase_centre_ra_rad(h->tel),
                oskar_telescope_phase_centre_dec_rad(h->tel),
                oskar_vis_block_num_times(b0),
                oskar_vis_header_time_start_mjd_utc(h->header),
                oskar_vis_header_time_inc_sec(h->header) / 86400.0,
                oskar_vis_block_start_time_index(b0),
                oskar_vis_block_baseline_uu_metres(b0),
                oskar_vis_block_baseline_vv_metres(b0),
                oskar_vis_block_baseline_ww_metres(b0), h->temp, status);
    }

    /* Add uncorrelated system noise to the combined visibilities. */
    if (!h->coords_only)
    {
        oskar_vis_block_add_system_noise(b0, h->header, h->tel,
                block_index, h->temp, status);
    }

    /* Return a pointer to the block. */
    return b0;
}
Esempio n. 2
0
void oskar_beam_pattern_set_telescope_model(oskar_BeamPattern* h,
        const oskar_Telescope* model, int* status)
{
    if (*status) return;

    /* Check the model is not empty. */
    if (oskar_telescope_num_stations(model) == 0)
    {
        oskar_log_error(h->log, "Telescope model is empty.");
        *status = OSKAR_ERR_SETTINGS_TELESCOPE;
        return;
    }

    /* Remove any existing telescope model, and copy the new one. */
    oskar_telescope_free(h->tel, status);
    h->tel = oskar_telescope_create_copy(model, OSKAR_CPU, status);
    h->pol_mode = oskar_telescope_pol_mode(h->tel);
    h->phase_centre_deg[0] = oskar_telescope_phase_centre_ra_rad(h->tel) *
            180.0 / M_PI;
    h->phase_centre_deg[1] = oskar_telescope_phase_centre_dec_rad(h->tel) *
            180.0 / M_PI;

    /* Analyse the telescope model. */
    oskar_telescope_analyse(h->tel, status);
    if (h->log)
        oskar_telescope_log_summary(h->tel, h->log, status);
}
void oskar_telescope_log_summary(const oskar_Telescope* telescope, int* status)
{
    if (*status) return;
    oskar_log_section('M', "Telescope model summary");
    oskar_log_value('M', 0, "Longitude [deg]", "%.3f",
            oskar_telescope_lon_rad(telescope) * 180.0 / M_PI);
    oskar_log_value('M', 0, "Latitude [deg]", "%.3f",
            oskar_telescope_lat_rad(telescope) * 180.0 / M_PI);
    oskar_log_value('M', 0, "Altitude [m]", "%.0f",
            oskar_telescope_alt_metres(telescope));
    oskar_log_value('M', 0, "Num. stations", "%d",
            oskar_telescope_num_stations(telescope));
    oskar_log_value('M', 0, "Max station size", "%d",
            oskar_telescope_max_station_size(telescope));
    oskar_log_value('M', 0, "Max station depth", "%d",
            oskar_telescope_max_station_depth(telescope));
    oskar_log_value('M', 0, "Identical stations", "%s",
            oskar_telescope_identical_stations(telescope) ? "true" : "false");
}
Esempio n. 4
0
void oskar_simulator_set_telescope_model(oskar_Simulator* h,
        const oskar_Telescope* model, int* status)
{
    if (*status) return;

    /* Check the model is not empty. */
    if (oskar_telescope_num_stations(model) == 0)
    {
        oskar_log_error(h->log, "Telescope model is empty.");
        *status = OSKAR_ERR_SETTINGS_TELESCOPE;
        return;
    }

    /* Remove any existing telescope model, and copy the new one. */
    oskar_telescope_free(h->tel, status);
    h->tel = oskar_telescope_create_copy(model, OSKAR_CPU, status);

    /* Analyse the telescope model. */
    oskar_telescope_analyse(h->tel, status);
    if (h->log)
        oskar_telescope_log_summary(h->tel, h->log, status);
}
Esempio n. 5
0
static void sim_baselines(oskar_Simulator* h, DeviceData* d, oskar_Sky* sky,
        int channel_index_block, int time_index_block,
        int time_index_simulation, int* status)
{
    int num_baselines, num_stations, num_src, num_times_block, num_channels;
    double dt_dump_days, t_start, t_dump, gast, frequency, ra0, dec0;
    const oskar_Mem *x, *y, *z;
    oskar_Mem* alias = 0;

    /* Get dimensions. */
    num_baselines   = oskar_telescope_num_baselines(d->tel);
    num_stations    = oskar_telescope_num_stations(d->tel);
    num_src         = oskar_sky_num_sources(sky);
    num_times_block = oskar_vis_block_num_times(d->vis_block);
    num_channels    = oskar_vis_block_num_channels(d->vis_block);

