/* Extend an initial (under-)approximation of the affine hull of basic * set represented by the tableau "tab" * by looking for points that do not satisfy one of the equalities * in the current approximation and adding them to that approximation * until no such points can be found any more. * * The caller of this function ensures that "tab" is bounded or * that tab->basis and tab->n_unbounded have been set appropriately. */ static struct isl_basic_set *extend_affine_hull(struct isl_tab *tab, struct isl_basic_set *hull) { int i, j; unsigned dim; if (!tab || !hull) goto error; dim = tab->n_var; if (isl_tab_extend_cons(tab, 2 * dim + 1) < 0) goto error; for (i = 0; i < dim; ++i) { struct isl_vec *sample; struct isl_basic_set *point; for (j = 0; j < hull->n_eq; ++j) { sample = outside_point(tab, hull->eq[j], 1); if (!sample) goto error; if (sample->size > 0) break; isl_vec_free(sample); sample = outside_point(tab, hull->eq[j], 0); if (!sample) goto error; if (sample->size > 0) break; isl_vec_free(sample); if (isl_tab_add_eq(tab, hull->eq[j]) < 0) goto error; } if (j == hull->n_eq) break; if (tab->samples) tab = isl_tab_add_sample(tab, isl_vec_copy(sample)); if (!tab) goto error; point = isl_basic_set_from_vec(sample); hull = affine_hull(hull, point); if (!hull) return NULL; } return hull; error: isl_basic_set_free(hull); return NULL; }
int main(int argc, char **argv) { int numPanels= 1000, recursions = 4, p = 5, k = 3, max_iterations = 500; FMMOptions opts = get_options(argc,argv); opts.sparse_local = true; SolverOptions solver_options; bool second_kind = false; char *mesh_name; bool mesh = false; // solve / PC settings SOLVERS solver = SOLVE_GMRES; PRECONDITIONERS pc = IDENTITY; // use lazy evaluator by default // opts.lazy_evaluation = true; // parse command line args // check if no arguments given printf("\nLaplaceBEM on a sphere\n"); if (argc == 1) printHelpAndExit(); printf("parameters : \n"); printf("============ \n"); for (int i = 1; i < argc; ++i) { if (strcmp(argv[i],"-theta") == 0) { i++; printf("theta = %s\n", argv[i]); } else if (strcmp(argv[i],"-recursions") == 0) { i++; recursions = atoi(argv[i]); // print out problem size based on the # of recursions printf("N = %i\n", 2* (int) pow(4, recursions)); } else if (strcmp(argv[i],"-eval") == 0) { i++; } else if (strcmp(argv[i], "-ncrit") == 0) { i++; printf("ncrit = %s\n", argv[i]); } else if (strcmp(argv[i], "-printtree") == 0) { } else if (strcmp(argv[i],"-p") == 0) { i++; p = atoi(argv[i]); solver_options.max_p = p; printf("max-p = %i\n", p); } else if (strcmp(argv[i],"-k") == 0) { i++; k = atoi(argv[i]); } else if (strcmp(argv[i],"-second_kind") == 0) { second_kind = true; printf("second-kind = True\n"); } else if (strcmp(argv[i],"-fixed_p") == 0) { solver_options.variable_p = false; printf("relaxed = False\n"); } else if (strcmp(argv[i],"-solver_tol") == 0) { i++; solver_options.residual = (double)atof(argv[i]); printf("solver_tol = %.2e\n", solver_options.residual); } else if (strcmp(argv[i],"-max_iters") == 0) { i++; max_iterations = atoi(argv[i]); } else if (strcmp(argv[i],"-gmres") == 0) { solver = SOLVE_GMRES; } else if (strcmp(argv[i],"-fgmres") == 0) { solver = SOLVE_FGMRES; } else if (strcmp(argv[i],"-local") == 0) { solver = SOLVE_FGMRES; pc = LOCAL; } else if (strcmp(argv[i],"-diagonal") == 0) { pc = DIAGONAL; } else if (strcmp(argv[i],"-help") == 0) { printHelpAndExit(); } else if (strcmp(argv[i],"-mesh") == 0) { i++; mesh_name = argv[i]; mesh = true; } else { printf("[W]: Unknown command line arg: \"%s\"\n",argv[i]); printHelpAndExit(); } } printf("============\n"); solver_options.max_iters = max_iterations; solver_options.restart = max_iterations; // opts.sparse_local = true; double tic, toc; // Init the FMM Kernel typedef LaplaceSphericalBEM kernel_type; kernel_type K(p,k); // useful typedefs typedef kernel_type::point_type point_type; typedef kernel_type::source_type source_type; typedef kernel_type::target_type target_type; typedef kernel_type::charge_type charge_type; typedef kernel_type::result_type result_type; // Init points