    /* Return if there are no sources in the chunk,
     * or if block time index requested is outside the valid range. */
    if (num_src == 0 || time_index_block >= num_times_block) return;

    /* Get the time and frequency of the visibility slice being simulated. */
    dt_dump_days = h->time_inc_sec / 86400.0;
    t_start = h->time_start_mjd_utc;
    t_dump = t_start + dt_dump_days * (time_index_simulation + 0.5);
    gast = oskar_convert_mjd_to_gast_fast(t_dump);
    frequency = h->freq_start_hz + channel_index_block * h->freq_inc_hz;

    /* Scale source fluxes with spectral index and rotation measure. */
    oskar_sky_scale_flux_with_frequency(sky, frequency, status);

    /* Evaluate station u,v,w coordinates. */
    ra0 = oskar_telescope_phase_centre_ra_rad(d->tel);
    dec0 = oskar_telescope_phase_centre_dec_rad(d->tel);
    x = oskar_telescope_station_true_x_offset_ecef_metres_const(d->tel);
    y = oskar_telescope_station_true_y_offset_ecef_metres_const(d->tel);
    z = oskar_telescope_station_true_z_offset_ecef_metres_const(d->tel);
    oskar_convert_ecef_to_station_uvw(num_stations, x, y, z, ra0, dec0, gast,
            d->u, d->v, d->w, status);

    /* Set dimensions of Jones matrices. */
    if (d->R)
        oskar_jones_set_size(d->R, num_stations, num_src, status);
    if (d->Z)
        oskar_jones_set_size(d->Z, num_stations, num_src, status);
    oskar_jones_set_size(d->J, num_stations, num_src, status);
    oskar_jones_set_size(d->E, num_stations, num_src, status);
    oskar_jones_set_size(d->K, num_stations, num_src, status);

    /* Evaluate station beam (Jones E: may be matrix). */
    oskar_timer_resume(d->tmr_E);
    oskar_evaluate_jones_E(d->E, num_src, OSKAR_RELATIVE_DIRECTIONS,
            oskar_sky_l(sky), oskar_sky_m(sky), oskar_sky_n(sky), d->tel,
            gast, frequency, d->station_work, time_index_simulation, status);
    oskar_timer_pause(d->tmr_E);

#if 0
    /* Evaluate ionospheric phase (Jones Z: scalar) and join with Jones E.
     * NOTE this is currently only a CPU implementation. */
    if (d->Z)
    {
        oskar_evaluate_jones_Z(d->Z, num_src, sky, d->tel,
                &settings->ionosphere, gast, frequency, &(d->workJonesZ),
                status);
        oskar_timer_resume(d->tmr_join);
        oskar_jones_join(d->E, d->Z, d->E, status);
        oskar_timer_pause(d->tmr_join);
    }
#endif

    /* Evaluate parallactic angle (Jones R: matrix), and join with Jones Z*E.
     * TODO Move this into station beam evaluation instead. */
    if (d->R)
    {
        oskar_timer_resume(d->tmr_E);
        oskar_evaluate_jones_R(d->R, num_src, oskar_sky_ra_rad_const(sky),
                oskar_sky_dec_rad_const(sky), d->tel, gast, status);
        oskar_timer_pause(d->tmr_E);
        oskar_timer_resume(d->tmr_join);
        oskar_jones_join(d->R, d->E, d->R, status);
        oskar_timer_pause(d->tmr_join);
    }

    /* Evaluate interferometer phase (Jones K: scalar). */
    oskar_timer_resume(d->tmr_K);
    oskar_evaluate_jones_K(d->K, num_src, oskar_sky_l_const(sky),
            oskar_sky_m_const(sky), oskar_sky_n_const(sky), d->u, d->v, d->w,
            frequency, oskar_sky_I_const(sky),
            h->source_min_jy, h->source_max_jy, status);
    oskar_timer_pause(d->tmr_K);

    /* Join Jones K with Jones Z*E. */
    oskar_timer_resume(d->tmr_join);
    oskar_jones_join(d->J, d->K, d->R ? d->R : d->E, status);
    oskar_timer_pause(d->tmr_join);

    /* Create alias for auto/cross-correlations. */
    oskar_timer_resume(d->tmr_correlate);
    alias = oskar_mem_create_alias(0, 0, 0, status);

    /* Auto-correlate for this time and channel. */
    if (oskar_vis_block_has_auto_correlations(d->vis_block))
    {
        oskar_mem_set_alias(alias,
                oskar_vis_block_auto_correlations(d->vis_block),
                num_stations *
                (num_channels * time_index_block + channel_index_block),
                num_stations, status);
        oskar_auto_correlate(alias, num_src, d->J, sky, status);
    }

    /* Cross-correlate for this time and channel. */
    if (oskar_vis_block_has_cross_correlations(d->vis_block))
    {
        oskar_mem_set_alias(alias,
                oskar_vis_block_cross_correlations(d->vis_block),
                num_baselines *
                (num_channels * time_index_block + channel_index_block),
                num_baselines, status);
        oskar_cross_correlate(alias, num_src, d->J, sky, d->tel,
                d->u, d->v, d->w, gast, frequency, status);
    }

    /* Free alias for auto/cross-correlations. */
    oskar_mem_free(alias, status);
    oskar_timer_pause(d->tmr_correlate);
}
Esempio n. 6
0
static void set_up_device_data(oskar_Simulator* h, int* status)
{
    int i, dev_loc, complx, vistype, num_stations, num_src;
    if (*status) return;

    /* Get local variables. */
    num_stations = oskar_telescope_num_stations(h->tel);
    num_src      = h->max_sources_per_chunk;
    complx       = (h->prec) | OSKAR_COMPLEX;
    vistype      = complx;
    if (oskar_telescope_pol_mode(h->tel) == OSKAR_POL_MODE_FULL)
        vistype |= OSKAR_MATRIX;

    /* Expand the number of devices to the number of selected GPUs,
     * if required. */
    if (h->num_devices < h->num_gpus)
        oskar_simulator_set_num_devices(h, h->num_gpus);

    for (i = 0; i < h->num_devices; ++i)
    {
        DeviceData* d = &h->d[i];
        d->previous_chunk_index = -1;

        /* Select the device. */
        if (i < h->num_gpus)
        {
            oskar_device_set(h->gpu_ids[i], status);
            dev_loc = OSKAR_GPU;
        }
        else
        {
            dev_loc = OSKAR_CPU;
        }

        /* Timers. */
        if (!d->tmr_compute)
        {
            d->tmr_compute   = oskar_timer_create(OSKAR_TIMER_NATIVE);
            d->tmr_copy      = oskar_timer_create(OSKAR_TIMER_NATIVE);
            d->tmr_clip      = oskar_timer_create(OSKAR_TIMER_NATIVE);
            d->tmr_E         = oskar_timer_create(OSKAR_TIMER_NATIVE);
            d->tmr_K         = oskar_timer_create(OSKAR_TIMER_NATIVE);
            d->tmr_join      = oskar_timer_create(OSKAR_TIMER_NATIVE);
            d->tmr_correlate = oskar_timer_create(OSKAR_TIMER_NATIVE);
        }

        /* Visibility blocks. */
        if (!d->vis_block)
        {
            d->vis_block = oskar_vis_block_create_from_header(dev_loc,
                    h->header, status);
            d->vis_block_cpu[0] = oskar_vis_block_create_from_header(OSKAR_CPU,
                    h->header, status);
            d->vis_block_cpu[1] = oskar_vis_block_create_from_header(OSKAR_CPU,
                    h->header, status);
        }
        oskar_vis_block_clear(d->vis_block, status);
        oskar_vis_block_clear(d->vis_block_cpu[0], status);
        oskar_vis_block_clear(d->vis_block_cpu[1], status);

        /* Device scratch memory. */
        if (!d->tel)
        {
            d->u = oskar_mem_create(h->prec, dev_loc, num_stations, status);
            d->v = oskar_mem_create(h->prec, dev_loc, num_stations, status);
            d->w = oskar_mem_create(h->prec, dev_loc, num_stations, status);
            d->chunk = oskar_sky_create(h->prec, dev_loc, num_src, status);
            d->chunk_clip = oskar_sky_create(h->prec, dev_loc, num_src, status);
            d->tel = oskar_telescope_create_copy(h->tel, dev_loc, status);
            d->J = oskar_jones_create(vistype, dev_loc, num_stations, num_src,
                    status);
            d->R = oskar_type_is_matrix(vistype) ? oskar_jones_create(vistype,
                    dev_loc, num_stations, num_src, status) : 0;
            d->E = oskar_jones_create(vistype, dev_loc, num_stations, num_src,
                    status);
            d->K = oskar_jones_create(complx, dev_loc, num_stations, num_src,
                    status);
            d->Z = 0;
            d->station_work = oskar_station_work_create(h->prec, dev_loc,
                    status);
        }
    }
}
Esempio n. 7
0
static void set_up_vis_header(oskar_Simulator* h, int* status)
{
    int num_stations, vis_type;
    const double rad2deg = 180.0/M_PI;
    int write_autocorr = 0, write_crosscorr = 0;
    if (*status) return;