and charges std::vector<source_type> panels(numPanels); std::vector<charge_type> charges(numPanels); if (mesh) { printf("reading mesh from: %s\n",mesh_name); MeshIO::readMsh<point_type,source_type>(mesh_name, panels); // , panels); } else { Triangulation::UnitSphere(panels, recursions); // initialiseSphere(panels, charges, recursions); //, ProblemOptions()); } // run case solving for Phi (instead of dPhi/dn) if (second_kind) for (auto& it : panels) it.switch_BC(); // set constant Phi || dPhi/dn for each panel charges.resize(panels.size()); // set up a more complicated charge, from BEM++ for (unsigned i=0; i<panels.size(); i++) { #if BEMCPP_TEST auto center = panels[i].center; double x = center[0], y = center[1], z = center[2]; double r = norm(center); charges[i] = 2*x*z/(r*r*r*r*r) - y/(r*r*r); #else charges[i] = 1.; #endif } // charges = std::vector<charge_type>(panels.size(),1.); // Build the FMM structure FMM_plan<kernel_type> plan = FMM_plan<kernel_type>(K, panels, opts); // generate the RHS and initial condition std::vector<charge_type> x(panels.size(),0.); tic = get_time(); std::vector<result_type> b(panels.size(),0.); double tic2, toc2; // generate RHS using temporary FMM plan { tic2 = get_time(); for (auto& it : panels) it.switch_BC(); toc2 = get_time(); printf("Flipping BC: %g\n",toc2-tic2); tic2 = get_time(); FMM_plan<kernel_type> rhs_plan = FMM_plan<kernel_type>(K,panels,opts); toc2 = get_time(); printf("Creating plan: %g\n",toc2-tic2); tic2 = get_time(); b = rhs_plan.execute(charges); toc2 = get_time(); printf("Executing plan: %g\n",toc2-tic2); for (auto& it : panels) it.switch_BC(); } toc = get_time(); double setup_time = toc-tic; // Solve the system using GMRES // generate the Preconditioner tic = get_time(); Preconditioners::Diagonal<charge_type> M(K, plan.source_begin(), plan.source_end() ); // M.print(); SolverOptions inner_options(1e-2,1,2); inner_options.variable_p = true; /* // Preconditioners::FMGMRES<FMM_plan<kernel_type>,Preconditioners::Diagonal<charge_type>> inner(plan, b, inner_options, M); // Local preconditioner Preconditioners::LocalInnerSolver<FMM_plan<kernel_type>, Preconditioners::Diagonal<result_type>> local(K, panels, b); // block diagonal preconditioner Preconditioners::BlockDiagonal<FMM_plan<kernel_type>> block_diag(K,panels); */ // Initial low accuracy solve // /* double tic2, toc2; tic2 = get_time(); { printf("Initial solve starting..\n"); // initial solve to 1e-2 accuracy, 5 iterations, P = 2 SolverOptions initial_solve(5e-3,50,3); // fmm_gmres(plan, x, b, solver_options, M); GMRES(plan, x, b, initial_solve, M); printf("Initial solve finished..\n"); } toc2 = get_time(); printf("Initial solve took: %.4es\n",toc2-tic2); */ // Outer GMRES solve with diagonal preconditioner & relaxation FGMRESContext<result_type> context(x.size(), solver_options.restart); if (second_kind) printf("2nd-kind equation being solved\n"); else printf("1st-kind equation being solved\n"); #if 1 if (solver == SOLVE_GMRES && pc == IDENTITY){ printf("Solver: GMRES\nPreconditioner: Identity\n"); // straight GMRES, no preconditioner // DirectMV<kernel_type> MV(K, panels, panels); GMRES(plan,x,b,solver_options); } else if (solver == SOLVE_GMRES && pc == DIAGONAL) { printf("Solver: GMRES\nPreconditioner: Diagonal\n"); // GMRES, diagonal preconditioner GMRES(plan, x, b, solver_options, M, context); } #else else if (solver == SOLVE_GMRES && pc == DIAGONAL) { printf("Solver: GMRES\nPreconditioner: Diagonal\n"); // GMRES, diagonal preconditioner GMRES(plan,x,b,solver_options, M, context); } else if (solver == SOLVE_FGMRES && pc == IDENTITY) { printf("Solver: FMRES\nPreconditioner: Identity\n"); // GMRES, diagonal preconditioner FGMRES(plan,x,b,solver_options); } else if (solver == SOLVE_FGMRES && pc == DIAGONAL) { printf("Solver: FGMRES\nPreconditioner: Block Diagonal\n"); // GMRES, diagonal preconditioner FGMRES(plan,x,b,solver_options, block_diag, context); } else if (solver == SOLVE_FGMRES && pc == LOCAL) { printf("Solver: FGMRES\nPreconditioner: Local solve\n"); // FGMRES, Local inner solver