    /* Check type of correlations to produce. */
    if (h->correlation_type == 'C')
        write_crosscorr = 1;
    else if (h->correlation_type == 'A')
        write_autocorr = 1;
    else if (h->correlation_type == 'B')
    {
        write_autocorr = 1;
        write_crosscorr = 1;
    }

    /* Create visibility header. */
    num_stations = oskar_telescope_num_stations(h->tel);
    vis_type = h->prec | OSKAR_COMPLEX;
    if (oskar_telescope_pol_mode(h->tel) == OSKAR_POL_MODE_FULL)
        vis_type |= OSKAR_MATRIX;
    h->header = oskar_vis_header_create(vis_type, h->prec,
            h->max_times_per_block, h->num_time_steps, h->num_channels,
            h->num_channels, num_stations, write_autocorr, write_crosscorr,
            status);

    /* Add metadata from settings. */
    oskar_vis_header_set_freq_start_hz(h->header, h->freq_start_hz);
    oskar_vis_header_set_freq_inc_hz(h->header, h->freq_inc_hz);
    oskar_vis_header_set_time_start_mjd_utc(h->header, h->time_start_mjd_utc);
    oskar_vis_header_set_time_inc_sec(h->header, h->time_inc_sec);

    /* Add settings file contents if defined. */
    if (h->settings_path)
    {
        oskar_Mem* temp;
        temp = oskar_mem_read_binary_raw(h->settings_path,
                OSKAR_CHAR, OSKAR_CPU, status);
        oskar_mem_copy(oskar_vis_header_settings(h->header), temp, status);
        oskar_mem_free(temp, status);
    }

    /* Copy other metadata from telescope model. */
    oskar_vis_header_set_time_average_sec(h->header,
            oskar_telescope_time_average_sec(h->tel));
    oskar_vis_header_set_channel_bandwidth_hz(h->header,
            oskar_telescope_channel_bandwidth_hz(h->tel));
    oskar_vis_header_set_phase_centre(h->header, 0,
            oskar_telescope_phase_centre_ra_rad(h->tel) * rad2deg,
            oskar_telescope_phase_centre_dec_rad(h->tel) * rad2deg);
    oskar_vis_header_set_telescope_centre(h->header,
            oskar_telescope_lon_rad(h->tel) * rad2deg,
            oskar_telescope_lat_rad(h->tel) * rad2deg,
            oskar_telescope_alt_metres(h->tel));
    oskar_mem_copy(oskar_vis_header_station_x_offset_ecef_metres(h->header),
            oskar_telescope_station_true_x_offset_ecef_metres_const(h->tel),
            status);
    oskar_mem_copy(oskar_vis_header_station_y_offset_ecef_metres(h->header),
            oskar_telescope_station_true_y_offset_ecef_metres_const(h->tel),
            status);
    oskar_mem_copy(oskar_vis_header_station_z_offset_ecef_metres(h->header),
            oskar_telescope_station_true_z_offset_ecef_metres_const(h->tel),
            status);
}
Esempio n. 8
0
void oskar_evaluate_jones_Z(oskar_Jones* Z, const oskar_Sky* sky,
        const oskar_Telescope* telescope,
        const oskar_SettingsIonosphere* settings, double gast,
        double frequency_hz, oskar_WorkJonesZ* work, int* status)
{
    int i, num_sources, num_stations;
    /* Station position in ECEF frame */
    double station_x, station_y, station_z, wavelength;
    oskar_Mem *Z_station;
    int type;
    oskar_Sky* sky_cpu; /* Copy of the sky model on the CPU */

    /* Check if safe to proceed. */
    if (*status) return;

    /* Check data types. */
    type = oskar_sky_precision(sky);
    if (oskar_telescope_precision(telescope) != type ||
            oskar_jones_type(Z) != (type | OSKAR_COMPLEX) ||
            oskar_work_jones_z_type(work) != type)
    {
        *status = OSKAR_ERR_BAD_DATA_TYPE;
        return;
    }

    /* For now, this function requires data is on the CPU .. check this. */

    /* Resize the work array (if needed) */
    num_stations = oskar_telescope_num_stations(telescope);
    num_sources = oskar_sky_num_sources(sky);
    oskar_work_jones_z_resize(work, num_sources, status);

    /* Copy the sky model to the CPU. */
    sky_cpu = oskar_sky_create_copy(sky, OSKAR_CPU, status);

    Z_station = oskar_mem_create_alias(0, 0, 0, status);
    wavelength = 299792458.0 / frequency_hz;

    /* Evaluate the ionospheric phase screen for each station at each
     * source pierce point. */
    for (i = 0; i < num_stations; ++i)
    {
        double last, lon, lat;
        const oskar_Station* station;
        station = oskar_telescope_station_const(telescope, i);
        lon = oskar_station_lon_rad(station);
        lat = oskar_station_lat_rad(station);
        last = gast + lon;

        /* Evaluate horizontal x,y,z source positions (for which to evaluate
         * pierce points) */
        oskar_convert_relative_directions_to_enu_directions(
                work->hor_x, work->hor_y, work->hor_z, num_sources,
                oskar_sky_l_const(sky_cpu), oskar_sky_m_const(sky_cpu),
                oskar_sky_n_const(sky_cpu), last - oskar_sky_reference_ra_rad(sky_cpu),
                oskar_sky_reference_dec_rad(sky_cpu), lat, status);

        /* Obtain station coordinates in the ECEF frame. */
        evaluate_station_ECEF_coords(&station_x, &station_y, &station_z, i,
                telescope);

        /* Obtain the pierce points. */
        /* FIXME(BM) this is current hard-coded to TID height screen 0
         * this fix is only needed to support multiple screen heights. */
        oskar_evaluate_pierce_points(work->pp_lon, work->pp_lat,
                work->pp_rel_path, station_x, station_y,
                station_z, settings->TID[0].height_km * 1000., num_sources,
                work->hor_x, work->hor_y, work->hor_z, status);

        /* Evaluate TEC values for the pierce points */
        oskar_evaluate_TEC(work, num_sources, settings, gast, status);

        /* Get a pointer to the Jones matrices for the station */
        oskar_jones_get_station_pointer(Z_station, Z, i, status);

        /* Populate the Jones matrix with ionospheric phase */
        evaluate_jones_Z_station(Z_station, wavelength,
                work->total_TEC, work->hor_z, settings->min_elevation,
                num_sources, status);
    }

    oskar_sky_free(sky_cpu, status);
    oskar_mem_free(Z_station, status);
}
int main(int argc, char** argv)
{
    int status = 0;
    oskar::OptionParser opt("oskar_evaulate_pierce_points",
            oskar_version_string());
    opt.add_required("settings file");
    if (!opt.check_options(argc, argv)) return EXIT_FAILURE;

    const char* settings_file = opt.get_arg();

    // Create the log.
    oskar_Log* log = oskar_log_create(OSKAR_LOG_MESSAGE, OSKAR_LOG_STATUS);
    oskar_log_message(log, 'M', 0, "Running binary %s", argv[0]);

    // Enum values used in writing time-freq data binary files
    enum OSKAR_TIME_FREQ_TAGS
    {
        TIME_IDX       = 0,
        FREQ_IDX       = 1,
        TIME_MJD_UTC   = 2,
        FREQ_HZ        = 3,
        NUM_FIELDS     = 4,
        NUM_FIELD_TAGS = 5,
        HEADER_OFFSET  = 10,
        DATA           = 0,
        DIMS           = 1,
        LABEL          = 2,
        UNITS          = 3,
        GRP            = OSKAR_TAG_GROUP_TIME_FREQ_DATA
    };

    oskar_Settings_old settings;
    oskar_settings_old_load(&settings, log, settings_file, &status);
    oskar_log_set_keep_file(log, settings.sim.keep_log_file);
    if (status) return status;

    oskar_Telescope* tel = oskar_settings_to_telescope(&settings, log, &status);
    oskar_Sky* sky = oskar_settings_to_sky(&settings, log, &status);

    // FIXME remove this restriction ... (see evaluate Z)
    if (settings.ionosphere.num_TID_screens != 1)
        return OSKAR_ERR_SETUP_FAIL;

    int type = settings.sim.double_precision ? OSKAR_DOUBLE : OSKAR_SINGLE;
    int loc = OSKAR_CPU;

    int num_sources = oskar_sky_num_sources(sky);
    oskar_Mem *hor_x, *hor_y, *hor_z;
    hor_x = oskar_mem_create(type, loc, num_sources, &status);
    hor_y = oskar_mem_create(type, loc, num_sources, &status);
    hor_z = oskar_mem_create(type, loc, num_sources, &status);

    oskar_Mem *pp_lon, *pp_lat, *pp_rel_path;
    int num_stations = oskar_telescope_num_stations(tel);

    int num_pp = num_stations * num_sources;
    pp_lon = oskar_mem_create(type, loc, num_pp, &status);
    pp_lat = oskar_mem_create(type, loc, num_pp, &status);
    pp_rel_path = oskar_mem_create(type, loc, num_pp, &status);