FGMRES(plan,x,b,solver_options, local, context); } else { printf("[E] no valid solver / preconditioner option chosen\n"); exit(0); } #endif // GMRES(MV,x,b,solver_options, M, context); // FGMRES(plan,x,b,solver_options, inner, context); // , context); // Outer/Inner FGMRES / GMRES (Diagonal) toc = get_time(); double solve_time = toc-tic; printf("\nTIMING:\n"); printf("\tsetup : %.4es\n",setup_time); printf("\tsolve : %.4es\n",solve_time); // check errors -- analytical solution for dPhi/dn = 1. double e = 0.; double e2 = 0.; #if BEMCPP_TEST std::vector<result_type> analytical(panels.size()); for (unsigned i=0; i<panels.size(); i++) { auto center = panels[i].center; double x = center[0], y = center[1], z = center[2]; double r = norm(center); analytical[i] = -(-6 * x * z / (r*r*r*r*r*r) + 2 * y / (r*r*r*r)); } auto ai = analytical.begin(); for (auto xi : x) { // printf("approx: %.4g, analytical: %.4g\n",xi,*ai); e += (xi-*ai)*(xi-*ai); e2 += (*ai)*(*ai); ++ai; } #else double an = 1.; for (auto xi : x) { e += (xi-an)*(xi-an); e2 += an*an; } #endif #define EXTERNAL_ERROR #ifdef EXTERNAL_ERROR std::vector<target_type> outside_point(1); outside_point[0] = target_type(point_type(3.,3.,3.),point_type(3.,3.,3.),point_type(3.,3.,3.)); outside_point[0].center = point_type(3.,3.,3.); std::vector<result_type> outside_result_1(1); std::vector<result_type> outside_result_2(1); outside_result_1[0] = 0.; outside_result_2[0] = 0.; // first layer Direct::matvec(K, panels.begin(), panels.end(), x.begin(), outside_point.begin(), outside_point.end(), outside_result_2.begin()); // for (auto& pi : panels) pi.switch_BC(); for (auto& op : outside_point) op.switch_BC(); Direct::matvec(K, panels.begin(), panels.end(), charges.begin(), outside_point.begin(), outside_point.end(), outside_result_1.begin()); double exact = 1. / norm(static_cast<point_type>(outside_point[0])) * 1; double outside_result = (outside_result_2[0]-outside_result_1[0])/4/M_PI; double outside_error = fabs(outside_result-exact)/fabs(exact); printf("external phi: %.5g, exact: %.5g, error: %.4e\n",outside_result,exact, outside_error); #endif printf("relative error: %.3e\n",sqrt(e/e2)); }
void NavigationPolygon::make_polygons_from_outlines() { List<TriangulatorPoly> in_poly,out_poly; Vector2 outside_point(-1e10,-1e10); for(int i=0; i<outlines.size(); i++) { DVector<Vector2> ol = outlines[i]; int olsize = ol.size(); if (olsize<3) continue; DVector<Vector2>::Read r=ol.read(); for(int j=0; j<olsize; j++) { outside_point.x = MAX( r[j].x, outside_point.x ); outside_point.y = MAX( r[j].y, outside_point.y ); } } outside_point+=Vector2(0.7239784,0.819238); //avoid precision issues for(int i=0; i<outlines.size(); i++) { DVector<Vector2> ol = outlines[i]; int olsize = ol.size(); if (olsize<3) continue; DVector<Vector2>::Read r=ol.read(); int interscount=0; //test if this is an outer outline for(int k=0; k<outlines.size(); k++) { if (i==k) continue; //no self intersect DVector<Vector2> ol2 = outlines[k]; int olsize2 = ol2.size(); if (olsize2<3) continue; DVector<Vector2>::Read r2=ol2.read(); for(int l=0; l<olsize2; l++) { if (Geometry::segment_intersects_segment_2d(r[0],outside_point,r2[l],r2[(l+1)%olsize2],NULL)) { interscount++; } } } bool outer = (interscount%2)==0; TriangulatorPoly tp; tp.Init(olsize); for(int j=0; j<olsize; j++) { tp[j]=r[j]; } if (outer) tp.SetOrientation(TRIANGULATOR_CCW); else { tp.SetOrientation(TRIANGULATOR_CW); tp.SetHole(true); } in_poly.push_back(tp); } TriangulatorPartition tpart; if (tpart.ConvexPartition_HM(&in_poly,&out_poly)==0) { //failed! print_line("convex partition failed!"); return; } polygons.clear(); vertices.resize(0); Map<Vector2,int> points; for(List<TriangulatorPoly>::Element*I = out_poly.front(); I; I=I->next()) { TriangulatorPoly& tp = I->get(); struct Polygon p; for(int i=0; i<tp.GetNumPoints(); i++) { Map<Vector2,int>::Element *E=points.find(tp[i]); if (!E) { E=points.insert(tp[i],vertices.size()); vertices.push_back(tp[i]); } p.indices.push_back(E->get()); } polygons.push_back(p); } emit_signal(CoreStringNames::get_singleton()->changed); }