    // Pierce points for one station (non-owned oskar_Mem pointers)
    oskar_Mem *pp_st_lon, *pp_st_lat, *pp_st_rel_path;
    pp_st_lon = oskar_mem_create_alias(0, 0, 0, &status);
    pp_st_lat = oskar_mem_create_alias(0, 0, 0, &status);
    pp_st_rel_path = oskar_mem_create_alias(0, 0, 0, &status);

    int num_times = settings.obs.num_time_steps;
    double obs_start_mjd_utc = settings.obs.start_mjd_utc;
    double dt_dump = settings.obs.dt_dump_days;

    // Binary file meta-data
    std::string label1 = "pp_lon";
    std::string label2 = "pp_lat";
    std::string label3 = "pp_path";
    std::string units  = "radians";
    std::string units2 = "";
    oskar_Mem *dims = oskar_mem_create(OSKAR_INT, loc, 2, &status);
    /* FIXME is this the correct dimension order ?
     * FIXME get the MATLAB reader to respect dimension ordering */
    oskar_mem_int(dims, &status)[0] = num_sources;
    oskar_mem_int(dims, &status)[1] = num_stations;

    const char* filename = settings.ionosphere.pierce_points.filename;
    oskar_Binary* h = oskar_binary_create(filename, 'w', &status);

    double screen_height_m = settings.ionosphere.TID->height_km * 1000.0;

//    printf("Number of times    = %i\n", num_times);
//    printf("Number of stations = %i\n", num_stations);

    void *x_, *y_, *z_;
    x_ = oskar_mem_void(oskar_telescope_station_true_x_offset_ecef_metres(tel));
    y_ = oskar_mem_void(oskar_telescope_station_true_y_offset_ecef_metres(tel));
    z_ = oskar_mem_void(oskar_telescope_station_true_z_offset_ecef_metres(tel));

    for (int t = 0; t < num_times; ++t)
    {
        double t_dump = obs_start_mjd_utc + t * dt_dump; // MJD UTC
        double gast = oskar_convert_mjd_to_gast_fast(t_dump + dt_dump / 2.0);

        for (int i = 0; i < num_stations; ++i)
        {
            const oskar_Station* station =
                    oskar_telescope_station_const(tel, i);
            double lon = oskar_station_lon_rad(station);
            double lat = oskar_station_lat_rad(station);
            double alt = oskar_station_alt_metres(station);
            double x_ecef, y_ecef, z_ecef, x_offset, y_offset, z_offset;

            if (type == OSKAR_DOUBLE)
            {
                x_offset = ((double*)x_)[i];
                y_offset = ((double*)y_)[i];
                z_offset = ((double*)z_)[i];
            }
            else
            {
                x_offset = (double)((float*)x_)[i];
                y_offset = (double)((float*)y_)[i];
                z_offset = (double)((float*)z_)[i];
            }

            oskar_convert_offset_ecef_to_ecef(1, &x_offset, &y_offset,
                    &z_offset, lon, lat, alt, &x_ecef, &y_ecef, &z_ecef);
            double last = gast + lon;

            if (type == OSKAR_DOUBLE)
            {
                oskar_convert_apparent_ra_dec_to_enu_directions_d(num_sources,
                        oskar_mem_double_const(oskar_sky_ra_rad_const(sky), &status),
                        oskar_mem_double_const(oskar_sky_dec_rad_const(sky), &status),
                        last, lat, oskar_mem_double(hor_x, &status),
                        oskar_mem_double(hor_y, &status),
                        oskar_mem_double(hor_z, &status));
            }
            else
            {
                oskar_convert_apparent_ra_dec_to_enu_directions_f(num_sources,
                        oskar_mem_float_const(oskar_sky_ra_rad_const(sky), &status),
                        oskar_mem_float_const(oskar_sky_dec_rad_const(sky), &status),
                        last, lat, oskar_mem_float(hor_x, &status),
                        oskar_mem_float(hor_y, &status),
                        oskar_mem_float(hor_z, &status));
            }

            int offset = i * num_sources;
            oskar_mem_set_alias(pp_st_lon, pp_lon, offset, num_sources,
                    &status);
            oskar_mem_set_alias(pp_st_lat, pp_lat, offset, num_sources,
                    &status);
            oskar_mem_set_alias(pp_st_rel_path, pp_rel_path, offset,
                    num_sources, &status);
            oskar_evaluate_pierce_points(pp_st_lon, pp_st_lat, pp_st_rel_path,
                    x_ecef, y_ecef, z_ecef, screen_height_m,
                    num_sources, hor_x, hor_y, hor_z, &status);
        } // Loop over stations.

        if (status != 0)
            continue;

        int index = t; // could be = (num_times * f) + t if we have frequency data
        int num_fields = 3;
        int num_field_tags = 4;
        double freq_hz = 0.0;
        int freq_idx = 0;

        // Write the header TAGS
        oskar_binary_write_int(h, GRP, TIME_IDX, index, t, &status);
        oskar_binary_write_double(h, GRP, FREQ_IDX, index, freq_idx, &status);
        oskar_binary_write_double(h, GRP, TIME_MJD_UTC, index, t_dump, &status);
        oskar_binary_write_double(h, GRP, FREQ_HZ, index, freq_hz, &status);
        oskar_binary_write_int(h, GRP, NUM_FIELDS, index, num_fields, &status);
        oskar_binary_write_int(h, GRP, NUM_FIELD_TAGS, index, num_field_tags,
                &status);

        // Write data TAGS (fields)
        int field, tagID;
        field = 0;
        tagID = HEADER_OFFSET + (num_field_tags * field);
        oskar_binary_write_mem(h, pp_lon, GRP, tagID + DATA,
                index, 0, &status);
        oskar_binary_write_mem(h, dims, GRP, tagID  + DIMS,
                index, 0, &status);
        oskar_binary_write(h, OSKAR_CHAR, GRP, tagID + LABEL,
                index, label1.size()+1, label1.c_str(), &status);
        oskar_binary_write(h, OSKAR_CHAR, GRP, tagID + UNITS,
                index, units.size()+1, units.c_str(), &status);
        field = 1;
        tagID = HEADER_OFFSET + (num_field_tags * field);
        oskar_binary_write_mem(h, pp_lat, GRP, tagID + DATA,
                index, 0, &status);
        oskar_binary_write_mem(h, dims, GRP, tagID  + DIMS,
                index, 0, &status);
        oskar_binary_write(h, OSKAR_CHAR, GRP, tagID + LABEL,
                index, label2.size()+1, label2.c_str(), &status);
        oskar_binary_write(h, OSKAR_CHAR, GRP, tagID + UNITS,
                index, units.size()+1, units.c_str(), &status);
        field = 2;
        tagID = HEADER_OFFSET + (num_field_tags * field);
        oskar_binary_write_mem(h, pp_rel_path, GRP, tagID + DATA,
                index, 0, &status);
        oskar_binary_write_mem(h, dims, GRP, tagID  + DIMS,
                index, 0, &status);
        oskar_binary_write(h, OSKAR_CHAR, GRP, tagID + LABEL,
                index, label3.size()+1, label3.c_str(), &status);
        oskar_binary_write(h, OSKAR_CHAR, GRP, tagID + UNITS,
                index, units2.size()+1, units2.c_str(), &status);
    } // Loop over times

    // Close the OSKAR binary file.
    oskar_binary_free(h);

    // clean up memory
    oskar_mem_free(hor_x, &status);
    oskar_mem_free(hor_y, &status);
    oskar_mem_free(hor_z, &status);
    oskar_mem_free(pp_lon, &status);
    oskar_mem_free(pp_lat, &status);
    oskar_mem_free(pp_rel_path, &status);
    oskar_mem_free(pp_st_lon, &status);
    oskar_mem_free(pp_st_lat, &status);
    oskar_mem_free(pp_st_rel_path, &status);
    oskar_mem_free(dims, &status);
    oskar_telescope_free(tel, &status);
    oskar_sky_free(sky, &status);

    // Check for errors.
    if (status)
        oskar_log_error(log, "Run failed: %s.", oskar_get_error_string(status));
    oskar_log_free(log);

    return status;
}
Esempio n. 10
0
/* Wrapper. */
void oskar_evaluate_jones_R(oskar_Jones* R, int num_sources,
        const oskar_Mem* ra_rad, const oskar_Mem* dec_rad,
        const oskar_Telescope* telescope, double gast, int* status)
{
    int i, n, num_stations, jones_type, base_type, location;
    double latitude, lst;
    oskar_Mem *R_station;

    /* Check if safe to proceed. */
    if (*status) return;

    /* Get the Jones matrix block meta-data. */
    jones_type = oskar_jones_type(R);
    base_type = oskar_type_precision(jones_type);
    location = oskar_jones_mem_location(R);
    num_stations = oskar_jones_num_stations(R);
    n = (oskar_telescope_allow_station_beam_duplication(telescope) ? 1 : num_stations);

    /* Check that the data dimensions are OK. */
    if (num_sources > (int)oskar_mem_length(ra_rad) ||
            num_sources > (int)oskar_mem_length(dec_rad) ||
            num_sources > oskar_jones_num_sources(R) ||
            num_stations != oskar_telescope_num_stations(telescope))
    {
        *status = OSKAR_ERR_DIMENSION_MISMATCH;
        return;
    }

    /* Check that the data is in the right location. */
    if (location != oskar_mem_location(ra_rad) ||
            location != oskar_mem_location(dec_rad))
    {
        *status = OSKAR_ERR_LOCATION_MISMATCH;
        return;
    }

    /* Check that the data is of the right type. */
    if (!oskar_type_is_matrix(jones_type))
    {
        *status = OSKAR_ERR_BAD_DATA_TYPE;
        return;
    }
    if (base_type != oskar_mem_precision(ra_rad) ||
            base_type != oskar_mem_precision(dec_rad))
    {
        *status = OSKAR_ERR_TYPE_MISMATCH;
        return;
    }

    /* Evaluate Jones matrix for each source for appropriate stations. */
    R_station = oskar_mem_create_alias(0, 0, 0, status);
    if (location == OSKAR_GPU)
    {
#ifdef OSKAR_HAVE_CUDA
        for (i = 0; i < n; ++i)
        {
            const oskar_Station* station;

            /* Get station data. */
            station = oskar_telescope_station_const(telescope, i);
            latitude = oskar_station_lat_rad(station);
            lst = gast + oskar_station_lon_rad(station);
            oskar_jones_get_station_pointer(R_station, R, i, status);

            /* Evaluate source parallactic angles. */
            if (base_type == OSKAR_SINGLE)
            {
                oskar_evaluate_jones_R_cuda_f(
                        oskar_mem_float4c(R_station, status), num_sources,
                        oskar_mem_float_const(ra_rad, status),
                        oskar_mem_float_const(dec_rad, status),
                        (float)latitude, (float)lst);
            }
            else if (base_type == OSKAR_DOUBLE)
            {
                oskar_evaluate_jones_R_cuda_d(
                        oskar_mem_double4c(R_station, status), num_sources,
                        oskar_mem_double_const(ra_rad, status),
                        oskar_mem_double_const(dec_rad, status),
                        latitude, lst);
            }
        }
        oskar_device_check_error(status);
#else
        *status = OSKAR_ERR_CUDA_NOT_AVAILABLE;
#endif
    }
    else if (location == OSKAR_CPU)
    {
        for (i = 0; i < n; ++i)
        {
            const oskar_Station* station;

            /* Get station data. */
            station = oskar_telescope_station_const(telescope, i);
            latitude = oskar_station_lat_rad(station);
            lst = gast + oskar_station_lon_rad(station);
            oskar_jones_get_station_pointer(R_station, R, i, status);

            /* Evaluate source parallactic angles. */
            if (base_type == OSKAR_SINGLE)
            {
                oskar_evaluate_jones_R_f(
                        oskar_mem_float4c(R_station, status), num_sources,
                        oskar_mem_float_const(ra_rad, status),
                        oskar_mem_float_const(dec_rad, status),
                        (float)latitude, (float)lst);
            }
            else if (base_type == OSKAR_DOUBLE)
            {
                oskar_evaluate_jones_R_d(
                        oskar_mem_double4c(R_station, status), num_sources,
                        oskar_mem_double_const(ra_rad, status),
                        oskar_mem_double_const(dec_rad, status),
                        latitude, lst);
            }
        }
    }

    /* Copy data for station 0 to stations 1 to n, if using a common sky. */
    if (oskar_telescope_allow_station_beam_duplication(telescope))
    {
        oskar_Mem* R0;
        R0 = oskar_mem_create_alias(0, 0, 0, status);
        oskar_jones_get_station_pointer(R0, R, 0, status);
        for (i = 1; i < num_stations; ++i)
        {
            oskar_jones_get_station_pointer(R_station, R, i, status);
            oskar_mem_copy_contents(R_station, R0, 0, 0,
                    oskar_mem_length(R0), status);
        }
        oskar_mem_free(R0, status);
    }
    oskar_mem_free(R_station, status);
}